Table of Contents
ISRN Inflammation
Volume 2014 (2014), Article ID 928461, 14 pages
http://dx.doi.org/10.1155/2014/928461
Review Article

Role of Th17 Cells in the Pathogenesis of Human IBD

CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, Granada, 18100 Armilla, Spain

Received 30 September 2013; Accepted 24 December 2013; Published 25 March 2014

Academic Editors: S. M. Dann, T. Karosi, G. Matteoli, and V. Montinaro

Copyright © 2014 Julio Gálvez. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Glocker and B. Grimbacher, “Inflammatory bowel disease: is it a primary immunodeficiency?” Cellular and Molecular Life Sciences, vol. 69, no. 1, pp. 41–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Mowat, “Anatomical basis of tolerance and immunity to intestinal antigens,” Nature Reviews Immunology, vol. 3, no. 4, pp. 331–341, 2003. View at Google Scholar · View at Scopus
  4. G. Bouma and W. Strober, “The immunological and genetic basis of inflammatory bowel disease,” Nature Reviews Immunology, vol. 3, no. 7, pp. 521–533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Strober and I. J. Fuss, “Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1756–1767, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Lafaille, “The role of helper T cell subsets in autoimmune diseases,” Cytokine and Growth Factor Reviews, vol. 9, no. 2, pp. 139–151, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Usui, J. C. Preiss, Y. Kanno et al., “T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription,” The Journal of Experimental Medicine, vol. 203, no. 3, pp. 755–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Castellanos-Rubio, I. Santin, I. Irastorza, L. Castaño, J. Carlos Vitoria, and J. R. Bilbao, “TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin,” Autoimmunity, vol. 42, no. 1, pp. 69–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Heller, P. Florian, C. Bojarski et al., “Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution,” Gastroenterology, vol. 129, no. 2, pp. 550–564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Fouser, J. F. Wright, K. Dunussi-Joannopoulos, and M. Collins, “Th17 cytokines and their emerging roles in inflammation and autoimmunity,” Immunological Reviews, vol. 226, no. 1, pp. 87–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kotake, N. Udagawa, N. Takahashi et al., “IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis,” The Journal of Clinical Investigation, vol. 103, no. 9, pp. 1345–1352, 1999. View at Google Scholar · View at Scopus
  12. M. B. M. Teunissen, C. W. Koomen, R. de Waal Malefyt, E. A. Wierenga, and J. D. Bos, “Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes,” Journal of Investigative Dermatology, vol. 111, no. 4, pp. 645–649, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” The Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” The Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Cosmi, R. de Palma, V. Santarlasci et al., “Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor,” The Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903–1916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Zhou, I. I. Ivanov, R. Spolski et al., “IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways,” Nature Immunology, vol. 8, no. 9, pp. 967–974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. X. O. Yang, A. D. Panopoulos, R. Nurieva et al., “STAT3 regulates cytokine-mediated generation of inflammatory helper T cells,” The Journal of Biological Chemistry, vol. 282, no. 13, pp. 9358–9363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. U. H. Von Andrian and C. R. Mackay, “T-cell function and migration: two sides of the same coin,” The New England Journal of Medicine, vol. 343, no. 14, pp. 1020–1034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Sallusto and A. Lanzavecchia, “Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity,” European Journal of Immunology, vol. 39, no. 8, pp. 2076–2082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Cho, J. Kang, Y. Moon et al., “STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice,” The Journal of Immunology, vol. 176, no. 9, pp. 5652–5661, 2006. View at Google Scholar · View at Scopus
  25. S. Aggarwal, N. Ghilardi, M. Xie, F. J. de Sauvage, and A. L. Gurney, “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 1910–1914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human T H17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Santarlasci, L. Maggi, M. Capone et al., “TGF-β indirectly favors the development of human Th17 cells by inhibiting Th1 cells,” European Journal of Immunology, vol. 39, no. 1, pp. 207–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Das, G. Ren, L. Zhang et al., “Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation,” The Journal of Experimental Medicine, vol. 206, no. 11, pp. 2407–2416, 2009. View at Publisher · View at Google Scholar
  32. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. L. Gaffen, “Structure and signalling in the IL-17 receptor family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional specialization of interleukin-17 family members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Baba, T. Imai, M. Nishimura et al., “Identification of CCR6, the specific receptor for a novel lymphocyte- directed CC chemokine LARC,” The Journal of Biological Chemistry, vol. 272, no. 23, pp. 14893–14898, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Monteleone, I. Monteleone, D. Fina et al., “Interleukin-21 enhances T-helper cell type I signaling and interferon-γ production in Crohn's disease,” Gastroenterology, vol. 128, no. 3, pp. 687–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Nurieva, X. O. Yang, G. Martinez et al., “Essential autocrine regulation by IL-21 in the generation of inflammatory T cells,” Nature, vol. 448, no. 7152, pp. 480–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Fina, M. Sarra, M. C. Fantini et al., “Regulation of gut inflammation and th17 cell response by interleukin-21,” Gastroenterology, vol. 134, no. 4, pp. 1038.e2–1048.e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Brand, F. Beigel, T. Olszak et al., “IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 290, no. 4, pp. G827–G838, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Leung, M. Davenport, M. J. Wolff, K. E. Wiens, W. M. Abidi, M. A. Poles et al., “IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue,” Mucosal Immunology, vol. 7, no. 1, pp. 124–133, 2014. View at Publisher · View at Google Scholar
  42. M. Pelletier, L. Maggi, A. Micheletti et al., “Evidence for a cross-talk between human neutrophils and Th17 cells,” Blood, vol. 115, no. 2, pp. 335–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. L. A. Zenewicz, A. Antov, and R. A. Flavell, “CD4 T-cell differentiation and inflammatory bowel disease,” Trends in Molecular Medicine, vol. 15, no. 5, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. T. Weaver, C. O. Elson, L. A. Fouser, and J. K. Kolls, “The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin,” Annual Review of Pathology: Mechanisms of Disease, vol. 8, pp. 477–512, 2013. View at Publisher · View at Google Scholar
  45. S. Fujino, A. Andoh, S. Bamba et al., “Increased expression of interleukin 17 in inflammatory bowel disease,” Gut, vol. 52, no. 1, pp. 65–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Seiderer, I. Elben, J. Diegelmann et al., “Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 437–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Raza and M. T. Shata, “Letter: pathogenicity of Th17 cells may differ in ulcerative colitis compared with Crohn's disease,” Alimentary Pharmacology & Therapeutics, vol. 36, article 204, 2012. View at Google Scholar
  48. S. Bogaert, D. Laukens, H. Peeters et al., “Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease,” BMC Immunology, vol. 11, article 61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Kamada, T. Hisamatsu, S. Okamoto et al., “Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis,” The Journal of Clinical Investigation, vol. 118, no. 6, pp. 2269–2280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. I. Thompson and C. W. Lees, “Genetics of ulcerative colitis,” Inflammatory Bowel Diseases, vol. 17, no. 3, pp. 831–848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Kobayashi, S. Okamoto, T. Hisamatsu et al., “IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease,” Gut, vol. 57, no. 12, pp. 1682–1689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Hirota, H. Yoshitomi, M. Hashimoto et al., “Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model,” The Journal of Experimental Medicine, vol. 204, no. 12, pp. 2803–2812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Caruso, D. Fina, I. Peluso et al., “A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3α, by gut epithelial cells,” Gastroenterology, vol. 132, no. 1, pp. 166–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. D. de Nitto, M. Sarra, F. Pallone, and G. Monteleone, “Interleukin-21 triggers effector cell responses in the Gut,” World Journal of Gastroenterology, vol. 16, no. 29, pp. 3638–3641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Ogawa, A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama, “Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice,” Clinical Immunology, vol. 110, no. 1, pp. 55–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. X. O. Yang, H. C. Seon, H. Park et al., “Regulation of inflammatory responses by IL-17F,” The Journal of Experimental Medicine, vol. 205, no. 5, pp. 1063–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Garrido-Mesa, P. Utrilla, M. Comalada et al., “The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice,” Biochemical Pharmacology, vol. 82, no. 12, pp. 1891–1900, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Kinugasa, T. Sakaguchi, X. Gu, and H. Reinecker, “Claudins regulate the intestinal barrier in response to immune mediators,” Gastroenterology, vol. 118, no. 6, pp. 1001–1011, 2000. View at Google Scholar · View at Scopus
