Table of Contents
Journal of Allergy
Volume 2011 (2011), Article ID 682574, 11 pages
http://dx.doi.org/10.1155/2011/682574
Review Article

Industrial Fungal Enzymes: An Occupational Allergen Perspective

Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505-2888, USA

Received 25 February 2011; Accepted 30 March 2011

Academic Editor: Gordon L. Sussman

Copyright © 2011 Brett J. Green and Donald H. Beezhold. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. S. Department of Labor, “Employment status of the civilian noninstitutional population, 1940 to date,” Bureau of Labor Statistics, Washington, DC, USA, 2010, 2010, http://www.bls.gov/cps/cpsaat1.pdf. View at Google Scholar
  2. February 2011, http://www.healthypeople.gov/2020/topicsobjectives2020/overview.aspx?topicid=30.
  3. B. T. Butcher and J. E. Salvaggio, “Occupational asthma,” Journal of Allergy and Clinical Immunology, vol. 78, no. 4 I, pp. 547–556, 1986. View at Google Scholar · View at Scopus
  4. J. Dutkiewicz, L. Jablonski, and S. A. Olenchock, “Occupational biohazards: a review,” American Journal of Industrial Medicine, vol. 14, no. 5, pp. 605–623, 1988. View at Google Scholar · View at Scopus
  5. J. Lacey and B. Crook, “Fungal and actinomycete spores as pollutants of the workplace and occupational allergens,” Annals of Occupational Hygiene, vol. 32, no. 4, pp. 515–533, 1988. View at Google Scholar · View at Scopus
  6. F. Lachowsky and M. Lopez, “Occupational allergens,” Current Allergy and Asthma Reports, vol. 1, no. 6, pp. 587–593, 2001. View at Google Scholar · View at Scopus
  7. D. Peden and C. E. Reed, “Environmental and occupational allergies,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S150–S160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Petsonk, “Work-related asthma and implications for the general public,” Environmental Health Perspectives, vol. 110, suuplement 4, pp. 569–572, 2002. View at Google Scholar · View at Scopus
  9. C. E. Mapp, “Genetics and the occupational environment,” Current Opinion in Allergy and Clinical Immunology, vol. 5, no. 2, pp. 113–118, 2005. View at Google Scholar · View at Scopus
  10. X. Baur, “Enzymes as occupational and environmental respiratory sensitisers,” International Archives of Occupational and Environmental Health, vol. 78, no. 4, pp. 279–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Jensen, S. Dahl, D. Sherson, and B. Sommer, “Respiratory complaints and high sensitization rate at a rennet-producing plant,” American Journal of Industrial Medicine, vol. 49, no. 10, pp. 858–861, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vanhanen, T. Tuomi, U. Tiikkainen et al., “Sensitisation to enzymes in the animal feed industry,” Occupational and Environmental Medicine, vol. 58, no. 2, pp. 119–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Sander, M. Raulf-Heimsoth, C. Siethoff, C. Lohaus, H. E. Meyer, and X. Baur, “Allergy to Aspergillus-derived enzymes in the baking industry: identification of β-xylosidase from Aspergillus niger as a new allergen (Asp n 14),” Journal of Allergy and Clinical Immunology, vol. 102, no. 2, pp. 256–264, 1998. View at Google Scholar · View at Scopus
  14. K. Tarvainen, L. Kanerva, O. Tupasela et al., “Allergy from cellulase and xylanase enzymes,” Clinical and Experimental Allergy, vol. 21, no. 5, pp. 609–615, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Baur, I. Sander, A. Posch, and M. Raulf-Heimsoth, “Baker's asthma due to the enzyme xylanase—a new occupational allergen,” Clinical and Experimental Allergy, vol. 28, no. 12, pp. 1591–1593, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Baur, S. Melching-Kollmuss, F. Koops, K. Straßburger, and A. Zober, “IgE-mediated allergy to phytase—a new animal feed additive,” Allergy, vol. 57, no. 10, pp. 943–945, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Doekes, N. Kamminga, L. Helwegen, and D. Heederik, “Occupational IgE sensitisation to phytase, a phosphatase derived from Aspergillus niger,” Occupational and Environmental Medicine, vol. 56, no. 7, pp. 454–459, 1999. View at Google Scholar · View at Scopus
