Table of Contents
Journal of Allergy
Volume 2012 (2012), Article ID 746125, 14 pages
http://dx.doi.org/10.1155/2012/746125
Review Article

Food Production and Processing Considerations of Allergenic Food Ingredients: A Review

Food Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Boulevard Casavant West, Saint-Hyacinthe, QC, Canada J2S 8E3

Received 4 May 2011; Revised 29 August 2011; Accepted 2 September 2011

Academic Editor: Kirsi Laitinen

Copyright © 2012 Pedro A. Alvarez and Joyce I. Boye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Alvarez, H. S. Ramaswamy, and A. A. Ismail, “High pressure gelation of soy proteins: effect of concentration, pH and additives,” Journal of Food Engineering, vol. 88, no. 3, pp. 331–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sagirli et al., “Chemical and microbial stability of high moisture dried apricots during storage,” Journal of the Science of Food and Agriculture, vol. 88, no. 5, pp. 858–869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Heffler, G. Guida, I. Badiu, F. Nebiolo, and G. Rolla, “Anaphylaxis after eating italian pizza containing buckwheat as the hidden food allergen,” Journal of Investigational Allergology and Clinical Immunology, vol. 17, no. 4, pp. 261–263, 2007. View at Google Scholar · View at Scopus
  4. S. L. Taylor, S. L. Hefle, C. Bindslev-Jensen et al., “A consensus protocol for the determination of the threshold doses for allergenic foods: how much is too much?” Clinical and Experimental Allergy, vol. 34, no. 5, pp. 689–695, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. FAO/WHO and A. C. Codex, “General standard for the labelling of prepackaged foods. Codex standard 1-1985,” 1985, http://www.codexalimentarius.net/download/standards/32/CXS_001e.pdf.
  6. HC-SC, “Food allergies,” http://www.hc-sc.gc.ca/fn-an/securit/allerg/fa-aa/index-eng.php.
  7. USFDA, “Food allergen labeling and consumer protection act of 2004,” http://www.fda.gov/food/labelingnutrition/FoodAllergensLabeling/GuidanceComplianceRegulatoryInformation/ucm106187.htm.
  8. CFR and USA, “Sulfites in standardized food,” Part 130.9, pp. 284–285, Title 21. Chapter I. Food and Drugs, http://www.access.gpo.gov/nara/cfr/waisidx_01/21cfr130_01.html.
  9. FSANZ, “Information for allergy sufferers,” http://www.foodstandards.gov.au/consumerinformation/foodallergies/.
  10. FSANZ, “Standard 1.2.3. Mandatory warning and advisory statements and declarations,” pp. 1–4, http://www.comlaw.gov.au/Details/F2011C00610.
  11. E. U. Commision, “Guidelines from the Commission' services for the contents of the notifications requested by new paragraph 11 of Directive 2000/13/EC, as amended by Directive 2003/89/EC,” pp. 1–6, 2003, http://ec.europa.eu/food/food/labellingnutrition/foodlabelling/guidelines.pdf.
  12. USDA/FAS, “Japan. Food and agricultural import regulations and standards. Revised allergen labeling requirements,” 2005, http://www.fas.usda.gov/gainfiles/200506/146130065.pdf.
  13. D. D. Miller and S. Mariani, “Smoke, mirrors, and mislabeled cod: poor transparency in the European seafood industry,” Frontiers in Ecology and the Environment, vol. 8, no. 10, pp. 517–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. B. Marko, S. C. Lee, A. M. Rice et al., “Mislabelling of a depleted reef fish,” Nature, vol. 430, no. 6997, pp. 309–310, 2004. View at Google Scholar · View at Scopus
  15. D. J. Rydrych, “Corn cockle (Agrostemma githago) competition in winter wheat (Triticum aestivum),” Weed Science, vol. 29, no. 3, pp. 360–363, 1981. View at Google Scholar
  16. FAO, “Development of a framework for good agricultural practices,” 2003, http://www.fao.org/docrep/meeting/006/y8704e.htm.
  17. CGC, “Schedule 3 of the Canada grain regulations,” 2008, http://www.grainscanada.gc.ca/legislation-legislation/regulation-reglement/2010/sch-ann-3-2010-eng.pdf.
  18. USDA/GIPSA, “Official United States standards for grain,” 2007, http://www.gipsa.usda.gov/GIPSA/webapp?area=home&subject=grpi&topic=sq-ous.