  59. K. Sugimoto, A. Ogawa, E. Mizoguchi et al., “IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 534–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. A. Zenewicz, G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell, “Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease,” Immunity, vol. 29, no. 6, pp. 947–957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Ouyang, S. H. Ranganath, K. Weindel et al., “Inhibition of Th1 development mediated by GATA-3 through an IL-4- independent mechanism,” Immunity, vol. 9, no. 5, pp. 745–755, 1998. View at Google Scholar · View at Scopus
  62. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. K. Lee, H. Turner, C. L. Maynard et al., “Late developmental plasticity in the T helper 17 lineage,” Immunity, vol. 30, no. 1, pp. 92–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Hirota, J. H. Duarte, M. Veldhoen et al., “Fate mapping of IL-17-producing T cells in inflammatory responses,” Nature Immunology, vol. 12, no. 3, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Bending, H. de La Peña, M. Veldhoen et al., “Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 565–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Wei, L. Wei, J. Zhu et al., “Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells,” Immunity, vol. 30, no. 1, pp. 155–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Nistala, S. Adams, H. Cambrook et al., “Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14751–14756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Cosmi, R. Cimaz, L. Maggi et al., “Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis,” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2504–2515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Zhou, J. E. Lopes, M. M. W. Chong et al., “TGF-Β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function,” Nature, vol. 453, no. 7192, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Xu, A. Kitani, I. Fuss, and W. Strober, “Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β,” The Journal of Immunology, vol. 178, no. 11, pp. 6725–6729, 2007. View at Google Scholar · View at Scopus
  71. C. Baecher-Allan, E. Wolf, and D. A. Hafter, “MHC class II expression identifies functionally distinct human regulatory T cells,” The Journal of Immunology, vol. 176, no. 8, pp. 4622–4631, 2006. View at Google Scholar · View at Scopus
  72. I. I. Ivanov, R. D. L. Frutos, N. Manel et al., “Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine,” Cell Host and Microbe, vol. 4, no. 4, pp. 337–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. P. R. Mangan, L. E. Harrington, D. B. O'Quinn et al., “Transforming growth factor-β induces development of the TH17 lineage,” Nature, vol. 441, no. 7090, pp. 231–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. O. Li and R. A. Flavell, “TGF-β: a master of all T cell trades,” Cell, vol. 134, no. 3, pp. 392–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Chen, P. Thai, Y. Zhao, Y. Ho, M. M. DeSouza, and R. Wu, “Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop,” The Journal of Biological Chemistry, vol. 278, no. 19, pp. 17036–17043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Zhu and W. E. Paul, “Heterogeneity and plasticity of T helper cells,” Cell Research, vol. 20, no. 1, pp. 4–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. J. McGeachy and D. J. Cua, “The link between IL-23 and Th17 cell-mediated immune pathologies,” Seminars in Immunology, vol. 19, no. 6, pp. 372–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Izcue, S. Hue, S. Buonocore et al., “Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis,” Immunity, vol. 28, no. 4, pp. 559–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Mucida, Y. Park, G. Kim et al., “Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid,” Science, vol. 317, no. 5835, pp. 256–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Benson, K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle, “All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation,” The Journal of Experimental Medicine, vol. 204, no. 8, pp. 1765–1774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. D. Milner, J. M. Brenchley, A. Laurence et al., “Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome,” Nature, vol. 452, no. 7188, pp. 773–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. L. de Beaucoudtey, A. Puel, O. Filipe-Santos et al., “Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells,” The Journal of Experimental Medicine, vol. 205, no. 7, pp. 1543–1550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. J. Harris, J. F. Grosso, H. Yen et al., “Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity,” The Journal of Immunology, vol. 179, no. 7, pp. 4313–4317, 2007. View at Google Scholar · View at Scopus
