Table of Contents
ISRN Spectroscopy
Volume 2014 (2014), Article ID 856760, 6 pages
http://dx.doi.org/10.1155/2014/856760
Research Article

Extractive Spectrophotometric Determination of Tenofovir Disoproxil Fumarate Using Acidic Triphenylmethane Dyes

1Department of Chemistry, Jawaharlal Nehru Technology University, Hyderabad 500085, India
2G.Narayanamma Institute of Technology & Science, Hyderabad 500008, India
3Department of Chemistry, Nizam College (O.U.), Hyderabad, Andhra Pradesh 500001, India

Received 13 December 2013; Accepted 5 February 2014; Published 12 March 2014

Academic Editors: R. Fausto and P.-C. Liao

Copyright © 2014 K. Susmitha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. D. Miller, N. Margot, B. Lu et al., “Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients,” Journal of Infectious Diseases, vol. 189, no. 5, pp. 837–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Gallant, E. Dejesus, J. R. Arribas et al., “Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV,” The New England Journal of Medicine, vol. 354, no. 3, pp. 251–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Viread (Tenofovir) a Product Monograph, Gilead Sciences, Foster City, Calif, USA, 2001.
  4. T. King, L. Bushman, J. Kiser et al., “Liquid chromatography-tandem mass spectrometric determination of tenofovir-diphosphate in human peripheral blood mononuclear cells,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 843, no. 2, pp. 147–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Delahunty, L. Bushman, and C. V. Fletcher, “Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 830, no. 1, pp. 6–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. L. Rezk, R. D. Crutchley, and A. D. M. Kashuba, “Simultaneous quantification of emtricitabine and tenofovir in human plasma using high-performance liquid chromatography after solid phase extraction,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 822, no. 1-2, pp. 201–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sentenac, C. Fernandez, A. Thuillier, P. Lechat, and G. Aymard, “Sensitive determination of tenofovir in human plasma samples using reversed-phase liquid chromatography,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 793, no. 2, pp. 317–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. N. A. Raju and S. Begum, “Simultaneous RP-HPLC method for the estimation of Emtricitabine, Tenofovir and Efavirenz in tablet dosage forms,” Research Journal of Pharmacy and Technology, vol. 1, no. 4, pp. 522–525, 2008. View at Google Scholar
  9. E. Rey, G. Pons, J. Treluyer, and V. Julien, “Determination of Tenofovir in Human plasma by HPLC with spectroflourimetric detection,” Journal of Chromatography B, vol. 785, no. 2, pp. 377–381, 2003. View at Google Scholar
  10. M. Joshi, A. P. Nikalje, M. Shahed, and M. Dehghan, “HPTLC method for the simultaneous estimation of emtricitabine and tenofovir in tablet dosage form,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 1, pp. 95–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. Sparidans, K. M. L. Crommentuyn, J. H. M. Schellens, and J. H. Beijnen, “Liquid chromatographic assay for the antiviral nucleotide analogue tenofovir in plasma using derivatization with chloroacetaldehyde,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 791, no. 1-2, pp. 227–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Barkil, M.-C. Gagnieu, and J. Guitton, “Relevance of a combined UV and single mass spectrometry detection for the determination of tenofovir in human plasma by HPLC in therapeutic drug monitoring,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 854, no. 1-2, pp. 192–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Shirkhedkar Atul, H. Bhirud Charushila, and J. Surana Sanjay, “Application of UV-spectrophotometric methods for estimation of tenofovir disoproxil fumarate in tablets,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 1, pp. 27–29, 2009. View at Google Scholar · View at Scopus
  14. V. P. Choudari, S. Ingale, S. R. Gite, D. D. Tajane, V. G. Modak, and A. Ambekar, “Spectrophotometric simultaneous determination of Tenofovir disoproxil fumarate and emtricitabine in combined form by ratio derivative, first order derivative and absorbance corrected method and its application to dissolution study,” Pharmaceutical Methods, vol. 2, pp. 47–52, 2011. View at Google Scholar
  15. J. O. Onah and U. Ajima, “Spectrophotometric determination of tenofovir disoproxil fumarate after complexation with ammonium molybdate and picric acid,” International Journal of Drug Development and Research, vol. 3, no. 1, pp. 199–204, 2011. View at Google Scholar · View at Scopus
  16. H. T. S. Britton, Hydrogen Ions, vol. 1, Chapman and Hall, London, UK, 1942.
  17. W. C. Vosburgh and G. R. Coopper, “The identification of complex ions in solution spectrometric measurements,” Journal of the American Chemical Society, vol. 63, no. 437, 1941. View at Google Scholar
  18. W. Likussar and D. F. Boltz, “Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants,” Analytical Chemistry, vol. 43, no. 10, pp. 1265–1272, 1971. View at Google Scholar · View at Scopus
  19. K. Momoki, J. Sekino, H. Sato, and N. Yamaguchi, “Theory of curved molar ratio plots and a new linear plotting method,” Analytical Chemistry, vol. 41, no. 10, pp. 1286–1299, 1969. View at Google Scholar · View at Scopus
  20. “International Conference on Harmonization (ICH) of Technical Requirement for the Registration of Pharmaceuticals for Human use, Validation of Analytical procedures definitions and Terminology Genera,” 1996.