  19. EU and Commission, “Commission regulation (EEC),” no. 1580/93, 1993, http://eur-lex.europa.eu/RECH_legislation.do.
  20. EU and Commission, “Commission regulation (EEU),” no. 742/2010, 2010, http://eur-lex.europa.eu/RECH_legislation.do.
  21. J. P. Clark, “Allergen-safe processing,” Food Technology, vol. 59, no. 2, pp. 63–64, 2005. View at Google Scholar · View at Scopus
  22. M. Ramazzotti, N. Mulinacci, L. Pazzagli et al., “Analytic investigations on protein content in refined seed oils: implications in food allergy,” Food and Chemical Toxicology, vol. 46, no. 11, pp. 3383–3388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Gélinas, C. M. McKinnon, M. C. Mena, and E. Méndez, “Gluten contamination of cereal foods in Canada,” International Journal of Food Science and Technology, vol. 43, no. 7, pp. 1245–1252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. B. Koerner, C. Cléroux, C. Poirier, I. Cantin, A. Alimkulov, and H. Elamparo, “Gluten contamination in the Canadian commercial oat supply,” Food Additives and Contaminants. Part A, vol. 28, no. 6, pp. 705–710, 2011. View at Publisher · View at Google Scholar
  25. T. Thompson, “Gluten contamination of commercial oat products in the United States,” New England Journal of Medicine, vol. 351, no. 19, pp. 2021–2022, 2004. View at Google Scholar · View at Scopus
  26. S. Størsrud, I. Malmheden Yman, and R. A. Lenner, “Gluten contamination in oat products and products naturally free from gluten,” European Food Research and Technology, vol. 217, no. 6, pp. 481–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. P. W. Lee, L. M. Niemann, D. M. Lambrecht, J. A. Nordlee, and S. L. Taylor, “Detection of mustard, egg, milk, and gluten in salad dressing using Enzyme-Linked immunosorbent assays (ELISAs),” Journal of Food Science, vol. 74, no. 5, pp. T46–T50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. S. Tiwari, M. Venkatachalam, G. M. Sharma, M. Su, K. H. Roux, and S. K. Sathe, “Effect of food matrix on amandin, almond (Prunus dulcis L.) major protein, immunorecognition and recovery,” LWT - Food Science and Technology, vol. 43, no. 4, pp. 675–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Beyer, E. Morrow, X. M. Li et al., “Effects of cooking methods on peanut allergenicity,” Journal of Allergy and Clinical Immunology, vol. 107, no. 6, pp. 1077–1081, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. E. Garber and J. Perry, “Detection of hazelnuts and almonds using commercial ELISA test kits,” Analytical and Bioanalytical Chemistry, vol. 396, no. 5, pp. 1939–1945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hildebrandt, “Multiplexed identification of different fish species by detection of parvalbumin, a common fish allergen gene: a DNA application of multi-analyte profiling (xMAP) technology,” Analytical and Bioanalytical Chemistry, vol. 397, no. 5, pp. 1787–1796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. C. Devore, S. Huynh, E. N. Dobrovolskaia, and J. E. Slater, “Multiplex microbead measurements for the characterization of cat and ragweed allergen extracts,” Annals of Allergy, Asthma and Immunology, vol. 105, no. 5, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. D. Earle, E. M. King, A. Tsay et al., “High-throughput fluorescent multiplex array for indoor allergen exposure assessment,” Journal of Allergy and Clinical Immunology, vol. 119, no. 2, pp. 428–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Careri, L. Elviri, A. Mangia, and C. Mucchino, “ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods,” Analytical and Bioanalytical Chemistry, vol. 387, no. 5, pp. 1851–1854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kirsch, S. Fourdrilis, R. Dobson, M. L. Scippo, G. Maghuin-Rogister, and E. De Pauw, “Quantitative methods for food allergens: a review,” Analytical and Bioanalytical Chemistry, vol. 395, no. 1, pp. 57–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Heick, M. Fischer, and B. Pöpping, “First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry,” Journal of Chromatography A, vol. 1218, no. 7, pp. 938–943, 2011. View at Publisher · View at Google Scholar
  37. R. S. Kagan, L. Joseph, C. Dufresne et al., “Prevalence of peanut allergy in primary-school children in Montreal, Canada,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, pp. 1223–1228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. W. Burks, G. Cockrell, J. S. Stanley, R. M. Helm, and G. A. Bannon, “Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1715–1721, 1995. View at Google Scholar · View at Scopus
  39. J. S. Stanley, N. King, A. W. Burks et al., “Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2,” Archives of Biochemistry and Biophysics, vol. 342, no. 2, pp. 244–253, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Kleber-Janke, R. Crameri, U. Appenzeller, M. Schlaak, and W. M. Becker, “Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology,” International Archives of Allergy and Immunology, vol. 119, no. 4, pp. 265–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Rabjohn, E. M. Helm, J. S. Stanley et al., “Molecular cloning and epitope analysis of the peanut allergen Ara h 3,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 535–542, 1999. View at Google Scholar · View at Scopus
  42. D. Mittag, J. Akkerdaas, B. K. Ballmer-Weber et al., “Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 114, no. 6, pp. 1410–1417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Krause, G. Reese, S. Randow et al., “Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population,” Journal of Allergy and Clinical Immunology, vol. 124, no. 4, article e5, pp. 771–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Pons, C. Chery, A. Romano, F. Namour, M. C. Artesani, and J. L. Guéant, “The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts,” Allergy, vol. 57, no. 72, supplement 72, pp. 88–93, 2002. View at Google Scholar · View at Scopus
