Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 494085, 10 pages
http://dx.doi.org/10.1155/2012/494085
Research Article

Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

1Laboratory Molecular Immunology and Embryology, University of Orleans and CNRS, Orleans, France
2Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Avenue Prof. Lineu Prestes, 1730, 05508-000 São Paulo, SP, Brazil
3Cardiothoracic Pharmacology, Cardiothoracic and Stem Cell Pharmacology, National Heart and Lung Institute, Imperial College of London, London SW7 2AZ, UK
4Institute for Clinical and Biomedical Research Thurgau, Lauchefeld 31, CH-9548 Matzingen, Switzerland
5Institute of Infectious Disease and Molecular Medicine (IIDMM), University of Cape Town, Cape Town, South Africa

Received 5 October 2011; Revised 28 November 2011; Accepted 30 November 2011

Academic Editor: S. L. Johnston

Copyright © 2012 T. Secher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Kennedy, D. C. Christiani, and E. A. Eisen, “Cotton dust and endotoxin exposure-response relationships in cotton textile workers,” American Review of Respiratory Disease, vol. 135, no. 1, pp. 194–200, 1987. View at Google Scholar · View at Scopus
  2. K. Donham, P. Haglind, Y. Peterson, R. Rylander, and L. Belin, “Environmental and health studies of farm workers in Swedish swine confinement buildings,” British Journal of Industrial Medicine, vol. 46, no. 1, pp. 31–37, 1989. View at Google Scholar · View at Scopus
  3. D. A. Schwartz, P. S. Thorne, S. J. Yagla et al., “The role of endotoxin in grain dust-induced lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 2, pp. 603–608, 1995. View at Google Scholar · View at Scopus
  4. O. Michel, J. Kips, J. Duchateau et al., “Severity of asthma is related to endotoxin in house dust,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 6, part 1, pp. 1641–1646, 1996. View at Google Scholar · View at Scopus
  5. A. H. Liu, “Something old, something new: indoor endotoxin, allergens and asthma,” Paediatric Respiratory Reviews, vol. 5, supplement 1, pp. S65–S71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. N. Kline, J. D. Cowden, G. W. Hunninghake et al., “Variable airway responsiveness to inhaled lipopolysaccharide,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 1, pp. 297–303, 1999. View at Google Scholar · View at Scopus
  7. N. C. Arbour, E. Lorenz, B. C. Schutte et al., “TLR4 mutations are associated with endotoxin hyporesponsiveness in humans,” Nature Genetics, vol. 25, no. 2, pp. 187–191, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. Lefort, L. Motreff, and B. B. Vargaftig, “Airway administration of Escherichia coli endotoxin to mice induces glucocorticosteroid-resistant bronchoconstriction and vasopermeation,” American Journal of Respiratory Cell and Molecular Biology, vol. 24, no. 3, pp. 345–351, 2001. View at Google Scholar · View at Scopus
  9. S. Schnyder-Candrian, V. F. J. Quesniaux, F. Di Padova et al., “Dual effects of p38 MAPK on TNF-dependent bronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acute respiratory distress syndrome,” The Journal of Immunology, vol. 175, no. 1, pp. 262–269, 2005. View at Google Scholar · View at Scopus
  10. G. Andonegui, S. M. Goyert, and P. Kubes, “Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels,” The Journal of Immunology, vol. 169, no. 4, pp. 2111–2119, 2002. View at Google Scholar · View at Scopus
  11. G. Andonegui, C. S. Bonder, F. Green et al., “Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs,” Journal of Clinical Investigation, vol. 111, no. 7, pp. 1011–1020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lefort, M. Singer, D. Leduc et al., “Systemic administration of endotoxin induces bronchopulmonary hyperreactivity dissociated from TNf-α formation and neutrophil sequestration into the murine lungs,” The Journal of Immunology, vol. 161, no. 1, pp. 474–480, 1998. View at Google Scholar · View at Scopus
  13. E. Lorenz, M. Jones, C. Wohlford-Lenane et al., “Genes other than TLR4 are involved in the response to inhaled LPS,” American Journal of Physiology, vol. 281, no. 5, pp. L1106–L1114, 2001. View at Google Scholar · View at Scopus
  14. D. Togbe, S. Schnyder-Candrian, B. Schnyder et al., “TLR4 gene dosage contributes to endotoxin-induced acute respiratory inflammation,” Journal of Leukocyte Biology, vol. 80, no. 3, pp. 451–457, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Vincent, J. Lefort, F. Chatelet, M. F. Bureau, J. Dry, and B. B. Vargaftig, “Intratracheal E. coli lipopolysaccharide induces platelet-dependent bronchial hyperreactivity,” Journal of Applied Physiology, vol. 74, no. 3, pp. 1027–1038, 1993. View at Google Scholar · View at Scopus
