Table of Contents
Journal of Allergy
Volume 2011 (2011), Article ID 365683, 9 pages
http://dx.doi.org/10.1155/2011/365683
Review Article

Occupational Asthma in Antibiotic Manufacturing Workers: Case Reports and Systematic Review

1Centro Medico de Asturias, Avendia José María Richard, Oviedo, 33193 Asturias, Spain
2Department of Occupational & Environmental Medicine, National Heart & Lung Institute (Imperial College) and Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK

Received 27 November 2010; Accepted 20 January 2011

Academic Editor: Gordon L. Sussman

Copyright © 2011 Sara Díaz Angulo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-L. Malo, H.-S. Park, and I. L. Bernsein, “Other chemical substances causing occupational asthma,” in Asthma in the Workplace, I. L. Bernstein, M. Chan-Yeung, J.-L. Malo, and D. I. Bernstein, Eds., pp. 555–580, Marcel Dekker, London, UK, 3rd edition, 2006. View at Google Scholar
  2. G. Briatico-Vangosa, F. Beretta, S. Bianchi, A. Cardani, M. Marchisio, and C. Nava, “Bronchial asthma caused by 7-aminocephalosporanic acid in workers engaged in the production of cephalosporins,” Medicina del Lavoro, vol. 72, no. 6, pp. 488–493, 1981. View at Google Scholar
  3. J. K. Kammermeyer and K. P. Mathews, “Hypersensitivity to phenylglycine acid chloride,” Journal of Allergy and Clinical Immunology, vol. 52, no. 2, pp. 73–84, 1973. View at Google Scholar · View at Scopus
  4. J. L. Malo and A. Cartier, “Occupational asthma in workers of a pharmaceutical company processing spiramycin,” Thorax, vol. 43, no. 5, pp. 371–377, 1988. View at Google Scholar · View at Scopus
  5. A. J. Woolcock, K. Yan, and C. Salome, “Methods for assessing bronchial reactivity,” European Journal of Respiratory Diseases, vol. 128, supplement, p. 1, 1983. View at Google Scholar · View at Scopus
  6. 2010, http://www.medicine.manchester.ac.uk/oeh/research/workrelatedillhealth/asthma/.
  7. A. E. Roberts, “Occupational allergic reactions among workers in a penicillin manufacturing plant; simple and inexpensive method of diagnosis and treatment,” A. M. A. Archives of Industrial Hygiene and Occupational Medicine, vol. 8, no. 4, pp. 340–346, 1953. View at Google Scholar · View at Scopus
  8. S. Tara, “Asthma caused by penicillin,” Archives des Maladies Professionnelles de Médecine du Travail et de Sécurité Sociale, vol. 18, no. 3, pp. 274–277, 1957. View at Google Scholar
  9. M. Gaultier, E. Fournier, and P. Gervais, “Occupational asthma caused by allergy to penicillin,” Archives des Maladies Professionnelles de Médecine du Travail et de Sécurité Sociale, vol. 21, pp. 13–23, 1960. View at Google Scholar · View at Scopus
  10. R. J. Davies, D. J. Hendrick, and J. Pepys, “Asthma due to inhaled chemical agents: ampicillin, benzyl penicillin, 6 amino penicillanic acid and related substances,” Clinical Allergy, vol. 4, no. 3, pp. 227–247, 1974. View at Google Scholar · View at Scopus
  11. E. Losada Cosmes, M. Hinojosa Macias, R. Acover Sanchez et al., “Asma por inhalación por penicilina ambiental,” Allergologia et Immunopathologia, vol. 7, supplement, pp. 288–293, 1980. View at Google Scholar
  12. B. Wuthrich and A. L. Hartmann, “Occupation-related bronchial asthma caused by ampicillin. Diagnostic significance of occupation-specific inhalation provocation tests,” schweizerische Medizinische Wochenschrift, vol. 112, no. 29, pp. 1046–1048, 1982. View at Google Scholar
  13. O. Vandenplas, J. P. Delwiche, and M. De Jonghe, “Asthma to latex and amoxicillin,” Allergy, vol. 52, no. 11, pp. 1147–1149, 1997. View at Google Scholar · View at Scopus
  14. I. Jimenez, E. Anton, I. Picáns, I. Sánchez, M. D. Quiñones, and J. Jerez, “Occupational asthma specific to amoxicillin,” Allergy, vol. 53, no. 1, pp. 104–105, 1998. View at Google Scholar · View at Scopus
  15. I. I. Coutts, M. B. Dally, and A. J. N. Taylor, “Asthma in workers manufacturing cephalosporins,” British Medical Journal, vol. 283, no. 6297, p. 950, 1981. View at Google Scholar · View at Scopus
  16. S. C. Stenton, J. H. Dennis, and D. J. Hendrick, “Occupational asthma due to ceftazidime,” European Respiratory Journal, vol. 8, no. 8, pp. 1421–1423, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Fracchia, L. Paita, R. Maglio, and T. Malamani, “Occupational asthma caused by cefmetazole and 7-aminocephalosporanic acid: description of a clinical case,” Giornale Italiano di Medicina del Lavoro, vol. 18, no. 1–3, pp. 3–5, 1996. View at Google Scholar · View at Scopus