  18. S. Quirce, M. Fernández-Nieto, B. Bartolomé, C. Bombín, M. Cuevas, and J. Sastre, “Glucoamylase: another fungal enzyme associated with baker's asthma,” Annals of Allergy, Asthma and Immunology, vol. 89, no. 2, pp. 197–202, 2002. View at Google Scholar · View at Scopus
  19. X. Baur, W. Sauer, and W. Weiss, “Baking additives as new allergens in Baker's asthma,” Respiration, vol. 54, no. 1, pp. 70–72, 1988. View at Google Scholar · View at Scopus
  20. S. Quirce, M. Fernández-Nieto, C. Escudero, J. Cuesta, M. De Las Heras, and J. Sastre, “Bronchial responsiveness to bakery-derived allergens is strongly dependent on specific skin sensitivity,” Allergy, vol. 61, no. 10, pp. 1202–1208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Elms, D. Fishwick, J. Walker et al., “Prevalence of sensitisation to cellulase and xylanase in bakery workers,” Occupational and Environmental Medicine, vol. 60, no. 10, pp. 802–804, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. E. Biagini, B. A. MacKenzie, D. L. Sammons et al., “Evaluation of the prevalence of antiwheat-, anti-flour dust, and anti-α-amylase specific IgE antibodies in US blood donors,” Annals of Allergy, Asthma and Immunology, vol. 92, no. 6, pp. 649–653, 2004. View at Google Scholar · View at Scopus
  23. R. Houba, D. J. J. Heederik, G. Doekes, and P. E. M. van Run, “Exposure-sensitization relationship for α-amylase allergens in the baking industry,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 1, pp. 130–136, 1996. View at Google Scholar · View at Scopus
  24. T. A. Smith and P. W. Smith, “Respiratory symptoms and sensitization in bread and cake bakers,” Occupational Medicine, vol. 48, no. 5, pp. 321–328, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Losada, M. Hinojosa, S. Quirce, M. Sánchez-Cano, and I. Moneo, “Occupational asthma caused by α-amylase inhalation: clinical and immunologic findings and bronchial response patterns,” Journal of Allergy and Clinical Immunology, vol. 89, no. 1 I, pp. 118–125, 1992. View at Google Scholar · View at Scopus
  26. J. Brisman and L. Belin, “Clinical and immunological responses to occupational exposure to α-amylase in the baking industry,” British Journal of Industrial Medicine, vol. 48, no. 9, pp. 604–608, 1991. View at Google Scholar · View at Scopus
  27. X. Baur, Z. Chen, and I. Sander, “Isolation and denomination of an important allergen in baking additives: α-amylase from Aspergillus oryzae (Asp o II),” Clinical and Experimental Allergy, vol. 24, no. 5, pp. 465–470, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Brisman, L. Lillienberg, L. Belin, M. Åhman, and B. Järvholm, “Sensitisation to occupational allergens in bakers' asthma and rhinitis: a case-referent study,” International Archives of Occupational and Environmental Health, vol. 76, no. 2, pp. 167–170, 2003. View at Google Scholar · View at Scopus
  29. T. A. Smith, G. Parker, and T. Hussain, “Respiratory symptoms and wheat flour exposure: a study of flour millers,” Occupational Medicine, vol. 50, no. 1, pp. 25–29, 2000. View at Google Scholar · View at Scopus
  30. X. Baur, P. O. Degens, and I. Sander, “Baker's asthma: still among the most frequent occupational respiratory disorders,” Journal of Allergy and Clinical Immunology, vol. 102, no. 6, pp. 984–997, 1998. View at Google Scholar · View at Scopus