  16. R. W. Balzary and T. M. Cocks, “Lipopolysaccharide induces epithelium- and prostaglandin E2-dependent relaxation of mouse isolated trachea through activation of cyclooxygenase (COX)-1 and COX-2,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 2, pp. 806–812, 2006. View at Publisher · View at Google Scholar · View at PubMed
  17. M. W. Marino, A. Dunn, D. Grail et al., “Characterization of tumor necrosis factor-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 15, pp. 8093–8098, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Rothe, W. Lesslauer, H. Lotscher et al., “Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes,” Nature, vol. 364, no. 6440, pp. 798–802, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. L. Erickson, F. J. de Sauvage, K. Kikly et al., “Decreased sensitivity to tumour-necrosis factor but normal T cell development in TNF receptor-2-deficient mice,” Nature, vol. 372, no. 6506, pp. 560–563, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Poltorak, X. He, I. Smirnova et al., “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene,” Science, vol. 282, no. 5396, pp. 2085–2088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Rodríguez, A. C. Keller, E. L. Faquim-Mauro et al., “Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity,” The Journal of Immunology, vol. 171, no. 2, pp. 1001–1008, 2003. View at Google Scholar · View at Scopus
  22. A. C. Keller, D. Mucida, E. Gomes et al., “Hierarchical suppression of asthma-like responses by mucosal tolerance,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 283–290, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. C. Cavalher-Machado, W. T. de Lima, A. S. Damazo et al., “Down-regulation of mast cell activation and airway reactivity in diabetic rats: role of insulin,” European Respiratory Journal, vol. 24, no. 4, pp. 552–558, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. F. Q. Cunha, J. Assreuy, D. W. Moss et al., “Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-α and IL-1-β,” Immunology, vol. 81, no. 2, pp. 211–215, 1994. View at Google Scholar · View at Scopus
  25. M. C. Holroyde, “The influence of epithelium on the responsiveness of guinea-pig isolated trachea,” British Journal of Pharmacology, vol. 87, no. 3, pp. 501–507, 1986. View at Google Scholar · View at Scopus
  26. A. Lino dos Santos Franco, A. S. Damazo, H. R. Beraldo de Souza et al., “Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide,” Toxicology and Applied Pharmacology, vol. 214, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Noulin, V. F. J. Quesniaux, S. Schnyder-Candrian et al., “Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin,” The Journal of Immunology, vol. 175, no. 10, pp. 6861–6869, 2005. View at Google Scholar · View at Scopus
  28. D. C. Zeldin, C. Wohlford-Lenane, P. Chulada et al., “Airway inflammation and responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial lipopolysaccharide,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 4, pp. 457–465, 2001. View at Google Scholar · View at Scopus
  29. J. W. Card, M. A. Carey, J. A. Bradbury et al., “Gender differences in murine airway responsiveness and lipopolysaccharide- induced inflammation,” The Journal of Immunology, vol. 177, no. 1, pp. 621–630, 2006. View at Google Scholar · View at Scopus
  30. J. A. Vanoirbeek, M. Rinaldi, V. De Vooght et al., “Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 96–104, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. L. K. A. Lundblad, C. G. Irvin, Z. Hantos, P. Sly, W. Mitzner, and J. H. T. Bates, “Penh is not a measure of airway resistance!,” European Respiratory Journal, vol. 30, no. 4, p. 805, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. B. J. Nevin and K. J. Broadley, “Comparative effects of inhaled budesonide and the NO-donating budesonide derivative, NCX 1020, against leukocyte influx and airway hyperreactivity following lipopolysaccharide challenge,” Pulmonary Pharmacology and Therapeutics, vol. 17, no. 4, pp. 219–232, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Y. Amrani, H. Chen, and R. A. Panettieri, “Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma?” Respiratory Research, vol. 1, no. 1, pp. 49–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Deleuze, J. Lefort, M. F. Bureau, D. Scherman, and B. B. Vargaftig, “LPS-induced bronchial hyperreactivity: interference by mIL-10 differs according to site of delivery,” American Journal of Physiology, vol. 286, no. 1, pp. L98–L105, 2004. View at Google Scholar · View at Scopus