  45. G. W. Palmer, D. A. Dibbern, A. W. Burks et al., “Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity,” Clinical Immunology, vol. 115, no. 3, pp. 302–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. P. de Leon, A. C. Drew, I. N. Glaspole, C. Suphioglu, R. E. O'Hehir, and J. M. Rolland, “IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens,” Molecular Immunology, vol. 44, no. 4, pp. 463–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Mittag, J. Akkerdaas, B. K. Ballmer-Weber et al., “Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy,” Journal of Allergy and Clinical Immunology, vol. 114, no. 6, pp. 1410–1417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Asarnoj, E. Östblom, S. Ahlstedt et al., “Reported symptoms to peanut between 4 and 8 years among children sensitized to peanut and birch pollen—results from the BAMSE birth cohort,” Allergy, vol. 65, no. 2, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Stephan and S. Vieths, “Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods,” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 3754–3760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. D. A. Schmitt, H. Cheng, S. J. Maleki, and A. W. Burks, “Competitive inhibition ELISA for quantification of Ara h 1 and Ara h 2, the major allergens of peanuts,” Journal of AOAC International, vol. 87, no. 6, pp. 1492–1497, 2004. View at Google Scholar · View at Scopus
  51. M. Careri, L. Elviri, J. B. Lagos, A. Mangia, F. Speroni, and M. Terenghi, “Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods,” Journal of Chromatography A, vol. 1206, no. 2, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. L. L'Hocine and J. I. Boye, “Allergenicity of soybean: new developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies,” Critical Reviews in Food Science and Nutrition, vol. 47, no. 2, pp. 127–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Gonzalez, J. Varela, J. Carreira, and F. Polo, “Soybean hydrophobic protein and soybean hull allergy,” Lancet, vol. 346, no. 8966, pp. 48–49, 1995. View at Google Scholar · View at Scopus
  54. H. P. Rihs, Z. Chen, F. Ruëff et al., “IgE binding of the recombinant allergen soybean profilin (rGly m 3) is mediated by conformational epitopes,” Journal of Allergy and Clinical Immunology, vol. 104, no. 6, pp. 1293–1301, 1999. View at Google Scholar · View at Scopus
  55. D. N. Crowell, M. E. John, D. Russell, and R. M. Amasino, “Characterization of a stress-induced, developmentally regulated gene family from soybean,” Plant Molecular Biology, vol. 18, no. 3, pp. 459–466, 1992. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Mittag, S. Vieths, L. Vogel et al., “Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens,” Journal of Allergy and Clinical Immunology, vol. 113, no. 1, pp. 148–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Holzhauser, O. Wackermann, B. K. Ballmer-Weber et al., “Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 452–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. X. Ma, P. Sun, P. He et al., “Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean,” Food Chemistry, vol. 121, no. 2, pp. 546–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. M. H. Pedersen, T. Holzhauser, C. Bisson et al., “Soybean allergen detection methods—a comparison study,” Molecular Nutrition and Food Research, vol. 52, no. 12, pp. 1486–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. L. Sánchez-Martínez, M. P. Aguilar-Caballos, and A. Gómez-Hens, “Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection,” Analytica Chimica Acta, vol. 636, no. 1, pp. 58–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. E. García, M. Llorente, A. Hernando, R. Kieffer, H. Wieser, and E. Méndez, “Development of a general procedure for complete extraction of gliadins for heat processed and unheated foods,” European Journal of Gastroenterology and Hepatology, vol. 17, no. 5, pp. 529–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Asero, “Detection and clinical characterization of patients with oral allergy syndrome caused by stable allergens in Rosaceae and nuts,” Annals of Allergy, Asthma and Immunology, vol. 83, no. 5, pp. 377–383, 1999. View at Google Scholar · View at Scopus
  63. P. W. Ewan, “Clinical study of peanut and nut allergy in 62 consecutive patients: new features and associations,” British Medical Journal, vol. 312, no. 7038, pp. 1074–1078, 1996. View at Google Scholar · View at Scopus
  64. F. Wang, J. M. Robotham, S. S. Teuber, P. Tawde, S. K. Sathe, and K. H. Roux, “Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family,” Journal of Allergy and Clinical Immunology, vol. 110, no. 1, pp. 160–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Wang, J. M. Robotham, S. S. Teuber, S. K. Sathe, and K. H. Roux, “Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family,” International Archives of Allergy and Immunology, vol. 132, no. 1, pp. 27–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Robotham, F. Wang, V. Seamon et al., “Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family,” Journal of Allergy and Clinical Immunology, vol. 115, no. 6, pp. 1284–1290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Ahn, L. Bardina, G. Grishina, K. Beyer, and H. A. Sampson, “Identification of two pistachio allergens, Pis v 1 and Pis v 2, belonging to the 2S albumin and 11S globulin family,” Clinical and Experimental Allergy, vol. 39, no. 6, pp. 926–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. L. N. Willison, P. Tawde, J. M. Robotham et al., “Pistachio vicilin, Pis v 3, is immunoglobulin E-reactive and cross-reacts with the homologous cashew allergen, Ana o 1,” Clinical and Experimental Allergy, vol. 38, no. 7, pp. 1229–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Ayuso et al., “Identification of a MnSOD-like protein as a new major pistachio allergen,” The Journal of Allergy and Clinical Immunology, vol. 119, no. 1, p. S115, 2007. View at Google Scholar
  70. K. Beyer, G. Grishina, L. Bardina, D. Stalcup, and H. Sampson, “Identification and cloning of 11S globulin, a new minor allergen from pistachio nut,” submitted to the Allergen nomenclature sub-committee of the International Union of Immunological Societies, and to the EMBL/GenBank/DDBJ databases, http://www.uniprot.org/uniprot/B7SLJ1.