  31. A. Brant, J. Berriman, C. Sharp et al., “The changing distribution of occupational asthma: a survey of supermarket bakery workers,” European Respiratory Journal, vol. 25, no. 2, pp. 303–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Smith, K. P. S. Lumley, and E. H. K. Hui, “Allergy to flour and fungal amylase in bakery workers,” Occupational Medicine, vol. 47, no. 1, pp. 21–24, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Walusiak, W. Hanke, P. Górski, and C. Pałczyński, “Respiratory allergy in apprentice bakers: do occupational allergies follow the allergic march?” Allergy, vol. 59, no. 4, pp. 442–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Bataille, M. Anton, F. Mollat et al., “Respiratory allergies among symptomatic bakers and pastry cooks: initial results of a prevalence study,” Allergy and Immunology, vol. 27, pp. 7–10, 1995. View at Google Scholar
  35. J. Birnbaum, F. Latil, D. Vervloet, M. Senft, and J. Charpin, “The role of alpha-amylase in baker's asthma,” Revue des Maladies Respiratoires, vol. 5, no. 5, pp. 519–521, 1988. View at Google Scholar · View at Scopus
  36. W. E. Horner, M. Armstrong, J. El-Dahr et al., “Prevalence of IgE reactivities in mold-allergic subjects to commercially available fungal enzymes,” Allergy and Asthma Proceedings, vol. 29, no. 6, pp. 629–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Storaas, S. K. Steinsvåg, E. Florvaag, A. Irgens, and T. B. Aasen, “Occupational rhinitis: diagnostic criteria, relation to lower airway symptoms and IgE sensitization in bakery workers,” Acta Oto-Laryngologica, vol. 125, no. 11, pp. 1211–1217, 2005. View at Publisher · View at Google Scholar
  38. J. A. Bernstein, D. I. Bernstein, T. Stauder, Z. Lummus, and I. L. Bernstein, “A cross-sectional survey of sensitization to Aspergillus oryzae-derived lactase in pharmaceutical workers,” Journal of Allergy and Clinical Immunology, vol. 103, no. 6, pp. 1153–1157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. C. F. Muir, A. B. Verrall, J. A. Julian, J. M. Millman, M. A. Beaudin, and J. Dolovich, “Occupational sensitization to lactase,” American Journal of Industrial Medicine, vol. 31, no. 5, pp. 570–571, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Laukkanen, P. Ruoppi, S. Remes, T. Koistinen, and S. Mäkinen-Kiljunen, “Lactase-induced occupational protein contact dermatitis and allergic rhinoconjunctivitis,” Contact Dermatitis, vol. 57, no. 2, pp. 89–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Brant, A. Hole, J. Cannon et al., “Occupational asthma caused by cellulase and lipase in the detergent industry,” Occupational and Environmental Medicine, vol. 61, no. 9, pp. 793–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. R. Johnsen, T. B. Sorensen, A. I. Larsen et al., “Allergy risk in an enzyme producing plant: a retrospective follow up study,” Occupational and Environmental Medicine, vol. 54, no. 9, pp. 671–675, 1997. View at Google Scholar · View at Scopus
  43. M. Vanhanen, T. Tuomi, H. Nordman et al., “Sensitization to industrial enzymes in enzyme research and production,” Scandinavian Journal of Work, Environment and Health, vol. 23, no. 5, pp. 385–391, 1997. View at Google Scholar · View at Scopus
  44. G. Loureiro, B. Tavares, C. Pereira, M. Lundberg, and C. Chieira, “Occupational allergy to fungal lipase in the pharmaceutical industry,” Journal of Investigational Allergology and Clinical Immunology, vol. 19, no. 3, pp. 242–244, 2009. View at Google Scholar · View at Scopus
  45. B. Simon-Nobbe, U. Denk, V. Pöll, R. Rid, and M. Breitenbach, “The spectrum of fungal allergy,” International Archives of Allergy and Immunology, vol. 145, no. 1, pp. 58–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. N. A. Gow and G. M. Gadd, The Growing Fungus, Chapman and Hall, London, UK, 1995.