  35. Q. Hamid, “Effects of steroids on inflammation and cytokine gene expression in airway inflammation,” Journal of Allergy and Clinical Immunology, vol. 112, no. 3, pp. 636–638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Okamoto, K. Gohil, E. I. Finkelstein, P. Bove, T. Akaike, and A. van der Vliet, “Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice,” American Journal of Physiology, vol. 286, no. 1, pp. L198–L209, 2004. View at Google Scholar · View at Scopus
  37. D. A. Deshpande, T. F. Walseth, R. A. Panettieri, and M. S. Kannan, “CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness,” The FASEB Journal, vol. 17, no. 3, pp. 452–454, 2003. View at Google Scholar · View at Scopus
  38. D. Spina, “Epithelium smooth muscle regulation and interactions,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 5, part 3, pp. S141–S145, 1998. View at Google Scholar · View at Scopus
  39. G. Folkerts and F. P. Nijkamp, “Airway epithelium: more than just a barrier!,” Trends in Pharmacological Sciences, vol. 19, no. 8, pp. 334–341, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. S. T. Holgate, “The airway epithelium is central to the pathogenesis of asthma,” Allergology International, vol. 57, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. D. S. Cheng, W. Han, S. M. Chen et al., “Airway epithelium controls lung inflammation and injury through the NF-κB pathway,” The Journal of Immunology, vol. 178, no. 10, pp. 6504–6513, 2007. View at Google Scholar · View at Scopus
  42. O. Bachar, A. C. Rose, M. Adner et al., “TNFα reduces tachykinin, PGE2-dependent, relaxation of the cultured mouse trachea by increasing the activity of COX-2,” British Journal of Pharmacology, vol. 144, no. 2, pp. 220–230, 2005. View at Publisher · View at Google Scholar · View at PubMed
  43. B. Jany, R. Betz, and R. Schreck, “Activation of the transcription factor NF-κB in human tracheobronchial epithelial cells by inflammatory stimuli,” European Respiratory Journal, vol. 8, no. 3, pp. 387–391, 1995. View at Google Scholar · View at Scopus
  44. M. B. Sukkar, S. Xie, N. M. Khorasani et al., “Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle,” Journal of Allergy and Clinical Immunology, vol. 118, no. 3, pp. 641–648, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. C. Martin, S. Uhlig, and V. Ullrich, “Cytokine-induced bronchoconstriction in precision-cut lung slices is dependent upon cyclooxygenase-2 and thromboxane receptor activation,” American Journal of Respiratory Cell and Molecular Biology, vol. 24, no. 2, pp. 139–145, 2001. View at Google Scholar · View at Scopus
  46. R. Jimenez, E. Belcher, S. Sriskandan et al., “Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4637–4642, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. S. Thomas, D. H. Yates, and P. J. Barnes, “Tumor necrosis factor-α increases airway responsiveness and sputum neutrophilia in normal human subjects,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 1, pp. 76–80, 1995. View at Google Scholar · View at Scopus
  48. O. Bachar, M. Adner, R. Uddman, and L. O. Cardell, “Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-κB signaling pathways,” European Journal of Immunology, vol. 34, no. 4, pp. 1196–1207, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. X. Shan, A. Hu, H. Veler et al., “Regulation of Toll-like receptor 4-induced proasthmatic changes in airway smooth muscle function by opposing actions of ERK1/2 and p38 MAPK signaling,” American Journal of Physiology, vol. 291, no. 3, pp. L324–L333, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. Hammad, M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht, “House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells,” Nature Medicine, vol. 15, no. 4, pp. 410–416, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. H. Chen, O. Tliba, C. R. van Besien, R. A. Panettieri Jr., and Y. Amrani, “TNF-α modulates murine tracheal rings responsiveness to G-protein-coupled receptor agonists and KCl,” Journal of Applied Physiology, vol. 95, no. 2, pp. 864–872, 2003. View at Google Scholar