  71. S. S. Teuber, A. M. Dandekar, W. R. Peterson, and C. L. Sellers, “Cloning and sequencing of a gene encoding a 2S albumin seed storage protein precursor from English walnut (Juglans regia), a major food allergen,” Journal of Allergy and Clinical Immunology, vol. 101, no. 6, pp. 807–814, 1998. View at Google Scholar · View at Scopus
  72. S. S. Teuber, K. C. Jarvis, A. M. Dandekar, W. R. Peterson, and A. A. Ansari, “Identification and cloning of a complementary DNA encoding a vicilin- like proprotein, Jug r 2, from English walnut kernel (Juglans regia), a major food allergen,” Journal of Allergy and Clinical Immunology, vol. 104, no. 6, pp. 1311–1320, 1999. View at Google Scholar · View at Scopus
  73. E. A. Pastorello, L. Farioli, V. Pravettoni et al., “Lipid transfer protein and vicilin are important walnut allergens in patients not allergic to pollen,” Journal of Allergy and Clinical Immunology, vol. 114, no. 4, pp. 908–914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Wallowitz, W. R. Peterson, S. Uratsu, S. S. Comstock, A. M. Dandekar, and S. S. Teuber, “Jug r 4, a legumin group food allergen from walnut (Juglans regia Cv. Chandler),” Journal of Agricultural and Food Chemistry, vol. 54, no. 21, pp. 8369–8375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Lüttkopf, U. Müller, P. S. Skov et al., “Comparison of four variants of a major allergen in hazelnut (Corylus avellana) Cor a 1.04 with the major hazel pollen allergen Cor a 1.01,” Molecular Immunology, vol. 38, no. 7, pp. 515–525, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. K. S. Hansen, B. K. Ballmer-Weber, D. Lüttkopf et al., “Roasted hazelnuts—allergenic activity evaluated by double-blind, placebo-controlled food challenge,” Allergy, vol. 58, no. 2, pp. 132–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Schocker, D. Lüttkopf, S. Scheurer et al., “Recombinant lipid transfer protein Cor a 8 from hazelnut: a new tool for in vitro diagnosis of potentially severe hazelnut allergy,” Journal of Allergy and Clinical Immunology, vol. 113, no. 1, pp. 141–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Lauer, K. Foetisch, D. Kolarich et al., “Hazelnut (Corylus avellana) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity,” Biochemical Journal, vol. 383, no. 2, pp. 327–334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. H. Akkerdaas, F. Schocker, S. Vieths et al., “Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library,” Molecular Nutrition and Food Research, vol. 50, no. 1, pp. 18–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Zuidmeer et al., “Isolation, cloning and confirmation as an allergen of the 2S albumin from hazelnut,” Allergy, vol. 64, supplement 90, p. 235, 2009. View at Google Scholar
  81. K. H. Roux et al., “The major seed storage protein of almond (Almond Major Protein) is an allergen,” Journal of Allergy and Clinical Immunology, vol. 103, p. S66, 1999. View at Google Scholar
  82. P. Tawde, Y. P. Venkatesh, F. Wang, S. S. Teuber, S. K. Sathe, and K. H. Roux, “Cloning and characterization of profilin (Pru du 4), a cross-reactive almond (Prunus dulcis) allergen,” Journal of Allergy and Clinical Immunology, vol. 118, no. 4, pp. 915–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. L. N. Willison, P. Tawde, and K. H. Roux, “Identification of almond lipid transfer protein (LTP) isoform,” submitted to the Allergen nomenclature sub-committee of the International Union of Immunological Societies, and to the EMBL/GenBank/DDBJ databases, http://www.uniprot.org/uniprot/C0L0I5.
  84. M. Abolhassani and K. H. Roux, “Cloning and expression of an allergenic 60S acidic ribosomal protein of almond (Prunus dulcis),” submitted to the Allergen nomenclature sub-committee of the International Union of Immunological Societies, and to the EMBL/GenBank/DDBJ databases, http://www.uniprot.org/uniprot/Q8H2B9.
  85. C. Ampe, J. Van Damme, L. A. de Castro, M. J. Sampaio, M. Van Montagu, and J. Vandekerckhove, “The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.),” European Journal of Biochemistry, vol. 159, no. 3, pp. 597–604, 1986. View at Google Scholar · View at Scopus
  86. K. Beyer, “Identification of a new Brazil nut allergen—Ber e 2,” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, supplement 1, p. S247, 2008. View at Google Scholar
  87. E. Knott, C. K. Gürer, J. Ellwanger, J. Ring, and U. Darsow, “Macadamia nut allergy,” Journal of the European Academy of Dermatology and Venereology, vol. 22, no. 11, pp. 1394–1395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Lerch, C. Egger, and A. J. Bircher, “Allergic reactions to macadamia nut,” Allergy, vol. 60, no. 1, pp. 130–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. M. F. Sutherland, R. E. O'Hehir, D. Czarny, and C. Suphioglu, “Macadamia nut anaphylaxis: demonstration of specific IgE reactivity and partial cross-reactivity with hazelnut,” Journal of Allergy and Clinical Immunology, vol. 104, no. 4 I, pp. 889–890, 1999. View at Google Scholar · View at Scopus
  90. Y. Hu, Z. Chen, M. Tang, T. Ni, J. Wang, and Z. Lin, “Molecular cloning of a seed storage protein cDNA,” submitted to the Allergen nomenclature sub-committee of the International Union of Immunological Societies, and to the EMBL/GenBank/DDBJ databases, http://www.uniprot.org/uniprot/Q84XA9.
