Table of Contents
Journal of Allergy
Volume 2013, Article ID 340476, 12 pages
http://dx.doi.org/10.1155/2013/340476
Review Article

Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India

Received 20 March 2013; Accepted 21 May 2013

Academic Editor: Anurag Agrawal

Copyright © 2013 Ulaganathan Mabalirajan and Balaram Ghosh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Rousset, M.-C. Alves-Guerra, J. Mozo et al., “The biology of mitochondrial uncoupling proteins,” Diabetes, vol. 53, no. 1, pp. S130–S135, 2004. View at Google Scholar · View at Scopus
  2. G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiological Reviews, vol. 87, no. 1, pp. 99–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Rapaport, “Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins,” EMBO Reports, vol. 4, no. 10, pp. 948–952, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Herrmann and J. Riemer, “The intermembrane space of mitochondria,” Antioxidants and Redox Signaling, vol. 13, no. 9, pp. 1341–1358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Paumard, J. Vaillier, B. Coulary et al., “The ATP synthase is involved in generating mitochondrial cristae morphology,” EMBO Journal, vol. 21, no. 3, pp. 221–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Chacinska, C. M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner, “Importing mitochondrial proteins: machineries and mechanisms,” Cell, vol. 138, no. 4, pp. 628–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-A. Kim, Y. Wei, and J. R. Sowers, “Role of mitochondrial dysfunction in insulin resistance,” Circulation Research, vol. 102, no. 4, pp. 401–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Reaven, “The insulin resistance syndrome: definition and dietary approaches to treatment,” Annual Review of Nutrition, vol. 25, pp. 391–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. Kim and G. M. Reaven, “The metabolic syndrome: one step forward, two steps back,” Diabetes & Vascular Disease Research, vol. 1, no. 2, pp. 68–75, 2004. View at Google Scholar · View at Scopus
  10. G. Gastaldi, J.-P. Giacobino, and J. Ruiz, “Metabolic syndrome, a mitochondrial disease?” Revue Medicale Suisse, vol. 4, no. 160, pp. 1387–1391, 2008. View at Google Scholar · View at Scopus
  11. D. A. Beuther, “Recent insight into obesity and asthma,” Current Opinion in Pulmonary Medicine, vol. 16, no. 1, pp. 64–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Strazzullo, A. Barbato, A. Siani et al., “Diagnostic criteria for metabolic syndrome: a comparative analysis in an unselected sample of adult male population,” Metabolism, vol. 57, no. 3, pp. 355–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Nisoli, E. Clementi, M. O. Carruba, and S. Moncada, “Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome?” Circulation Research, vol. 100, no. 6, pp. 795–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Bugger and E. D. Abel, “Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome,” Clinical Science, vol. 114, no. 3-4, pp. 195–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Bousquet, P. K. Jeffery, W. W. Busse, M. Johnson, and A. M. Vignola, “Asthma: from bronchoconstriction to airways inflammation and remodeling,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 5, pp. 1720–1745, 2000. View at Google Scholar · View at Scopus
  17. W. W. Busse, S. Banks-Schlegel, and S. E. Wenzel, “Pathophysiology of severe asthma,” Journal of Allergy and Clinical Immunology, vol. 106, no. 6, pp. 1033–1042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Papiris, A. Kotanidou, K. Malagari, and C. Roussos, “Clinical review: severe asthma,” Critical Care, vol. 6, no. 1, pp. 30–44, 2002. View at Google Scholar · View at Scopus
  19. S. E. Wenzel and W. W. Busse, “Severe asthma: lessons from the severe asthma research program,” Journal of Allergy and Clinical Immunology, vol. 119, no. 1, pp. 14–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Wenzel, “Severe asthma in adults,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 2, pp. 149–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Varraso, V. Siroux, J. Maccario, I. Pin, and F. Kauffmann, “Asthma severity is associated with body mass index and early menarche in women,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 4, pp. 334–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Taylor, D. Mannino, C. Brown, D. Crocker, N. Twum-Baah, and F. Holguin, “Body mass index and asthma severity in the National Asthma Survey,” Thorax, vol. 63, no. 1, pp. 14–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W.-C. Ho, Y.-S. Lin, J. L. Caffrey et al., “Higher body mass index may induce asthma among adolescents with pre-asthmatic symptoms: a prospective cohort study,” BMC Public Health, vol. 11, article 542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Hemachandra Reddy, “Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics,” Pharmaceuticals, vol. 4, no. 3, pp. 429–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Mabalirajan, A. K. Dinda, S. Kumar et al., “Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma,” Journal of Immunology, vol. 181, no. 5, pp. 3540–3548, 2008. View at Google Scholar · View at Scopus
  26. T. F. Gianotti, S. Sookoian, G. Dieuzeide et al., “A decreased mitochondrial DNA content is related to insulin resistance in adolescents,” Obesity, vol. 16, no. 7, pp. 1591–1595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Aral, M. Akkiprik, S. Caglayan et al., “Investigation of relationship of the mitochondrial DNA 16189 T>C polymorphism with metabolic syndrome and its associated clinical parameters in Turkish patients,” Hormones, vol. 10, no. 4, pp. 298–303, 2011. View at Google Scholar · View at Scopus
  28. V. O. Palmieri, D. De Rasmo, A. Signorile et al., “T16189C mitochondrial DNA variant is associated with metabolic syndrome in Caucasian subjects,” Nutrition, vol. 27, no. 7-8, pp. 773–777, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-H. H. Juo, M.-Y. Lu, R.-K. Bai et al., “A common mitochondrial polymorphism 10398A>G is associated metabolic syndrome in a Chinese population,” Mitochondrion, vol. 10, no. 3, pp. 294–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Lindroos, K. Majamaa, A. Tura et al., “m.3243A<G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive β-cell dysfunction,” Diabetes, vol. 58, no. 3, pp. 543–549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Finsterer, “Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation,” Acta Neurologica Scandinavica, vol. 116, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Sasarman, H. Antonicka, and E. A. Shoubridge, “The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2,” