Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 241314, 15 pages
http://dx.doi.org/10.1155/2012/241314
Review Article

How Can Microarrays Unlock Asthma?

1Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe, NSW 2037, Australia
2Central Clinical School, The University of Sydney, Sydney, NSW 2006, Australia
3Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
4Cooperative Research Centre for Asthma and Airways, Glebe, NSW 2037, Australia

Received 11 July 2011; Revised 30 September 2011; Accepted 12 October 2011

Academic Editor: Irene Heijink

Copyright © 2012 Alen Faiz and Janette K. Burgess. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bousquet, N. Khaltaev, and A. A. Cruz, Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach, World Health Organization, 2007.
  2. Epidemiology & Statistics Unit, Trends in Asthma Morbidity and Mortality, American Lung Association, 2007.
  3. B. S. Bochner, B. J. Undem, and L. M. Lichtenstein, “Immunological aspects of allergic asthma,” Annual Review of Immunology, vol. 12, no. 1, pp. 295–335, 1994. View at Google Scholar · View at Scopus
  4. M. J. Campbell, G. R. Cogman, S. T. Holgate, and S. L. Johnston, “Age specific trends in asthma mortality in England and Wales, 1983–95: results of an observational study,” British Medical Journal, vol. 314, no. 7092, pp. 1439–1441, 1997. View at Google Scholar · View at Scopus
  5. M. L. Osborne, W. M. Vollmer, K. L. P. Linton, and A. S. Buist, “Characteristics of patients with asthma within a large HMO: a comparison by age and gender,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 1, pp. 123–128, 1998. View at Google Scholar · View at Scopus
  6. S. T. Holgate, D. E. Davies, R. M. Powell, P. H. Howarth, H. M. Haitchi, and J. W. Holloway, “Local genetic and environmental factors in asthma disease pathogenesis: chronicity and persistence mechanisms,” European Respiratory Journal, vol. 29, no. 4, pp. 793–803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. L. Lind, S. Choudhry, N. Ung et al., “ADAM33 is not associated with asthma in Puerto Rican or Mexican populations,” American Journal of Respiratory and Critical Care Medicine, vol. 168, no. 11, pp. 1312–1316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. Wenzel, L. B. Schwartz, E. L. Langmack et al., “Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 3, pp. 1001–1008, 1999. View at Google Scholar · View at Scopus
  9. R. K. Curtis, M. Orešič, and A. Vidal-Puig, “Pathways to the analysis of microarray data,” Trends in Biotechnology, vol. 23, no. 8, pp. 429–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Los, P. E. Postmus, and D. I. Boomsma, “Asthma genetics and intermediate phenotypes: a review from twin studies,” Twin Research, vol. 4, no. 2, pp. 81–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. T. Weiss, B. A. Raby, and A. Rogers, “Asthma genetics and genomics 2009,” Current Opinion in Genetics and Development, vol. 19, no. 3, pp. 279–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Akhabir and A. J. Sandford, “Genome-wide association studies for discovery of genes involved in asthma,” Respirology, vol. 16, no. 3, pp. 396–406, 2011. View at Publisher · View at Google Scholar
  13. P. Van Eerdewegh, R. D. Little, J. Dupuis et al., “Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness,” Nature, vol. 418, no. 6896, pp. 426–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Allen, A. Heinzmann, E. Noguchi et al., “Positional cloning of a novel gene influencing asthma from Chromosome 2q14,” Nature Genetics, vol. 35, no. 3, pp. 258–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Laitinen, A. Polvi, P. Rydman et al., “Characterization of a common susceptibility locus for asthma-related traits,” Science, vol. 304, no. 5668, pp. 300–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhang, N. I. Leaves, G. G. Anderson et al., “Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma,” Nature Genetics, vol. 34, no. 2, pp. 181–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Burgess, “Gene expression studies using microarrays,” Clinical and Experimental Pharmacology and Physiology, vol. 28, no. 4, pp. 321–328, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Shalon, S. J. Smith, and P. O. Brown, “A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization,” Genome Research, vol. 6, no. 7, pp. 639–645, 1996. View at Google Scholar · View at Scopus
  19. M. Barnes, J. Freudenberg, S. Thompson, B. Aronow, and P. Pavlidis, “Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms,” Nucleic Acids Research, vol. 33, no. 18, pp. 5914–5923, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kauffmann, T. F. Rayner, H. Parkinson et al., “Importing ArrayExpress datasets into R/Bioconductor,” Bioinformatics, vol. 25, no. 16, pp. 2092–2094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. Lee, N. Kaminski, G. Dolganov et al., “Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 4, pp. 474–485, 2001. View at Google Scholar · View at Scopus
  22. C. Laprise, R. Sladek, A. Ponton, M. C. Bernier, T. J. Hudson, and M. Laviolette, “Functional classes of bronchial mucosa genes that are differentially expressed in asthma,” BMC Genomics, vol. 5, article 21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Jarai, M. Sukkar, S. Garrett et al., “Effects of interleukin-1β, interleukin-13 and transforming growth factor-β on gene expression in human airway smooth muscle using gene microarrays,” European Journal of Pharmacology, vol. 497, no. 3, pp. 255–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Syed, R. A. Panettieri, O. Tliba et al., “The effect of IL-13 and IL-13R130Q, a naturally occuring IL-13 polymorphism, on the gene expression of human airway smooth muscle cells,” Respiratory Research, vol. 6, article 9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Misior, D. A. Deshpande, M. J. Loza, R. M. Pascual, J. D. Hipp, and R. B. Penn, “Glucocorticoid- and protein kinase A-dependent transcriptome regulation in airway smooth muscle,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 1, pp. 24–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Bossé, K. Maghni, and T. J. Hudson, “1α,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes,” Physiological Genomics, vol. 29, no. 2, pp. 161–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Wills-Karp and M. Chiaramonte, “Interleukin-13 in asthma,” Current Opinion in Pulmonary Medicine, vol. 9, no. 1, pp. 21–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Ghaffar, Q. Hamid, P. M. Renzi et al., “Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 6, pp. 1933–1942, 1999. View at Google Scholar · View at Scopus
  29. P. Cohen, R. Rajah, J. Rosenbloom, and D. J. Herrick, “IGFBP-3 mediates TGF-β1-induced cell growth in human airway smooth muscle cells,” American Journal of Physiology, vol. 278, no. 3, pp. L545–L551, 2000. View at Google Scholar · View at Scopus
  30. B. Burrows, F. D. Marinez, M. Halonen, R. A. Barbee, and M. G. Cline, “Association of asthma with serum IgE levels and skin-test reactivity to allergens,” New England Journal of Medicine, vol. 320, no. 5, pp. 271–277, 1989. View at Google Scholar · View at Scopus
  31. U. Sivaprasad, M. R. Warrier, A. M. Gibson et al., “IL-13Rα2 has a protective role in a mouse model of cutaneous inflammation,” Journal of Immunology, vol. 185, no. 11, pp. 6802–6808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Chetta, A. Foresi, M. Del Donno et al., “Bronchial responsiveness to distilled water and methacholine and its relationship to inflammation and remodeling of the airways in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 3, pp. 910–917, 1996. View at Google Scholar · View at Scopus
  33. C. L. Ordoñez, R. Khashayar, H. H. Wong et al., “Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 2, pp. 517–523, 2001. View at Google Scholar · View at Scopus
  34. N. Yuyama, D. E. Davies, M. Akaiwa et al., “Analysis of novel disease-related genes in bronchial asthma,” Cytokine, vol. 19, no. 6, pp. 287–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Kong, H. San Juan, M. Kumar et al., “Respiratory syncytial virus infection activates STAT signaling in human epithelial cells,” Biochemical and Biophysical Research Communications, vol. 306, no. 2, pp. 616–622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. K. Chu, J. Cheng, J. S. Foley et al., “Induction of the plasminogen activator system by mechanical stimulation of human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 6, pp. 628–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Zhert, W. P. Sung, L. T. Nguyenvu et al., “IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 2, pp. 244–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Rate, J. W. Upham, A. Bosco, K. L. McKenna, and P. G. Holt, “Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: implications for the pathogenesis of infectious and allergic airway disease,” Journal of Immunology, vol. 182, no. 1, pp. 72–83, 2009. View at Google Scholar · View at Scopus
  39. P. G. Woodruff, B. Modrek, D. F. Choy et al., “T-helper type 2-driven inflammation defines major subphenotypes of asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 5, pp. 388–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. A. Bochkov, K. M. Hanson, S. Keles, R. A. Brockman-Schneider, N. N. Jarjour, and J. E. Gern, “Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma,” Mucosal Immunology, vol. 3, no. 1, pp. 69–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Kicic, T. S. Hallstrand, E. N. Sutanto et al., “Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 9, pp. 889–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. G. Woodruff, H. A. Boushey, G. M. Dolganov et al., “Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15858–15863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Ohtani, K. Matsui, N. Yoshida, Y. Sugita, Y. Hamasaki, and K. Izuhara, “Method of testing for bronchial asthma,” EP Patent 1422297, 2004. View at Google Scholar
  44. R. E. Mullings, S. J. Wilson, S. M. Puddicombe et al., “Signal transducer and activator of transcription 6 (STAT-6) expression and function in asthmatic bronchial epithelium,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 832–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. B. R. Wiggs, C. A. Hrousis, J. M. Drazen, and R. D. Kamm, “On the mechanism of mucosal folding in normal and asthmatic airways,” Journal of Applied Physiology, vol. 83, no. 6, pp. 1814–1821, 1997. View at Google Scholar · View at Scopus
  46. D. J. Tschumperlin, J. D. Shively, T. Kikuchi, and J. M. Drazen, “Mechanical stress triggers selective release of fibrotic mediators from bronchial epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 28, no. 2, pp. 142–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. C. Lee, H. B. Lee, Y. K. Rhee, and C. H. Song, “The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma,” Clinical and Experimental Allergy, vol. 31, no. 10, pp. 1623–1630, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Zhang, A. F. Clark, and T. Yorio, “FK506-binding protein 51 regulates nuclear transport of the glucocorticoid receptor β and glucocorticoid responsiveness,” Investigative Ophthalmology and Visual Science, vol. 49, no. 3, pp. 1037–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Zou, S. Young, F. Zhu et al., “Microarray profile of differentially expressed genes in a monkey model of allergic asthma,” Genome Biology, vol. 3, no. 5, pp. 1–13, 2002. View at Google Scholar · View at Scopus
  50. M. S. Rolph, M. Sisavanh, S. M. Liu, and C. R. Mackay, “Clues to asthma pathogenesis from microarray expression studies,” Pharmacology and Therapeutics, vol. 109, no. 1-2, pp. 284–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Nakajima, K. Matsumoto, H. Suto et al., “Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells,” Blood, vol. 98, no. 4, pp. 1127–1134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. W. Wang, C. K. Oh, S. H. Cho et al., “Amphiregulin expression in human mast cells and its effect on the primary human lung fibroblasts,” Journal of Allergy and Clinical Immunology, vol. 115, no. 2, pp. 287–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Kulka, N. Fukuishi, and D. D. Metcalfe, “Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1217–1226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Frigas, D. A. Loegering, and G. O. Solley, “Elevated levels of the eosinophil granule major basic protein in the sputum of patients with bronchial asthma,” Mayo Clinic Proceedings, vol. 56, no. 6, pp. 345–353, 1981. View at Google Scholar · View at Scopus
  55. W. V. Filley, G. M. Kephart, K. E. Holley, and G. J. Gleich, “Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma,” The Lancet, vol. 2, no. 8288, pp. 11–16, 1982. View at Google Scholar · View at Scopus
  56. L. M. Dahm and C. W. Bowers, “Vitronectin regulates smooth muscle contractility via α(v) and β1 integrin(s),” Journal of Cell Science, vol. 111, no. 9, pp. 1175–1183, 1998. View at Google Scholar · View at Scopus
  57. P. Hysi, M. Kabesch, M. F. Moffatt et al., “NOD1 variation, immunoglobulin E and asthma,” Human Molecular Genetics, vol. 14, no. 7, pp. 935–941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. G. T. Seah, P. S. Gao, J. M. Hopkin, and G. A. W. Rook, “Interleukin-4 and its alternatively spliced variant (IL-4δ2) in patients with atopic asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 6, pp. 1016–1018, 2001. View at Google Scholar · View at Scopus
  59. E. M. Glare, M. Divjak, J. M. Rolland, and E. H. Walters, “Asthmatic airway biopsy specimens are more likely to express the IL-4 alternative splice variant IL-4δ2,” Journal of Allergy and Clinical Immunology, vol. 104, no. 5, pp. 978–982, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. M. L. Kowalski, M. Borowiec, M. Kurowski, and R. Pawliczak, “Alternative splicing of cyclooxygenase-1 gene: altered expression in leucocytes from patients with bronchial asthma and association with aspirin-induced 15-HETE release,” Allergy, vol. 62, no. 6, pp. 628–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. G. W. Beadle and E. L. Tatum, “Genetic control of biochemical reactions in Neurospora,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 11, p. 499, 1941. View at Google Scholar
  62. Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe, “Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing,” Nature Genetics, vol. 40, no. 12, pp. 1413–1415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. D. A. Plager, J. C. Kahl, Y. W. Asmann et al., “Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis,” PLoS One, vol. 5, no. 7, Article ID e11450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. R. Kuhn, K. Schlauch, R. Lao, A. J. Halayko, W. T. Gerthoffer, and C. A. Singer, “MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 4, pp. 506–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. W. Feinberg, Z. Cao, A. K. Wara, M. A. Lebedeva, S. SenBanerjee, and M. K. Jain, “Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages,” Journal of Biological Chemistry, vol. 280, no. 46, pp. 38247–38258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. G. L. G. Miklos and R. Maleszka, “Microarray reality checks in the context of a complex disease,” Nature Biotechnology, vol. 22, no. 5, pp. 615–621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum information about a microarray experiment (MIAME)—toward standards for microarray data,” Nature Genetics, vol. 29, no. 4, pp. 365–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Edgar, M. Domrachev, and A. E. Lash, “Gene Expression Omnibus: NCBI gene expression and hybridization array data repository,” Nucleic Acids Research, vol. 30, no. 1, pp. 207–210, 2002. View at Google Scholar · View at Scopus
  72. A. Brazma, H. Parkinson, U. Sarkans et al., “ArrayExpress—a public repository for microarray gene expression data at the EBI,” Nucleic Acids Research, vol. 31, no. 1, pp. 68–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Ikeo, J. Ishi-i, T. Tamura, T. Gojobori, and Y. Tateno, “CIBEX: center for information biology gene EXpression database,” Comptes Rendus, vol. 326, no. 10-11, pp. 1079–1082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. C. A. Ball, A. Brazma, H. Causton et al., “Submission of microarray data to public repositories,” PLoS Biology, vol. 2, no. 9, Article ID e317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: archive for functional genomics data sets-10 years on,” Nucleic Acids Research, vol. 39, supplement 1, pp. D1005–D1010, 2011. View at Publisher · View at Google Scholar
  76. J. P. A. Ioannidis, D. B. Allison, C. A. Ball et al., “Repeatability of published microarray gene expression analyses,” Nature Genetics, vol. 41, no. 2, pp. 149–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Brazma, “Minimum information about a microarray experiment (MIAME)—successes, failures, challenges,” TheScientificWorldJournal, vol. 9, pp. 420–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. M. S. Boguski, T. M. J. Lowe, and C. M. Tolstoshev, “dbEST—database for 'expressed sequence tags',” Nature Genetics, vol. 4, no. 4, pp. 332–333, 1993. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Quackenbush, F. Liang, I. Holt, G. Pertea, and J. Upton, “The TIGR Gene Indices: reconstruction and representation of expressed gene sequences,” Nucleic Acids Research, vol. 28, no. 1, pp. 141–145, 2000. View at Google Scholar · View at Scopus
  80. M. S. Boguski and G. D. Schuler, “Establishing a human transcript map,” Nature Genetics, vol. 10, no. 4, pp. 369–371, 1995. View at Google Scholar · View at Scopus
  81. H. S. Bilofsky and B. Christian, “The genbank genetic sequence data bank,” Nucleic Acids Research, vol. 16, no. 5, pp. 1861–1863, 1988. View at Publisher · View at Google Scholar · View at Scopus
  82. K. D. Pruitt, T. Tatusova, W. Klimke, and D. R. Maglott, “NCBI reference sequences: current status, policy and new initiatives,” Nucleic Acids Research, vol. 37, supplement 1, pp. D32–D36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. T. S. Hallstrand, M. M. Wurfel, Y. Lai et al., “Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes,” PLoS One, vol. 5, no. 1, Article ID e8583, 2010. View at Publisher · View at Google Scholar · View at Scopus