  91. G. M. Sharma, K. H. Roux, and S. K. Sathe, “Characterization of 11S legumin like protein from Carya illinoinensis (Pecan),” submitted to the Allergen nomenclature sub-committee of the International Union of Immunological Societies, and to the EMBL/GenBank/DDBJ databases, http://www.uniprot.org/uniprot/B5KVH4.
  92. J. M. García-Menaya, M. A. Gonzalo-Garijo, I. Moneo, B. Fernández, F. García-González, and F. Moreno, “A 17-kDa allergen detected in pine nuts,” Allergy, vol. 55, no. 3, pp. 291–293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Rubira, J. Botey, J. L. Eseverri, and A. Marin, “Allergy to pine nuts in children,” Allergie et Immunologie, vol. 30, no. 7, pp. 212–216, 1998. View at Google Scholar
  94. M. Meysman, D. Schelfaut, and W. Vincken, “A not so healthy muesli: a case report,” Acta Clinica Belgica, vol. 64, no. 4, pp. 366–368, 2009. View at Google Scholar · View at Scopus
  95. R. Rodrigues-Alves, A. Pregal, M. C. Pereira-Santos et al., “Anaphylaxis to pine nut: cross-reactivity to Artemisia vulgaris?” Allergologia et Immunopathologia, vol. 36, no. 2, pp. 113–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Rossi, “A case of severe allergy to pine-nut,” European Annals of Allergy and Clinical Immunology, vol. 39, no. 10, pp. 344–345, 2007. View at Google Scholar · View at Scopus
  97. L. Niemann, S. L. Taylor, and S. L. Hefle, “Detection of walnut residues in foods using an enzyme-linked immunosorbent assay,” Journal of Food Science, vol. 74, no. 6, pp. T51–T57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Polenta, S. Godefroy-Benrejeb, P. Delahaut, D. Weber, and M. Abbott, “Development of a Competitive ELISA for the Detection of Pecan (Carya illinoinensis (Wangenh.) K. Koch) Traces in Food,” Food Analytical Methods, vol. 3, no. 4, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. J. Hlywka, S. L. Hefle, and S. L. Taylor, “A sandwich enzyme,-linked immunosorbent assay for the detection of almonds in foods,” Journal of Food Protection, vol. 63, no. 2, pp. 252–257, 2000. View at Google Scholar · View at Scopus
  100. G. M. Sharma, R. H. Kenneth, and S. K. Shridhar, “A sensitive and robust competitive enzyme-linked immunosorbent assay for Brazil nut (bertholletia excelsa l.) detection,” Journal of Agricultural and Food Chemistry, vol. 57, no. 2, pp. 769–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Brežná, L. Piknová, and T. Kuchta, “A novel real-time polymerase chain reaction method for the detection of macadamia nuts in food,” European Food Research and Technology, vol. 229, no. 3, pp. 397–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Piknová, D. Pangallo, and T. Kuchta, “A novel real-time polymerase chain reaction (PCR) method for the detection of hazelnuts in food,” European Food Research and Technology, vol. 226, no. 5, pp. 1155–1158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Brežná and T. Kuchta, “A novel real-time polymerase chain reaction method for the detection of pecan nuts in food,” European Food Research and Technology, vol. 226, no. 5, pp. 1113–1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Ehlert et al., “Detection of cashew nut in foods by a specific real-time PCR method,” Food Analytical Methods, vol. 1, no. 2, pp. 136–143, 2008. View at Google Scholar
  105. C. K. Fæste, L. Holden, C. Plassen, and B. Almli, “Sensitive time-resolved fluoroimmunoassay for the detection of hazelnut (Corylus avellana) protein traces in food matrices,” Journal of Immunological Methods, vol. 314, no. 1-2, pp. 114–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Ehlert, A. Demmel, C. Hupfer, U. Busch, and K. H. Engel, “Simultaneous detection of DNA from 10 food allergens by ligation-dependent probe amplification,” Food Additives and Contaminants. Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 26, no. 4, pp. 409–418, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. E. A. Pastorello, E. Varin, L. Farioli et al., “The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin,” Journal of Chromatography B, vol. 756, no. 1-2, pp. 85–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Beyer, L. Bardina, G. Grishina, and H. A. Sampson, “Identification of sesame seed allergens by 2-dimensional proteomics and Edman sequencing: seed storage proteins as common food allergens,” Journal of Allergy and Clinical Immunology, vol. 110, no. 1, pp. 154–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Leduc, D. A. Moneret-Vautrin, J. T. C. Tzen, M. Morisset, L. Guerin, and G. Kanny, “Identification of oleosins as major allergens in sesame seed allergic patients,” Allergy, vol. 61, no. 3, pp. 349–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Beyer, G. Grishina, L. Bardina, and H. A. Sampson, “Identification of 2 new sesame seed allergens: Ses i 6 and Ses i 7,” Journal of Allergy and Clinical Immunology, vol. 119, no. 6, pp. 1554–1556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Mustorp, C. Engdahl-Axelsson, U. Svensson, and A. Holck, “Detection of celery (Apium graveolens), mustard (Sinapis alba, Brassica juncea, Brassica nigra) and sesame (Sesamum indicum) in food by real-time PCR,” European Food Research and Technology, vol. 226, no. 4, pp. 771–778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Schöringhumer, G. Redl, and M. Cichna-Markl, “Development and validation of a duplex real-time PCR method to simultaneously detect potentially allergenic sesame and hazelnut in food,” Journal of Agricultural and Food Chemistry, vol. 57, no. 6, pp. 2126–2134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. F. T. Husain, I. E. Bretbacher, A. Nemes, and M. Cichna-Markl, “Development and validation of an indirect competitive enzyme linked-Lmmunosorbent assay for the determination of potentially allergenic Sesame (Sesamum indicum) in food,” Journal of Agricultural and Food Chemistry, vol. 58, no. 3, pp. 1434–1441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. FAO, “FAO Stat,” http://faostat.fao.org.