  47. K. Ban, M. Kaieda, T. Matsumoto, A. Kondo, and H. Fukuda, “Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles,” Biochemical Engineering Journal, vol. 8, no. 1, pp. 39–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Fickers, P. H. Benetti, Y. Waché et al., “Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications,” Federation of European Microbiological Societies Yeast Research, vol. 5, no. 6-7, pp. 527–543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Quirce, M. Cuevas, M. L. Diez-Gomez et al., “Respiratory allergy to Aspergillus-derived enzymes in bakers' asthma,” Journal of Allergy and Clinical Immunology, vol. 90, no. 6 I, pp. 970–978, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Baldrian, “Fungal laccases-occurrence and properties,” Federation of European Microbiological Societies Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. W. E. Horner, G. Reese, and S. B. Lehrer, “Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin,” International Archives of Allergy and Immunology, vol. 107, no. 1-3, pp. 298–300, 1995. View at Google Scholar · View at Scopus
  52. D. Sen, K. Wiley, and J. G. Williams, “Occupational asthma in fruit salad processing,” Clinical and Experimental Allergy, vol. 28, no. 3, pp. 363–367, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. F. G. B. G. J. van Rooy, R. Houba, N. Palmen et al., “A cross-sectional study among detergent workers exposed to liquid detergent enzymes,” Occupational and Environmental Medicine, vol. 66, no. 11, pp. 759–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Elms, P. Beckett, P. Griffin et al., “Job categories and their effect on exposure to fungal alpha-amylase and inhalable dust in the U.K. baking industry,” American Industrial Hygiene Association Journal, vol. 64, no. 4, pp. 467–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Nieuwenhuijsen, D. Heederik, G. Doekes, K. M. Venables, and A. J. Newman Taylor, “Exposure-response relations of α-amylase sensitisation in British bakeries and flour mills,” Occupational and Environmental Medicine, vol. 56, no. 3, pp. 197–201, 1999. View at Google Scholar · View at Scopus
  56. T. A. Smith and K. P. S. Lumley, “Work-related asthma in a population exposed to grain, flour and other ingredient dusts,” Occupational Medicine, vol. 46, no. 1, pp. 37–40, 1996. View at Google Scholar · View at Scopus
  57. I. Sander, C. Neuhaus-Schröder, M. Raulf-Heimsoth, C. Doekes, D. Heederik, and X. Baur, “Quantification of the inhalable exposure to α-amylase in two bakeries,” Pneumologie, vol. 52, no. 8, pp. 440–443, 1998. View at Google Scholar · View at Scopus
  58. D. Heederik, “Are we closer to developing threshold limit values for allergens in the workplace?” Current Opinion in Allergy and Clinical Immunology, vol. 1, no. 2, pp. 185–189, 2001. View at Google Scholar · View at Scopus
  59. J. Elms, E. Robinson, H. Mason, S. Iqbal, A. Garrod, and G. S. Evans, “Enzyme exposure in the British baking industry,” Annals of Occupational Hygiene, vol. 50, no. 4, pp. 379–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Houba, P. van Run, G. Doekes, D. Heederik, and J. Spithoven, “Airborne levels of α-amylase allergens in bakeries,” Journal of Allergy and Clinical Immunology, vol. 99, no. 3, pp. 286–292, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. M. L. H. Flindt, “Allergy to α-amylase and papain,” The Lancet, vol. 1, no. 8131, pp. 1407–1408, 1979. View at Google Scholar · View at Scopus
  62. X. Baur, G. Fruhmann, B. Haug, B. Rasche, W. Reiher, and W. Weiss, “Role of Aspergillus amylase in baker's asthma,” The Lancet, vol. 1, no. 8471, p. 43, 1986. View at Google Scholar
