Table of Contents
Journal of Allergy
Volume 2012, Article ID 718725, 10 pages
Review Article

Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis

1Laboratoire Inflammation, Tissus Épithéliaux et Cytokines, UPRES-EA 4331, CHU de Poitiers, Pole Biologie Santé, Université de Poitiers, Bâtiment B36, 1 rue G Bonnet, 86022 Poitiers, France
2BIOalternatives, 1 bis rue des Plantes, 86160 Gençay, France

Received 15 June 2012; Revised 5 October 2012; Accepted 5 October 2012

Academic Editor: Maria Leite-de-Moraes

Copyright © 2012 François-Xavier Bernard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cutaneous homeostasis and defenses are maintained by permanent cross-talk among particular epidermal keratinocytes and immune cells residing or recruited in the skin, through the production of cytokines. If required, a coordinated inflammatory response is triggered, relayed by specific cytokines. Due to numerous reasons, troubles in the resolution of this phenomenon could generate a cytokine-mediated vicious circle, promoting skin chronic inflammation, the most common being atopic dermatitis and psoriasis. In this paper, we discuss the biological effects of cytokine on keratinocytes, more particularly on specific or shared cytokines involved in atopic dermatitis or psoriasis. We report and discuss monolayer or 3D in vitro models of keratinocytes stimulated by specific sets of cytokines to mimic atopic dermatitis or psoriasis. IL-22, TNFa, IL-4, and IL-13 combination is able to mimic an “atopic dermatitis like” state. In psoriasis lesions, over expression of IL-17 is observed whereas IL-4 and IL-13 were not detected; the replacement of IL-4 and IL-13 by IL-17 from this mix is able to mimic in vitro a “psoriasis like” status on keratinocytes. We conclude that specific cytokine environment deregulation plays a central role on skin morphology and innate immunity, moving towards specific pathologies and opening the way to new therapeutic strategies.