Table of Contents
ISRN Pharmacology
Volume 2014, Article ID 952943, 9 pages
http://dx.doi.org/10.1155/2014/952943
Review Article

A Review on Protocatechuic Acid and Its Pharmacological Potential

Department of Pharmacology , Rayat Institute of Pharmacy, Railmajra, District S.B.S. Nagar, Punjab 144533, India

Received 12 January 2014; Accepted 5 March 2014; Published 26 March 2014

Academic Editors: D. K. Miller and T. W. Stone

Copyright © 2014 Sahil Kakkar and Souravh Bais. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Robbins, “Phenolic acids in foods: an overview of analytical methodology,” Journal of Agricultural and Food Chemistry, vol. 51, no. 10, pp. 2866–2887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. H. Liu, “Potential synergy of phytochemicals in cancer prevention: mechanism of action,” The Journal of Nutrition, vol. 134, no. 12, pp. 3479S–3485S, 2004. View at Google Scholar · View at Scopus
  3. E. A. Hudson, P. A. Dinh, T. Kokubun, M. S. J. Simmonds, and A. Gescher, “Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 11, pp. 1163–1170, 2000. View at Google Scholar · View at Scopus
  4. K. Herrmann, “Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods,” Critical Reviews in Food Science and Nutrition, vol. 28, no. 4, pp. 315–347, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. S.-I. Kayano, H. Kikuzaki, N. Fukutsuka, T. Mitani, and N. Nakatani, “Antioxidant activity of prune (Prunus domestica L.) constituents and a new synergist,” Journal of Agricultural and Food Chemistry, vol. 50, no. 13, pp. 3708–3712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Li, X. Q. Wang, H. Z. Wang, and Y. N. Wu, “High performance liquid chromatographic determination of phenolic acids in fruits and vegetables,” Biomedical and Environmental Sciences, vol. 6, no. 4, pp. 389–398, 1993. View at Google Scholar · View at Scopus
  7. S. Sang, K. Lapsley, W.-S. Jeong, P. A. Lachance, C.-T. Ho, and R. T. Rosen, “Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch),” Journal of Agricultural and Food Chemistry, vol. 50, no. 8, pp. 2459–2463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Masella, A. Cantafora, D. Modesti et al., “Antioxidant activity of 3,4-DHPEA-EA and protocatecuic acid: a comparative assessment with other olive oil biophenols,” Redox Report, vol. 4, no. 3, pp. 113–121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Masella, R. Varì, M. D'Archivio et al., “Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes,” The Journal of Nutrition, vol. 134, no. 4, pp. 785–791, 2004. View at Google Scholar · View at Scopus
  10. T.-H. Tseng, J.-D. Hsu, M.-H. Lo et al., “Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin,” Cancer Letters, vol. 126, no. 2, pp. 199–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. B. H. Ali, N. Al Wabel, and G. Blunden, “Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review,” Phytotherapy Research, vol. 19, no. 5, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ellnain-Wojtaszek, “Phenolic acids from Ginkgo biloba L. Part II. Quantitative analysis of free and liberated by hydrolysis phenolic acids,” Acta Poloniae Pharmaceutica, vol. 54, no. 3, pp. 229–232, 1997. View at Google Scholar · View at Scopus
  13. G. Jürgenliemk and A. Nahrstedt, “Phenolic compounds from Hypericum perforatum,” Planta Medica, vol. 68, no. 1, pp. 88–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Vitaglione, G. Donnarumma, A. Napolitano et al., “Protocatechuic acid is the major human metabolite of cyanidin-glucosides,” The Journal of Nutrition, vol. 137, no. 9, pp. 2043–2048, 2007. View at Google Scholar · View at Scopus
  15. C.-Y. Chao and M.-C. Yin, “Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice,” Foodborne Pathogens and Disease, vol. 6, no. 2, pp. 201–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. http://en.wikipedia.org/wiki/Roselle_(plant).
  17. N. Mahadevan, S. Shivali, and P. Kamboj, “Hibiscus sabdariffa linn.: an overview,” Natural Product Radiance, vol. 8, no. 1, pp. 77–83, 2009. View at Google Scholar · View at Scopus
  18. C. C.-C. Hsieh, M.-Y. Lee, C.-C. Chen, J.-J. Hsu, H.-K. Lu, and C.-J. Wang, “Hibiscus protocatechuic acid supplementation reduces oxidative stress induced by exhaustive exercise in rat muscle,” Journal of Exercise Science and Fitness, vol. 4, no. 1, pp. 59–64, 2006. View at Google Scholar · View at Scopus
  19. X. Li, X. Wang, D. Chen, and S. Chen, “Antioxidant activity and mechanism of protocatechuic acid in vitro,” Functional Foods in Health and Disease, vol. 7, pp. 232–244, 2011. View at Google Scholar