  63. T. Skjold, R. Dahl, B. Juhl, and T. Sigsgaard, “The incidence of respiratory symptoms and sensitisation in baker apprentices,” European Respiratory Journal, vol. 32, no. 2, pp. 452–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. C. Moore, P. Cullinan, S. Sadhra, and P. S. Burge, “Peak expiratory flow analysis in workers exposed to detergent enzymes,” Occupational Medicine, vol. 59, no. 6, pp. 418–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Skjold, S. C. Nielsen, K. Adolf, H. J. Hoffmann, R. Dahl, and T. Sigsgaard, “Allergy in bakers' apprentices and factors associated to non-participation in a cohort study of allergic sensitization,” International Archives of Occupational and Environmental Health, vol. 80, no. 5, pp. 458–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Cullinan, A. Cook, M. Jones, J. Cannon, B. Fitzgerald, and A. J. Newman Taylor, “Clinical responses to ingested fungal α-amylase and hemicellulase in persons sensitized to Aspergillus fumigatus?” Allergy, vol. 52, no. 3, pp. 346–349, 1997. View at Google Scholar · View at Scopus
  67. R. Baatjies, A. L. Lopata, I. Sander et al., “Determinants of asthma phenotypes in supermarket bakery workers,” European Respiratory Journal, vol. 34, no. 4, pp. 825–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. E. H. Page, C. H. Dowell, C. A. Mueller, R. E. Biagini, and D. Heederik, “Exposure to flour dust and sensitization among bakery employees,” American Journal of Industrial Medicine, vol. 53, no. 12, pp. 1225–1232, 2010. View at Publisher · View at Google Scholar
  69. V. van Kampen, R. Merget, and T. Brüning, “Occupational allergies to phytase,” Pneumologie, vol. 62, no. 12, pp. 707–710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Casper, M. C. Zacharisen, and J. N. Fink, “Occupational asthma secondary to enzymes used in cheese production,” Allergy and Asthma Proceedings, vol. 29, no. 4, pp. 376–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. O. Kizkin, G. Turker, S. S. Hacievliyagil, and H. Gunen, “Proteolytic enzyme sensitivity and decrease in respiratory function (a 10-year follow-up),” International Archives of Occupational and Environmental Health, vol. 75, no. 6, pp. 441–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Shigechi, J. Koh, Y. Fujita et al., “Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase,” Applied and Environmental Microbiology, vol. 70, no. 8, pp. 5037–5040, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. D. M. Mousdale, Biofuels: Biotechnology, Chemistry, and Sustainable Development, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2008.
  74. C. P. Sandiford, R. D. Tee, and A. J. Newman Taylor, “The role of cereal and fungal amylases in cereal flour hypersensitivity,” Clinical and Experimental Allergy, vol. 24, no. 6, pp. 549–557, 1994. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Brisman, “Baker's asthma,” Occupational and Environmental Medicine, vol. 59, no. 7, pp. 498–502, 2002. View at Google Scholar · View at Scopus
  76. X. Baur, A. B. Czuppon, and I. Sander, “Heating inactivates the enzymatic activity and partially inactivates the allergenic activity of Asp o 2,” Clinical and Experimental Allergy, vol. 26, no. 2, pp. 232–234, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Vissers, G. Doekes, and D. Heederik, “Exposure to wheat allergen and fungal α-amylase in the homes of bakers,” Clinical and Experimental Allergy, vol. 31, no. 10, pp. 1577–1582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Y. Kim, D. H. Nahm, H. S. Park, and D. C. Choi, “Occupational asthma and IgE sensitization to cellulase in a textile industry worker,” Annals of Allergy, Asthma and Immunology, vol. 82, no. 2, pp. 174–178, 1999. View at Google Scholar · View at Scopus
  79. V. van Kampen, R. Merget, and T. Brüning, “Occupational allergies to xylanases,” Pneumologie, vol. 58, no. 2, pp. 103–106, 2004. View at Google Scholar · View at Scopus
  80. E. Losada, M. Hinojosa, and I. Moneo, “Occupational asthma caused by cellulase,” Journal of Allergy and Clinical Immunology, vol. 77, no. 4, pp. 635–639, 1986. View at Google Scholar
  81. J. H. Ransom and M. Schuster, “Allergic reactions to enzymes used in plant cloning experiments,” Journal of Allergy and Clinical Immunology, vol. 67, no. 5, pp. 412–415, 1981. View at Google Scholar · View at Scopus
  82. M. Vanhanen, T. Tuomi, H. Hokkanen et al., “Enzyme exposure and enzyme sensitisation in the baking industry,” Occupational and Environmental Medicine, vol. 53, no. 10, pp. 670–676, 1996. View at Google Scholar · View at Scopus
  83. R. Merget, I. Sander, M. Raulf-Heimsoth, and X. Baur, “Baker's asthma due to xylanase and cellulase without sensitization to alpha-amylase and only weak sensitization to flour,” International Archives of Allergy and Immunology, vol. 124, no. 4, pp. 502–505, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. Z. Guo and X. Xu, “New opportunity for enzymatic modification of fats and oils with industrial potentials,” Organic and Biomolecular Chemistry, vol. 3, no. 14, pp. 2615–2619, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. L. Caballero, M. Gómez, M. González-Muñoz et al., “Occupational sensitization to fungal enzymes used in animal feed industry,” International Archives of Allergy and Immunology, vol. 144, no. 3, pp. 231–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. T. M. O'Connor, J. F. Bourke, M. Jones, and N. Brennan, “Report of occupational asthma due to phytase and β-glucanase,” Occupational and Environmental Medicine, vol. 58, no. 6, pp. 417–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. G. Y. Hur, S. Y. Shin, Y. M. Ye, D. H. Nahm, and H. S. Park, “Two cases of occupational rhinitis caused by biodiastase in hospital and pharmaceutical workers,” Allergy, vol. 62, no. 9, pp. 1096–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Pauwels, M. Devos, L. Callens, and M. van der Straeten, “Respiratory hazards from proteolytic enzymes,” The Lancet, vol. 1, no. 8065, p. 669, 1978. View at Google Scholar · View at Scopus
  89. M. J. Benito, I. F. Connerton, and J. J. Córdoba, “Genetic characterization and expression of the novel fungal protease, EPg222 active in dry-cured meat products,” Applied Microbiology and Biotechnology, vol. 73, no. 2, pp. 356–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. M. D. W. Ward, M. J. Donohue, Y. J. Chung et al., “Human serum IgE reacts with a Metarhizium anisopliae fungal catalase,” International Archives of Allergy and Immunology, vol. 150, no. 4, pp. 343–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. L. Belleri, E. Brunelli, M. Crippa, M. Golia, O. Vanoni, and L. Alessio, “Occupational exposure to pectinase,” Allergy, vol. 57, no. 8, p. 755, 2002. View at Google Scholar · View at Scopus
  92. P. Rougé, R. Culerrier, M. Campistron et al., “Allergenicity of Hev b 13, a major esterase allergen in natural rubber latex (Hevea brasiliensis) allergy, does not only depend on its carbohydrate moiety,” Molecular Immunology, vol. 47, no. 4, pp. 871–877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Shankar, P. D. Gupta, S. Sridhara, B. P. Singh, S. N. Gaur, and N. Arora, “Immunobiochemical analysis of cross-reactive glutathione-S-transferase allergen from different fungal sources,” Immunological Investigations, vol. 34, no. 1, pp. 37–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Shankar, B. P. Singh, S. N. Gaur, and N. Arora, “Recombinant glutathione-S-transferase a major allergen from Alternaria alternata for clinical use in allergy patients,” Molecular Immunology, vol. 43, no. 12, pp. 1927–1932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. S. P. Commins, S. M. Satinover, J. Hosen et al., “Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-α-1,3-galactose,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 426–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Heederik, G. Doekes, and M. J. Nieuwenhuijsen, “Exposure assessment of high molecular weight sensitisers: contribution to occupational epidemiology and disease prevention,” Occupational and Environmental Medicine, vol. 56, no. 11, pp. 735–741, 1999. View at Google Scholar · View at Scopus
  97. J. Bogdanovic, M. Koets, I. Sander et al., “Rapid detection of fungal α-amylase in the work environment with a lateral flow immunoassay,” Journal of Allergy and Clinical Immunology, vol. 118, no. 5, pp. 1157–1163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Elms, S. Denniss, M. Smith et al., “Development and validation of a monoclonal based immunoassay for the measurement of fungal alpha-amylase: focus on peak exposures,” Annals of Occupational Hygiene, vol. 45, no. 2, pp. 89–95, 2001. View at Google Scholar · View at Scopus
  99. I. Sander, C. Neuhaus-Schröder, G. Borowitzki, X. Baur, and M. Raulf-Heimsoth, “Development of a two-site enzyme-linked immunosorbent assay for γ-amylase from Aspergillus oryzae based on monoclonal antibodies,” Journal of Immunological Methods, vol. 210, no. 1, pp. 93–101, 1997. View at Google Scholar · View at Scopus
  100. W. Kurzatkowski, A. Törrönen, J. Filipek et al., “Glucose-induced secretion of Trichoderma reesei xylanases,” Applied and Environmental Microbiology, vol. 62, no. 8, pp. 2859–2865, 1996. View at Google Scholar · View at Scopus
  101. K. Sarlo, “Control of occupational asthma and allergy in the detergent industry,” Annals of Allergy, Asthma and Immunology, vol. 90, no. 5, pp. 32–34, 2003. View at Google Scholar · View at Scopus
  102. K. Sarlo and D. B. Kirchner, “Occupational asthma and allergy in the detergent industry: new developments,” Current Opinion in Allergy and Clinical Immunology, vol. 2, no. 2, pp. 97–101, 2002. View at Google Scholar · View at Scopus
  103. M. K. Schweigert, D. P. Mackenzie, and K. Sarlo, “Occupational asthma and allergy associated with the use of enzymes in the detergent industry—a review of the epidemiology, toxicology and methods of prevention,” Clinical and Experimental Allergy, vol. 30, no. 11, pp. 1511–1518, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Meijster, E. Tielemans, and D. Heederik, “Effect of an intervention aimed at reducing the risk of allergic respiratory disease in bakers: change in flour dust and fungal alpha-amylase levels,” Occupational and Environmental Medicine, vol. 66, no. 8, pp. 543–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. H. S. Azevedo and R. L. Reis, “Encapsulation of α-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate,” Acta Biomaterialia, vol. 5, no. 8, pp. 3021–3030, 2009. View at Publisher · View at Google Scholar
  106. T. Itoh, R. Ish II, S. I. Matsuura et al., “Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB),” Colloids and Surfaces B, vol. 75, no. 2, pp. 478–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Wörsdörfer, K. J. Woycechowsky, and D. Hilvert, “Directed evolution of a protein container,” Science, vol. 331, no. 6017, pp. 589–592, 2011. View at Publisher · View at Google Scholar
  108. P. Cullinan, J. M. Harris, A. J. Newman Taylor et al., “An outbreak of asthma in a modern detergent factory,” The Lancet, vol. 356, no. 9245, pp. 1899–1900, 2000. View at Google Scholar · View at Scopus
  109. G. M. Liss, J. R. Kominsky, J. S. Gallagher, J. Melius, S. M. Brooks, and I. L. Bernstein, “Failure of enzyme encapsulation to prevent sensitization of workers in the dry bleach industry,” Journal of Allergy and Clinical Immunology, vol. 73, no. 3, pp. 348–355, 1984. View at Google Scholar
  110. D. A. Basketter, C. Broekhuizen, M. Fieldsend et al., “Defining occupational and consumer exposure limits for enzyme protein respiratory allergens under REACH,” Toxicology, vol. 268, no. 3, pp. 165–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. S. M. Tarlo and G. M. Liss, “Prevention of occupational asthma—practical implications for occupational physicians,” Occupational Medicine, vol. 55, no. 8, pp. 588–594, 2005. View at Publisher · View at Google Scholar · View at Scopus