  115. H. P. Rihs, P. Rozynek, K. May-Taube, B. Welticke, and X. Baur, “Polymerase chain reaction based cDNA cloning of wheat profilin: a potential plant allergen,” International Archives of Allergy and Immunology, vol. 105, no. 2, pp. 190–194, 1994. View at Google Scholar · View at Scopus
  116. A. Palacin, S. Quirce, A. Armentia et al., “Wheat lipid transfer protein is a major allergen associated with baker's asthma,” Journal of Allergy and Clinical Immunology, vol. 120, no. 5, pp. 1132–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Sutton, J. H. Skerritt, B. A. Baldo, and C. W. Wrigley, “The diversity of allergens involved in bakers' asthma,” Clinical Allergy, vol. 14, no. 1, pp. 93–107, 1984. View at Google Scholar · View at Scopus
  118. K. Palosuo, H. Alenius, E. Varjonen et al., “A novel wheat gliadin as a cause of exercise-induced anaphylaxis,” Journal of Allergy and Clinical Immunology, vol. 103, no. 5, pp. 912–917, 1999. View at Google Scholar · View at Scopus
  119. K. Palosuo, E. Varjonen, O.-M. Kekki et al., “Wheat ω-5 gliadin is a major allergen in children with immediate allergy to ingested wheat,” Journal of Allergy and Clinical Immunology, vol. 108, no. 4, pp. 634–638, 2001. View at Publisher · View at Google Scholar
  120. M. Weichel, N. J. Vergoossen, S. Bonomi et al., “Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients,” Allergy, vol. 61, no. 1, pp. 128–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Matsuo, K. Kohno, H. Niihara, and E. Morita, “Specific IgE determination to epitope peptides of ω-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis,” Journal of Immunology, vol. 175, no. 12, pp. 8116–8122, 2005. View at Google Scholar
  122. M. Peräaho, P. Collin, K. Kaukinen, L. Kekkonen, S. Miettinen, and M. Mäki, “Oats can diversify a gluten-free diet in celiac disease and dermatitis herpetiformis,” Journal of the American Dietetic Association, vol. 104, no. 7, pp. 1148–1150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Rashid, D. Butzner, V. Burrows et al., “Consumption of pure oats by individuals with celiac disease: a position statement by the Canadian Celiac Association,” Canadian Journal of Gastroenterology, vol. 21, no. 10, pp. 649–651, 2007. View at Google Scholar · View at Scopus
  124. E. K. Janatuinen, P. H. Pikkarainen, T. A. Kemppainen et al., “A comparison of diets with and without oats in adults with celiac disease,” New England Journal of Medicine, vol. 333, no. 16, pp. 1033–1037, 1995. View at Publisher · View at Google Scholar · View at Scopus
  125. E. J. Hoffenberg, J. Haas, A. Drescher et al., “A trial of oats in children with newly diagnosed celiac disease,” Journal of Pediatrics, vol. 137, no. 3, pp. 361–366, 2000. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Morisset, D. A. Moneret-Vautrin, F. Maadi et al., “Prospective study of mustard allergy: first study with double-blind placebo-controlled food challenge trials (24 cases),” Allergy, vol. 58, no. 4, pp. 295–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. D. A. Moneret-Vautrin, “Epidemiology of food allergies and relative prevalence of trophallergens,” Cahiers de Nutrition et de Dietetique, vol. 36, no. 4, pp. 247–252, 2001. View at Google Scholar · View at Scopus
  128. L. Menendez-Arias, I. Moneo, J. Dominguez, and R. Rodriguez, “Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I,” European Journal of Biochemistry, vol. 177, no. 1, pp. 159–166, 1988. View at Google Scholar · View at Scopus
  129. M. Gonzalez de la Pena, L. Menendez-Arias, R. I. Monsalve, and R. Rodriguez, “Isolation and characterization of a major allergen from oriental mustard seeds, Braj I,” International Archives of Allergy and Applied Immunology, vol. 96, no. 3, pp. 263–270, 1991. View at Google Scholar · View at Scopus
  130. O. Palomares, J. Cuesta-Herranz, A. Vereda, S. Sirvent, M. Villalba, and R. Rodríguez, “Isolation and identification of an 11S globulin as a new major allergen in mustard seeds,” Annals of Allergy, Asthma and Immunology, vol. 94, no. 5, pp. 586–592, 2005. View at Google Scholar · View at Scopus
  131. O. Palomares, A. Vereda, J. Cuesta-Herranz, M. Villalba, and R. Rodríguez, “Cloning, sequencing, and recombinant production of Sin a 2, an allergenic 11S globulin from yellow mustard seeds,” Journal of Allergy and Clinical Immunology, vol. 119, no. 5, pp. 1189–1196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Sirvent, O. Palomares, A. Vereda, M. Villalba, J. Cuesta-Herranz, and R. Rodríguez, “NsLTP and profilin are allergens in mustard seeds: cloning, sequencing and recombinant production of Sin a 3 and Sin a 4,” Clinical and Experimental Allergy, vol. 39, no. 12, pp. 1929–1936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Y. Shim and J. P. D. Wanasundara, “Quantitative detection of allergenic protein Sin a 1 from yellow mustard (Sinapis alba l.) seeds using enzyme-linked immunosorbent assay,” Journal of Agricultural and Food Chemistry, vol. 56, no. 4, pp. 1184–1192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. C. H. Kaw, S. L. Hefle, and S. L. Taylor, “Sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of lupine residues in foods,” Journal of Food Science, vol. 73, no. 4, pp. T62–T68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. I. Sélo, G. Clément, H. Bernard et al., “Allergy to bovine β-lactoglobulin: specificity of human IgE to tryptic peptides,” Clinical and Experimental Allergy, vol. 29, no. 8, pp. 1055–1063, 1999. View at Publisher · View at Google Scholar · View at Scopus