  18. J. Sastre, S. Quirce, A. Novalbos, M. Lluch-Bernal, C. Bombín, and A. Umpierrez, “Occupational asthma induced by cephalosporins,” European Respiratory Journal, vol. 13, no. 5, pp. 1189–1191, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. J. Suh, Y. M. Lee, J. H. Choi, C. H. Suh, D. H. Nahm, and H. S. Park, “Heterogeneity of IgE response to cefteram pivoxil was noted in 2 patients with cefteram-induced occupational asthma,” Journal of Allergy and Clinical Immunology, vol. 112, no. 1, pp. 209–210, 2003. View at Google Scholar · View at Scopus
  20. H. S. Park, K. U. Kim, Y. M. Lee et al., “Occupational asthma and IgE sensitization to 7-aminocephalosporanic acid,” Journal of Allergy and Clinical Immunology, vol. 113, no. 4, pp. 785–787, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Pala, P. Pignatti, L. Perfetti, R. Cosentino, and G. Moscato, “Occupational asthma and rhinitis induced by a cephalosporin intermediate product: description of a case,” Allergy, vol. 64, no. 9, pp. 1390–1391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. P. S. Menon and A. K. Das, “Tetracycline asthma: a case report,” Clinical Allergy, vol. 7, no. 3, pp. 285–290, 1977. View at Google Scholar · View at Scopus
  23. R. J. Davies and J. Pepys, “Asthma due to inhaled chemical agents: the macrolide antibiotic spiramycin,” Clinical Allergy, vol. 5, no. 1, pp. 99–107, 1975. View at Google Scholar · View at Scopus
  24. P. L. Paggiaro, A. M. Loi, and G. Toma, “Bronchial asthma and dermatitis due to spiramycin in a chick breeder,” Clinical Allergy, vol. 9, no. 6, pp. 571–574, 1979. View at Google Scholar · View at Scopus
  25. G. Moscato, L. Naldi, and F. Candura, “Bronchial asthma due to spiramycin and adipic acid,” Clinical Allergy, vol. 14, no. 4, pp. 355–361, 1984. View at Google Scholar · View at Scopus
  26. G. Moscato, E. Galdi, J. Scibilia et al., “Occupational asthma, rhinitis and urticaria due to piperacillin sodium in a pharmaceutical worker,” European Respiratory Journal, vol. 8, no. 3, pp. 467–469, 1995. View at Google Scholar · View at Scopus
  27. Y. M. Ye, H. M. Kim, C. H. Suh, D. H. Nahm, and H. S. Park, “Three cases of occupational asthma induced by thiamphenicol: detection of serum-specific IgE,” Allergy, vol. 61, no. 3, pp. 394–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. S. Choi, J. M. Sung, J. W. Lee, Y. M. Ye, and H. S. Park, “A case of occupational asthma caused by inhalation of vancomycin powder,” Allergy, vol. 64, no. 9, pp. 1391–1392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Gomez-Olles, M. F. Madrid-San, M. J. Cruz, and X. Muoz, “Occupational asthma due to colistin in a pharmaceutical worker,” Chest, vol. 137, no. 5, pp. 1200–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Chida and T. Uehata, “Some experiments on the allergic reaction among workers in a pharmaceutical factory (author's translation),” Sangyo Igaku, vol. 21, no. 5, pp. 422–432, 1979. View at Google Scholar
  31. F. Carnevale, M. Valsecchi, and D. Grazioli, “Health aspects of antibiotic manufacture with particular emphasis on respiratory and genital disturbances (author's translation),” Lavoro Umano, vol. 29, no. 1, pp. 1–14, 1977. View at Google Scholar
  32. G. Carlesi, E. Ferrea, C. Melino, A. Messineo, and E. Pacelli, “Aspects of environmental health and of pathology caused by pollution with amoxicillin in a pharmaceutical industry,” Nuovi Annali d"Igiene e Microbiologia, vol. 30, no. 2, pp. 185–196, 1979. View at Google Scholar · View at Scopus
  33. C. Nava, “Rischi lavorativiti da antibiotici: contributo allo studio della patologia professionale da spiramicina,” Securitas, vol. 61, pp. 275–280, 1976. View at Google Scholar
  34. S. Provencher, F. P. Labrèche, and L. De Guire, “Physician based surveillance system for occupational respiratory diseases: the experience of PROPULSE, Quebec, Canada,” Occupational and Environmental Medicine, vol. 54, no. 4, pp. 272–276, 1997. View at Google Scholar · View at Scopus
  35. J. Jarvis, M. J. Seed, R. A. Elton, L. Sawyer, and R. M. Agius, “Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds,” Occupational and Environmental Medicine, vol. 62, no. 4, pp. 243–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Seed and R. Agius, “Further validation of computer-based prediction of chemical asthma hazard,” Occupational Medicine, vol. 60, no. 2, pp. 115–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Torres, M. Blanca, J. Fernandez et al., “Diagnosis of immediate allergic reactions to beta-lactam antibiotics,” Allergy, vol. 58, no. 10, pp. 961–972, 2003. View at Publisher · View at Google Scholar · View at Scopus