  84. E. V. Dang, J. Barbi, H. Yang et al., “Control of TH17/Treg balance by hypoxia-inducible factor 1,” Cell, vol. 146, no. 5, pp. 772–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Hot and P. Miossec, “Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes,” Annals of the Rheumatic Diseases, vol. 70, no. 5, pp. 727–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, pp. 231–241, 2012. View at Publisher · View at Google Scholar
  87. M. Asquith and F. Powrie, “An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer,” The Journal of Experimental Medicine, vol. 207, no. 8, pp. 1573–1577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Manichanh, N. Borruel, F. Casellas, and F. Guarner, “The gut microbiota in IBD,” Nature Reviews Gastroenterology and Hepatology, vol. 9, pp. 599–608, 2012. View at Publisher · View at Google Scholar
  89. P. Lepage, R. Hösler, M. E. Spehlmann et al., “Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis,” Gastroenterology, vol. 141, no. 1, pp. 227–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Manichanh, L. Rigottier-Gois, E. Bonnaud et al., “Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach,” Gut, vol. 55, no. 2, pp. 205–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Guarner, R. Bourdet-Sicard, P. Brandtzaeg et al., “Mechanisms of disease: the hygiene hypothesis revisited,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 5, pp. 275–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Ohnmacht, R. Marques, L. Presley, S. Sawa, M. Lochner, and G. Eberl, “Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity,” Cellular Microbiology, vol. 13, no. 5, pp. 653–659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Wu, K. Rhee, E. Albesiano et al., “A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses,” Nature Medicine, vol. 15, no. 9, pp. 1016–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. K. Lee, J. S. Menezes, Y. Umesaki, and S. K. Mazmanian, “Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 4615–4622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Uematsu, M. H. Jang, N. Chevrier et al., “Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells,” Nature Immunology, vol. 7, no. 8, pp. 868–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Atarashi, J. Nishimura, T. Shima et al., “ATP drives lamina propria TH17 cell differentiation,” Nature, vol. 455, no. 7214, pp. 808–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. V. Gaboriau-Routhiau, S. Rakotobe, E. Lécuyer et al., “The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses,” Immunity, vol. 31, no. 4, pp. 677–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Uematsu and S. Akira, “Toll-like receptors and innate immunity,” Journal of Molecular Medicine, vol. 84, no. 9, pp. 712–725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Prakash, K. Oshima, H. Morita et al., “Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation,” Cell Host and Microbe, vol. 10, no. 3, pp. 273–284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Sczesnak, N. Segata, X. Qin et al., “The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment,” Cell Host and Microbe, vol. 10, no. 3, pp. 260–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. M. A. Kinnebrew, C. G. Buffie, G. E. Diehl et al., “Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense,” Immunity, vol. 36, no. 2, pp. 276–287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Lee, J. B. McLachlan, J. R. Kurtz et al., “Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development,” PLoS Pathogens, vol. 8, no. 1, Article ID e1002499, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. M. H. Shaw, N. Kamada, Y. Kim, and G. Núñez, “Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine,” The Journal of Experimental Medicine, vol. 209, no. 2, pp. 251–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. T. L. Denning, B. A. Norris, O. Medina-Contreras et al., “Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization,” The Journal of Immunology, vol. 187, no. 2, pp. 733–747, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. B. Torchinsky, J. Garaude, A. P. Martin, and J. M. Blander, “Innate immune recognition of infected apoptotic cells directs T H17 cell differentiation,” Nature, vol. 458, no. 7234, pp. 78–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. C. O. Elson, Y. Cong, C. T. Weaver et al., “Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice,” Gastroenterology, vol. 132, no. 7, pp. 2359–2370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. W. S. Garrett, J. I. Gordon, and L. H. Glimcher, “Homeostasis and inflammation in the intestine,” Cell, vol. 140, no. 6, pp. 859–870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Stepankova, F. Powrie, O. Kofronova et al., “Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells,” Inflammatory Bowel Diseases, vol. 13, no. 10, pp. 1202–1211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Stolfi, A. Rizzo, E. Franzè et al., “Involvement of interleukin-21 in the regulation of colitis-associated colon cancer,” The Journal of Experimental Medicine, vol. 208, no. 11, pp. 2279–2290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Becker, H. Dornhoff, C. Neufert et al., “Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis,” The Journal of Immunology, vol. 177, no. 5, pp. 2760–2764, 2006. View at Google Scholar · View at Scopus
  112. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” The Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. W. J. Sandborn, C. Gasink, L. L. Gao et al., “Ustekinumab induction and maintenance therapy in refractory Crohn's disease,” The New England Journal of Medicine, vol. 367, no. 16, pp. 1519–1528, 2012. View at Publisher · View at Google Scholar
  114. Z. Zhang, M. Zheng, J. Bindas, P. Schwarzenberger, and J. K. Kolls, “Critical role of IL-17 receptor signaling in acute TNBS-induced colitis,” Inflammatory Bowel Diseases, vol. 12, no. 5, pp. 382–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. L. P. McLean, R. K. Cross, and T. Shea-Donohue, “Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis,” Immunotherapy, vol. 5, pp. 923–925, 2013. View at Publisher · View at Google Scholar
  116. E. G. W. Schmidt, H. L. Larsen, N. N. Kristensen et al., “TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis,” Inflammatory Bowel Diseases, vol. 19, no. 8, pp. 1567–1576, 2013. View at Publisher · View at Google Scholar
  117. L. R. Fitzpatrick, J. S. Small, R. Doblhofer, and A. Ammendola, “Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action,” Journal of Pharmacology and Experimental Therapeutics, vol. 342, no. 3, pp. 850–860, 2012. View at Publisher · View at Google Scholar
  118. K. R. Herrlinger, M. Diculescu, K. Fellermann et al., “Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study,” Journal of Crohn's and Colitis, vol. 7, no. 8, pp. 636–643, 2013. View at Publisher · View at Google Scholar
  119. M. Veldhoen, K. Hirota, A. M. Westendorf et al., “The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins,” Nature, vol. 453, no. 7191, pp. 106–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. F. J. Quintana, A. S. Basso, A. H. Iglesias et al., “Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor,” Nature, vol. 453, no. 7191, pp. 65–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. C. Esser, A. Rannug, and B. Stockinger, “The aryl hydrocarbon receptor in immunity,” Trends in Immunology, vol. 30, no. 9, pp. 447–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Trifari, C. D. Kaplan, E. H. Tran, N. K. Crellin, and H. Spits, “Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells,” Nature Immunology, vol. 10, no. 8, pp. 864–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. M. S. Alam, Y. Maekawa, A. Kitamura et al., “Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 5943–5948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. I. Monteleone, A. Rizzo, M. Sarra et al., “Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract,” Gastroenterology, vol. 141, no. 1, pp. 237.e1–248.e1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. L. Klotz, S. Burgdorf, I. Dani et al., “The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity,” The Journal of Experimental Medicine, vol. 206, no. 10, pp. 2079–2089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Hontecillas, W. T. Horne, M. Climent et al., “Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease,” Mucosal Immunology, vol. 4, no. 3, pp. 304–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. Q. Q. Chen, L. Yan, C. Z. Wang et al., “Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses,” World Journal of Gastroenterology, vol. 19, no. 29, pp. 4702–4717, 2013. View at Publisher · View at Google Scholar
  128. L. R. Fitzpatrick, “Inhibition of IL-17 as a pharmacological approach for IBD,” International Reviews of Immunology, vol. 32, no. 5-6, pp. 544–555, 2013. View at Publisher · View at Google Scholar