  20. L. A. Pacheco-Palencia, S. Mer0tens-Talcott, and S. T. Talcott, “Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.),” Journal of Agricultural and Food Chemistry, vol. 56, no. 12, pp. 4631–4636, 2008. View at Publisher · View at Google Scholar
  21. L. K. Paul, H. R. Angell, and J. C. Walker, “The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions,” The Journal of Biological Chemistry, vol. 81, no. 2, pp. 369–375, 1929. View at Google Scholar
  22. H. S. Hassan, A. M. Musa, and M. A. Usman, “Preliminary phytochemical and antispasmodic studies of the stem bark of boswella dalzielii,” Nigerian Journal of Pharmaceutical Sciences, vol. 8, no. 1, pp. 1–6, 2009. View at Google Scholar
  23. C.-L. Liu, J.-M. Wang, C.-Y. Chu, M.-T. Cheng, and T.-H. Tseng, “In vivo protective effect of protocatechuic acid on tert-butyl hydroperoxide-induced rat hepatotoxicity,” Food and Chemical Toxicology, vol. 40, no. 5, pp. 635–641, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. http://en.wikipedia.org/wiki/Protocatechuic_acid.
  25. L. Zhou, Z. Zuo, and M. S. Chow, “Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use,” The Journal of Clinical Pharmacology, vol. 45, no. 12, pp. 1345–1359, 2005. View at Publisher · View at Google Scholar
  26. R. Zhou, L. F. He, Y. J. Li, Y. Shen, R. B. Chao, and J. R. Du, “Cardioprotective effect of water and ethanol extract of Salvia miltiorrhiza in an experimental model of myocardial infarction,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 440–446, 2012. View at Publisher · View at Google Scholar
  27. K. Jaijoy, N. Soonthornchareonnon, A. Panthong, and S. Sireeratawong, “Anti-inflammatory and analgesic activities of the water extract from the fruit of Phyllanthus emblica Linn,” International Journal of Applied Research in Natural Products, vol. 3, no. 2, pp. 28–35, 2010. View at Google Scholar · View at Scopus
  28. S. G. Guan, Y.-M. Bao, B. J. Jiang, and L.-J. An, “Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death,” European Journal of Pharmacology, vol. 538, no. 1–3, pp. 73–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Scazzocchio, R. Varì, C. Filesi et al., “Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes,” Diabetes, vol. 60, no. 9, pp. 2234–2244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tanaka, T. Tanaka, and M. Tanaka, “Potential cancer Chemopreventive activity of protocatechuic acid,” Journal of Experimental and Clinical Medicine, vol. 3, no. 1, pp. 27–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. J. Kore, P. P. Bramhakule, R. M. Rachhadiya, and R. V. Shete, “Evaluation of anti ulcer activity of protocatechuic acid ethyl ester in rats,” International Journal of Pharmacy & Life Sciences, vol. 2, no. 7, p. 909, 2011. View at Google Scholar
  32. G.-F. Shi, L.-J. An, B. Jiang, S. Guan, and Y.-M. Bao, “Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo,” Neuroscience Letters, vol. 403, no. 3, pp. 206–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Li, W. Jiang, H. Zhu, and J. Hou, “Antifibrotic effects of protocatechuic aldehyde on experimental liver fibrosis,” Pharmaceutical Biology, vol. 50, no. 4, pp. 413–419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Zhou, Y. Zhang, X.-R. Ding et al., “Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo,” Antiviral Research, vol. 74, no. 1, pp. 59–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. B. Lende, A. D. Kshirsagar, A. D. Deshpande et al., “Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice,” Inflammopharmacology, vol. 19, no. 5, pp. 255–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. R. Borate, A. A. Suralkar, S. S. Birje, P. V. Malusare, and P. A. Bangale, “Antihyperlipidemic effect of protocatechuic acid in fructose induced hyperlipidemia in rats,” International Journal of Pharma and Bio Sciences, vol. 2, no. 4, p. 456, 2011. View at Google Scholar
  37. O. Ciftci, O. M. Disli, and N. Timurkaan, “Protective effects of protocatechuic acid on TCDD-induced oxidative and histopathological damage in the heart tissue of rats,” Toxicology and Industrial Health, vol. 29, no. 9, pp. 806–811, 2013. View at Publisher · View at Google Scholar
  38. J.-H. Lee, H.-J. Lee, H.-J. Lee et al., “Rhus verniciflua Stokes prevents cisplatin-induced cytotoxicity and reactive oxygen species production in MDCK-I renal cells and intact mice,” Phytomedicine, vol. 16, no. 2, pp. 188–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Beytur, O. Ciftci, M. Aydin, O. Cakir, N. Timurkaan, and F. Yılmaz, “Protocatechuic acid prevents reproductive damage caused by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) in male rats,” Andrologia, vol. 44, no. 1, supplement, pp. 454–461, 2002. View at Publisher · View at Google Scholar