  136. J. M. Wal, “Immunochemical and molecular characterization of milk allergens,” Allergy, vol. 53, no. 46, Supplement, pp. 114–117, 1998. View at Google Scholar · View at Scopus
  137. M. Natale, C. Bisson, G. Monti et al., “Cow's milk allergens identification by two-dimensional immunoblotting and mass spectrometry,” Molecular Nutrition and Food Research, vol. 48, no. 5, pp. 363–369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. J. M. Wal, “Structure and function of milk allergens,” Allergy, vol. 56, no. S67, pp. 35–38, 2001. View at Google Scholar · View at Scopus
  139. R. de Luis, M. D. Pérez, L. Sánchez, M. La Villa, and M. Calvo, “Development of two immunoassay formats to detect β-lactoglobulin: influence of heat treatment on β-lactoglobulin immunoreactivity and assay applicability in processed food,” Journal of Food Protection, vol. 70, no. 7, pp. 1691–1697, 2007. View at Google Scholar · View at Scopus
  140. L. Monaci and A. J. van Hengel, “Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on liquid chromatography with mass spectrometric detection,” Journal of Chromatography A, vol. 1192, no. 1, pp. 113–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Pelaez-Lorenzo, J. C. Diez-Masa, I. Vasallo, and M. De Frutos, “Development of an optimized ELISA and a sample preparation method for the detection β-actoglobulin traces in baby foods,” Journal of Agricultural and Food Chemistry, vol. 58, no. 3, pp. 1664–1671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. H. M. Hiep, T. Endo, K. Kerman et al., “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Science and Technology of Advanced Materials, vol. 8, no. 4, pp. 331–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Eggesbø, G. Botten, R. Halvorsen, and P. Magnus, “The prevalence of allergy to egg: a population-based study in young children,” Allergy, vol. 56, no. 5, pp. 403–411, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. J. H. Savage, E. C. Matsui, J. M. Skripak, and R. A. Wood, “The natural history of egg allergy,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1413–1417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. T. Boyano-Martínez, C. García-Ara, J. M. Díaz-Pena, and M. Martín-Esteban, “Prediction of tolerance on the basis of quantification of egg white-specific IgE antibodies in children with egg allergy,” Journal of Allergy and Clinical Immunology, vol. 110, no. 2, pp. 304–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. A. D. Buchanan, T. D. Green, S. M. Jones et al., “Egg oral immunotherapy in nonanaphylactic children with egg allergy,” Journal of Allergy and Clinical Immunology, vol. 119, no. 1, pp. 199–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. Z. Szépfalusi, C. Ebner, R. Pandjaitan et al., “Egg yolk α-livetin (chicken serum albumin) is a cross-reactive allergen in the bird-egg syndrome,” Journal of Allergy and Clinical Immunology, vol. 93, no. 5, pp. 932–942, 1994. View at Publisher · View at Google Scholar · View at Scopus
  148. M. C. García-González, “Livetins as inhaled allergens in the bird-egg syndrome,” The Journal of Allergy and Clinical Immunology, vol. 111, no. 1, pp. S326–S327, 2003. View at Google Scholar
  149. J. Anet, J. F. Back, and R. S. Baker, “Allergens in the white and yolk of hen's egg: a study of IgE binding by egg proteins,” International Archives of Allergy and Applied Immunology, vol. 77, no. 3, pp. 364–371, 1985. View at Google Scholar · View at Scopus
  150. A. Amo, R. Rodríguez-Pérez, J. Blanco et al., “Gal d 6 is the second allergen characterized from egg yolk,” Journal of Agricultural and Food Chemistry, vol. 58, no. 12, pp. 7453–7457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. B. Jacobsen, K. Hoffmann-Sommergruber, T. T. Have et al., “The panel of egg allergens, Gal d 1-Gal d 5: their improved purification and characterization,” Molecular Nutrition and Food Research, vol. 52, no. 2, supplement 2, pp. S176–S185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. S. L. Hefle, E. Jeanniton, and S. L. Taylor, “Development of a sandwich enzyme-linked immunosorbent assay for the detection of egg residues in processed foods,” Journal of Food Protection, vol. 64, no. 11, pp. 1812–1816, 2001. View at Google Scholar · View at Scopus
  153. R. Köppel, V. Dvorak, F. Zimmerli, A. Breitenmoser, A. Eugster, and H. U. Waiblinger, “Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food,” European Food Research and Technology, vol. 230, no. 3, pp. 367–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. WHO/IUIS, “IUIS allergen nomenclature sub-committee home page,” http://www.allergen.org/.
