Table of Contents
International Scholarly Research Notices
Volume 2017 (2017), Article ID 7831954, 7 pages
https://doi.org/10.1155/2017/7831954
Research Article

Extracellular Xylanopectinolytic Enzymes by Bacillus subtilis ADI1 from EFB’s Compost

1Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to Wan Zuhainis Saad

Received 3 January 2017; Accepted 28 March 2017; Published 24 April 2017

Academic Editor: Giuseppe Maurizio Campo

Copyright © 2017 Muhammad Hariadi Nawawi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sharma and A. Kumar, “Xylanases: an overview,” British Biotechnology Journal, vol. 3, no. 1, pp. 1–28, 2013. View at Publisher · View at Google Scholar
  2. S. Ahmed, S. Riaz, and A. Jamil, “Molecular cloning of fungal xylanases: an overview,” Applied Microbiology and Biotechnology, vol. 84, no. 1, pp. 19–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Dhiman, J. Sharma, and B. Battan, “Industrial applications and future prospects of microbial xylanases: a review,” BioResources, vol. 3, no. 4, pp. 1377–1402, 2008. View at Google Scholar · View at Scopus
  4. G. Hoondal, R. Tiwari, R. Tewari, N. Dahiya, and Q. Beg, “Microbial alkaline pectinases and their industrial applications: A review,” Applied Microbiology and Biotechnology, vol. 59, no. 4-5, pp. 409–418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. R. Kashyap, P. K. Vohra, S. Chopra, and R. Tewari, “Applications of pectinases in the commercial sector: a review,” Bioresource Technology, vol. 77, no. 3, pp. 215–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Gangwar, N. T. Prakash, and R. Prakash, “Applicability of microbial xylanases in paper pulp bleaching: a review,” BioResources, vol. 9, no. 2, 2014. View at Publisher · View at Google Scholar
  7. P. Bajpai, Environmentally Benign Approaches for Pulp Bleaching, Elsevier Science Technology, Netherlands, Amsterdam, 2nd edition, 2012.
  8. L. Viikari, A. Kantelinen, J. Sundquist, and M. Linko, “Xylanases in bleaching: from an idea to the industry,” FEMS Microbiology Reviews, vol. 13, no. 2-3, pp. 335–350, 1994. View at Google Scholar · View at Scopus
  9. P. Bajpai, Biotechnology for pulp and paper processing, Springer Science and Business Media, New York, NY, USA, 2012.
  10. K. K. Y. Wong and J. N. Saddler, “Trichoderma xylanases, their properties and application,” Critical Reviews in Biotechnology, vol. 12, no. 5-6, pp. 413–435, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Bajpai, Green Chemistry and Sustainability in Pulp and Paper Industry, Springer, New Delhi, India, 1st edition, 2015.
  12. T. Satyanarayana, J. Littlechild, and Y. Kawarabayasi, Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of Thermophiles, Springer, Netherlands, Amsterdam, 2nd edition, 2014.
  13. M. Schaechter, Encyclopedia of Microbiology, Elsevier/Academic Press, Netherlands, Amsterdam, 3rd edition, 2014.
  14. S. Nagar, A. Mittal, and V. K. Gupta, “A cost effective method for screening and isolation of xylan degrading bacteria using agro waste material,” Asian Journal of Biological Sciences, vol. 5, no. 8, pp. 384–394, 2012. View at Publisher · View at Google Scholar
  15. J. G. Cappuccino and N. Sherman, Microbiology: A Laboratory Manual, Pearson/Benjamin Cummings, San Francisco, California, USA, 8th edition, 2010.
  16. A. Akhavan Sepahy, S. Ghazi, and M. Akhavan Sepahy, “Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste,” Enzyme Research, vol. 2011, no. 1, Article ID 593624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Singh, A. Kaur, A. Dua, and R. Mahajan, “An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes,” Enzyme Research, vol. 2015, Article ID 725281, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. E. T. Chivero, A. N. Mutukumira, and R. Zvauya, “Partial purification and characterisation of a xylanase enzyme produced by a micro-organism isolated from selected indigenous fruits of Zimbabwe,” Food Chemistry, vol. 72, no. 2, pp. 179–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. W. Yang, Z. Zhuang, G. Elegir, and T. W. Jeffries, “Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp,” Journal of Industrial Microbiology, vol. 15, no. 5, pp. 434–441, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Kasana, R. Salwan, H. Dhar, S. Dutt, and A. Gulati, “A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine,” Current Microbiology, vol. 57, no. 5, pp. 503–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ahlawat, B. Battan, S. S. Dhiman, J. Sharma, and R. P. Mandhan, “Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp,” Journal of Industrial Microbiology and Biotechnology, vol. 34, no. 12, pp. 763–770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. H. Hooi, “Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SSF),” Journal of Food Processing & Technology, vol. 06, no. 04, pp. 1–9, 2015. View at Google Scholar
  23. A. Kaur, R. Mahajan, A. Singh, G. Garg, and J. Sharma, “Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp,” Bioresource Technology, vol. 101, no. 23, pp. 9150–9155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Galkiewicz and C. A. Kellogg, “Cross-kingdom amplification using Bacteria-specific primers: complications for studies of coral microbial ecology,” Applied and Environmental Microbiology, vol. 74, no. 24, pp. 7828–7831, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kaur, D. Dutt, and C. H. Tyagi, “Production of novel alkali-thermo-tolerant cellulase-poor xylanases from Coprinopsis cinerea HK-1 NFCCI-2032,” BioResources, vol. 6, no. 2, pp. 1376–1391, 2011. View at Google Scholar · View at Scopus
  26. N. Jacob, K. N. Niladevi, G. S. Anisha, and P. Prema, “Hydrolysis of pectin: an enzymatic approach and its application in banana fiber processing,” Microbiological Research, vol. 163, no. 5, pp. 538–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. W. Kwon, J. H. Yoon, S. H. Kim, S. B. Hong, Y. Cheon, and S. J. Ko, “Detection of Extracellular enzymes activities in various Fusarium spp.,” Mycobiology, vol. 35, no. 3, p. 162, 2007. View at Publisher · View at Google Scholar
  28. K. Auntsrup, “Federation of european biochemical socities symposium,” in Industrial Aspects of Biochemistry, B. Spencer, Ed., p. 23, Elsevier, Amsterdam, Holland, 1974. View at Google Scholar
  29. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Sujani and R. T. Seresinhe, “Exogenous enzymes in ruminant nutrition: a review,” Asian Journal of Animal Sciences, vol. 9, no. 3, pp. 85–99, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Shulami, O. Shenker, Y. Langut et al., “Multiple regulatory mechanisms control the expression of the geobacillus stearothermophilus gene for extracellular xylanase,” Journal of Biological Chemistry, vol. 289, no. 37, pp. 25957–25975, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Nakamura, K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi, “Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp. strain 41M-1,” World Journal of Microbiology and Biotechnology, vol. 9, no. 2, pp. 221–224, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. M. T. Fernández-Espinar, D. Ramón, F. Piñaga, and S. Vallés, “Xylanase production by Aspergillus nidulans,” FEMS Microbiology Letters, vol. 91, no. 2, pp. 91–96, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Samain, J. P. Touzel, B. Brodel, and P. Debeire, “Isolation of a thermophilic bacterium producing high levels of xylanase, in Xylans and xylanases,” in Progress in Biotechnology, J. Visser, G. Beldman, M. A. Kusters-van Someren, and A. G. J. Voragen, Eds., vol. 7, pp. 467–470, Elsevier Science Publisher, Amsterdam, Holland, 1992. View at Google Scholar
  36. D. C. Sharma and T. Satyanarayana, “Biotechnological potential of agro residues for economical production of thermoalkali-stable pectinase by Bacillus pumilus dcsr1 by solid-state fermentation and its efficacy in the treatment of ramie fibres,” Enzyme Research, vol. 2012, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Kumar, H. K. Sharma, and B. C. Sarkar, “Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF),” Food Science and Biotechnology, vol. 20, no. 5, pp. 1289–1298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M.-T. Aurora, J. S. Aranda, G.-S. Carlos, T.-A. Blanca, and A.-O. Guillermo, “Constitutive and inducible pectinolytic enzymes from aspergillus flavipes fp-500 and their modulation by ph and carbon source,” Brazilian Journal of Microbiology, vol. 40, no. 1, pp. 40–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Soriano, P. Diaz, and F. I. J. Pastor, “Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin,” Current Microbiology, vol. 50, no. 2, pp. 114–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. H. Holliman, Pathology, Springer US, New York, NY, USA, 3 edition, 2012.
  41. B. Berg and G. Petterson, “Location and formation of cellulases in trichoderma viride,” Journal of Applied Bacteriology, vol. 42, no. 1, pp. 65–75, 1977. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Berg and A. V. Hofsten, “The ultrastructure of the fungus trichoderma viride and investigation of its growth on cellulose,” Journal of Applied Bacteriology, vol. 41, no. 3, pp. 395–399, 1976. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Gaewchingduang and P. Pengthemkeerati, “Enhancing efficiency for reducing sugar from cassava bagasse by pretreatment,” International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, vol. 4, no. 10, pp. 477–480, 2010. View at Google Scholar
  44. P. Bajpai, Biotechnology for Pulp and Paper Processing, Springer-Verlag, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  45. M. C. Srinivasan and M. V. Rele, “Cellulase-free xylanases from microorganisms and their application to pulp and paper biotechnology: an overview,” Indian Journal of Microbiology, vol. 35, no. 2, pp. 93–101, 1995. View at Google Scholar
  46. A. Dhillon, J. K. Gupta, B. M. Jauhari, and S. Khanna, “A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp,” Bioresource Technology, vol. 73, no. 3, pp. 273–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Nakamura, R. Nakai, K. Wakabayashi, Y. Ishiguro, R. Aono, and K. Horikoshi, “Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. strain TAR-1,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 1, pp. 78–81, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Dahlberg, O. Holst, and J. K. Kristjansson, “Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan,” Applied Microbiology and Biotechnology, vol. 40, no. 1, pp. 63–68, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. S. S. Keskar, “High activity xylanase from thermotolerant Streptomyces T7: cultural conditions and enzyme properties,” Biotechnology Letters, vol. 14, no. 6, pp. 481–486, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. A. W. Zychlinska, J. Czkaj, B. Jedrychowska, and R. S. Zukowska, “Production of xylanases by Chaetomium globosum,” in Xylans and Xylanases, J. Visser, G. Beldman, M. A. Kusters-van Someren, and A. G. J. Voragen, Eds., pp. 493–496, Elsevier Science Publishers, Amsterdam, Holland, 1992. View at Google Scholar
  51. O. Sunnotel and P. Nigam, “Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation,” World Journal of Microbiology and Biotechnology, vol. 18, no. 9, pp. 835–839, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. D. R. Kashyap, S. Chandra, A. Kaul, and R. Tewari, “Production, purification and characterization of pectinase from a Bacillus sp. DT7,” World Journal of Microbiology and Biotechnology, vol. 16, no. 3, pp. 277–282, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. S. I. Letovsky, Bioinformatics: Databases and Systems, Kluwer Academic Publishers, Boston, Massachusetts, USA, 2006. View at Publisher · View at Google Scholar
  54. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus