Table of Contents
International Scholarly Research Notices
Volume 2017, Article ID 6571089, 8 pages
https://doi.org/10.1155/2017/6571089
Research Article

Physicochemical Characterization and Polyphenolic Content of Beninese Honeys

1Unit of Food and Enzymatic Engineering Research, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 BP 2009 Cotonou, Benin
2Laboratory of Botany and Plant Ecology, Faculty of Sciences and Technologies, University of Abomey-Calavi, 01 BP 4521 Cotonou, Benin

Correspondence should be addressed to Fidèle Paul Tchobo; moc.liamg@obohcteledif

Received 12 May 2017; Revised 12 July 2017; Accepted 26 July 2017; Published 7 September 2017

Academic Editor: Lillian Barros

Copyright © 2017 Sênan Christa Lokossou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Commission du Codex Alimentarius, Rapport de la septième session du comité du Codex sur les sucres , Vingt-quatrième session, Genève, p. 35, 2001.
  2. M. Solayman, M. A. Islam, S. Paul et al., “Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review,” Comprehensive Reviews in Food Science and Food Safety, vol. 15, no. 1, pp. 219–233, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. White, “Composition of honey,” in Honey: A Comprehensive Survey, E. Crane, Ed., pp. 157-158, Heinemann, London, 1979. View at Google Scholar
  4. J. W. White, Physical characteristics of honey, Survey, Heinemann, London, 1975.
  5. C. Cordella, J.-F. Antinelli, C. Aurieres, J.-P. Faucon, D. Cabrol-Bass, and N. Sbirrazzuoli, “Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 203–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Alvarez-Suarez, S. Tulipani, D. Díaz et al., “Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds,” Food and Chemical Toxicology, vol. 48, no. 8-9, pp. 2490–2499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Mbogning, J. Tchoumboue, F. Damesse, M. Sanou Sobze, and A. Canini, “Caractéristiques physico-chimiques des miels de la zone Soudano-guinéenne de l’Ouest et de l’Adamaoua Cameroun,” Tropicultura, vol. 3, pp. 168–175, 2011. View at Google Scholar
  8. L. S. Chua and N. A. Adnan, “Biochemical and nutritional components of selected honey samples,” Acta Scientiarum Polonorum, Technologia Alimentaria, vol. 13, no. 2, pp. 169–179, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. European Union Commission, “Council directive 2001/110/EC of 20 December 2001 relating Honey,” Official Journal of European Community, vol. L10, pp. 47–52, 2001. View at Google Scholar
  10. A. Meda, C. E. Lamien, M. Romito, J. Millogo, and O. G. Nacoulma, “Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity,” Food Chemistry, vol. 91, no. 3, pp. 571–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. C. Molan and J. A. Betts, “Clinical usage of honey as a wound dressing: an update,” Journal of Wound Care, vol. 13, no. 9, pp. 353–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Aljadi and M. Y. Kamaruddin, “Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys,” Food Chemistry, vol. 85, no. 4, pp. 513–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Beretta, P. Granata, M. Ferrero, M. Orioli, and R. M. Facino, “Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics,” Analytica Chimica Acta, vol. 533, no. 2, pp. 185–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Blasa, M. Candiracci, A. Accorsi, M. P. Piacentini, M. C. Albertini, and E. Piatti, “Raw Millefiori honey is packed full of antioxidants,” Food Chemistry, vol. 97, no. 2, pp. 217–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. M. De Almeida, M. B. S. Oliveira, J. G. Da Costa, I. B. Valentim, and M. O. F. Goulart, “Antioxidant capacity, physicochemical and floral characterization of honeys from the northeast of Brazil,” Revista Virtual de Quimica, vol. 8, no. 1, pp. 57–77, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Akoègninou, W. J. Van der Burg, and L. J. G. Van der Maesen, Flore Analytique du Bénin, Backhuys Publishers, 2006.
  17. “International Honey Commission, Harmonised methods of the international honey commission, p. 62, 2002”.
  18. J. W. White, “Instrumental color classification of honey: collaborative study,” Journal of the AOAC, vol. 67, pp. 1129–1131, 1984. View at Google Scholar
  19. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric method for determination of sugars and related substances,” Analytical Chemistry, vol. 28, no. 3, pp. 350–356, 1956. View at Publisher · View at Google Scholar · View at Scopus
  20. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. B. N. Ita, “Antioxidant activity of honey samples from the southern rainforest and northern savannah ecosystems in Nigeria,” International Journal of Pharmaceutical Sciences and Research, vol. 2, no. 8, pp. 2115–2120, 2011. View at Google Scholar
  22. NC 371-04, Cuban Standard. Bee honey, specifications, p. 12, 2004.
  23. D. N. Delphine and T. Joseph, “Palynological and physicochemical characterization of honey in the Sudano-Guinean zone of Cameroon,” Food and Nutrition Sciences, vol. 06, no. 15, 12 pages, 2015. View at Publisher · View at Google Scholar
  24. M. V. Reshma, S. Shyma, T. M. George, A. V. Rishin, K. C. Ravi, and L. Shilu, “Study on the physicochemical parameters, phenolic profile and antioxidant properties of Indian honey samples from extrafloral sources and multi floral sources,” International Food Research Journal, vol. 23, no. 5, pp. 2021–2028, 2016. View at Google Scholar · View at Scopus
  25. H. Y. Achour and M. Khali, “Composition physicochimique des miels algériens. Détermination des éléments traces et des éléments potentiellement toxiques,” Afrique Science, vol. 10, no. 2, pp. 127–136, 2014. View at Google Scholar
  26. A. Abdulkhaliq and K. M. Swaileh, “Physico-chemical properties of multi-floral honey from the West Bank, Palestine,” International Journal of Food Properties, vol. 20, no. 2, pp. 447–454, 2017. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kayode and S. D. Oyeyemi, ““Physico-chemical study and analysis of pollen grains in some commercial honey samples found in Ondo State, Nigeria,” International Journal of Basic and Applied Science, vol. 3, no. 2, pp. 63–73, 2014. View at Google Scholar
  28. M. S. Finola, M. C. Lasagno, and J. M. Marioli, “Microbiological and chemical characterization of honeys from central Argentina,” Food Chemistry, vol. 100, no. 4, pp. 1649–1653, 2007. View at Google Scholar
  29. A. Meda, C. E. Lamien, J. Millogo, M. Romito, and O. G. Nacoulma, “Physicochemical analyses of Burkina Fasan honey,” Acta Veterinaria Brno, vol. 74, no. 1, pp. 147–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. S. Sodré, L. C. Marchini, A. C. D. C. C. Moreti, I. P. Otsuk, and C. A. L. de Carvalho, “Physico-chemical characteristics of honey produced by Apis mellifera in the Picos Region, State of Piauí, Brazil,” Revista Brasileira de Zootecnia, vol. 40, no. 8, pp. 1837–1843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Anklam, “A review of the analytical methods to determine the geographical and botanical origin of honey,” Food Chemistry, vol. 63, no. 4, pp. 549–562, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Estevinho, M. Vázquez-Tato, J. Seijas, and X. Feás, “Palynological, physicochemical, and microbiological attributes of organic lavender (Lavandula stoechas) honey from Portugal,” Acta Alimentaria, vol. 42, no. 1, pp. 36–44, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. M. O. Adenekan, B. A. Adelekan, and F. I. Oluwatoyiunbo, “Physicochemical and vitamin constituents of honey samples obtained from different agro-ecological Zones of Nigeria,” Journal of Agriculture and Veterinary Sciences, vol. 7, no. 2, pp. 28–43, 2015. View at Google Scholar
  34. S. Mekious, Z. Houmani, E. Bruneau, C. Masseaux, A. Guillet, and T. Hance, “Caractérisation des miels produits dans la région steppique de Djelfa en Algérie,” Biothechnologie, Agronomie, Société et Environnement, vol. 19, no. 3, pp. 221–231, 2015. View at Google Scholar
  35. Z. Can, O. Yildiz, H. Sahin, E. Akyuz Turumtay, S. Silici, and S. Kolayli, “An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles,” Food Chemistry, vol. 180, pp. 133–141, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Djossou, F. P. Tchobo, H. Yédomonhan, A. G. Alitonou, M. M. Soumanou, and H. Yédomonhan, “Evaluation des caractéristiques physico-chimiques des miels commercialisés à Cotonou,” Tropicultura, vol. 31, no. 3, pp. 163–169, 2013. View at Google Scholar
  37. J. F. Cotte, H. Casabianca, B. Giroud, M. Albert, J. Lheritier, and M. F. Grenier-Loustalot, “Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity,” Analytical and Bioanalytical Chemistry, vol. 378, no. 5, pp. 1342–1350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Buba, A. Gidado, and A. Shugaba, “Analysis of biochemical composition of honey samples from North-East Nigeria,” Biochemistry & Analytical Biochemistry, vol. 2, no. 3, 7 pages, 2013. View at Publisher · View at Google Scholar
  39. S. Ouchemoukh, N. Amessis-Ouchemoukh, M. Gómez-Romero et al., “Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry,” LWT - Food Science and Technology, 2016. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Moniruzzaman, C. Yung An, P. V. Rao et al., “Identification of phenolic acids and flavonoids in monofloral honey from bangladesh by high performance liquid chromatography: determination of antioxidant capacity,” BioMed Research International, vol. 2014, Article ID 737490, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. J. A. Pontis, L. A. M. A. da Costa, S. J. R. da Silva, and A. Flach, “Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil,” Food Science and Technology, vol. 34, no. 1, pp. 69–73, 2014. View at Publisher · View at Google Scholar · View at Scopus