  155. K. N. Shanti, B. M. Martin, S. Nagpal, D. D. Metcalfe, and P. V. S. Rao, “Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes,” Journal of Immunology, vol. 151, no. 10, pp. 5354–5363, 1993. View at Google Scholar · View at Scopus
  156. R. K. Bush, S. L. Taylor, and W. Busse, “A critical evaluation of clinical trials in reactions to sulfites,” Journal of Allergy and Clinical Immunology, vol. 78, no. 1, pp. 191–202, 1986. View at Google Scholar · View at Scopus
  157. R. A. Simon, “Update and sulfite sensitivity,” Allergy, vol. 53, no. 46, supplement, pp. 78–79, 1998. View at Google Scholar · View at Scopus
  158. H. Vally and P. J. Thompson, “Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies,” Thorax, vol. 56, no. 10, pp. 763–769, 2001. View at Publisher · View at Google Scholar · View at Scopus
  159. H. J. Schwartz, “Sensitivity to ingested metabisulfite: variations in clinical presentation,” Journal of Allergy and Clinical Immunology, vol. 71, no. 5, pp. 487–489, 1983. View at Google Scholar · View at Scopus
  160. R. A. Simon, “Sulfite sensitivity,” Annals of Allergy, vol. 59, no. 5, pp. 100–105, 1987. View at Google Scholar · View at Scopus
  161. H. J. Schwartz and T. H. Sher, “Bisulfite sensitivity manifesting as allergy to local dental anesthesia,” Journal of Allergy and Clinical Immunology, vol. 75, no. 4, pp. 525–527, 1985. View at Google Scholar · View at Scopus
  162. R. A. Simon, “Adverse reactions to food additives,” Current Allergy and Asthma Reports, vol. 3, no. 1, pp. 62–66, 2003. View at Google Scholar · View at Scopus
  163. N. L. A. Misso, S. Aggarwal, P. J. Thompson, and H. Vally, “Increases in urinary 9α,11β-prostaglandin F2 indicate mast cell activation in wine-induced asthma,” International Archives of Allergy and Immunology, vol. 149, no. 2, pp. 127–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. The Japan Food Chemical Research Foundation Foundation, “Standards for use of food additives,” pp. 1–23, http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/pages/stanrd.use.
  165. G. W. Monier-Williams, “Determination of sulphur dioxide in foods,” Analyst, vol. 52, pp. 415–416, 1927. View at Google Scholar
  166. A. Mulchandani, C. A. Groom, and J. H. T. Luong, “Determination of sulfite in food products by an enzyme electrode,” Journal of Biotechnology, vol. 18, no. 1-2, pp. 93–102, 1991. View at Google Scholar · View at Scopus
  167. L. M. Gonçalves, J. G. Pacheco, P. J. Magalhães, J. A. Rodrigues, and A. A. Barros, “Determination of free and total sulfites in wine using an automatic flow injection analysis system with voltammetric detection,” Food Additives and Contaminants. Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 27, no. 2, pp. 175–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. H.-J. Kim and Y.-K. Kim, “Analysis of free and total sulfites in food by Ion chromatography with electrochemical detection,” Journal of Food Science, vol. 51, no. 5, pp. 1360–1361, 1986. View at Google Scholar
  169. S. W. C. Chung, B. T. P. Chan, and A. C. M. Chan, “Determination of free and reversibly-bound sulfite in selected foods by high-performance liquid chromatography with fluorometric detection,” Journal of AOAC International, vol. 91, no. 1, pp. 98–102, 2008. View at Google Scholar · View at Scopus
  170. M. Iammarino, A. Di Taranto, M. Muscarella, D. Nardiello, C. Palermo, and D. Centonze, “Development of a new analytical method for the determination of sulfites in fresh meats and shrimps by ion-exchange chromatography with conductivity detection,” Analytica Chimica Acta, vol. 672, no. 1-2, pp. 61–65, 2010. View at Publisher · View at Google Scholar
  171. R. Buchanan, S. Gendel, S. Dennis et al., “Approaches to establish thresholds for major food allergens and for gluten in food,” Journal of Food Protection, vol. 71, no. 5, pp. 1043–1088, 2008. View at Google Scholar · View at Scopus
  172. RomerLabs, “AgraQuant allergen product list,” http://www.romerlabs.com/en/products/agraquant.html#c859.
  173. F. Rancé, G. Dutau, and M. Abbal, “Mustard allergy in children,” Allergy, vol. 55, no. 5, pp. 496–500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Figueroa, C. Blanco, A. G. Dumpiérrez et al., “Mustard allergy confirmed by double-blind placebo-controlled food challenges: clinical features and cross-reactivity with mugwort pollen and plant-derived foods,” Allergy, vol. 60, no. 1, pp. 48–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Morisset, D. A. Moneret-Vautrin, G. Kanny et al., “Thresholds of clinical reactivity to milk, egg, peanut and sesame in immunoglobulin E-dependent allergies: evaluation by double-blind or single-blind placebo-controlled oral challenges,” Clinical and Experimental Allergy, vol. 33, no. 8, pp. 1046–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus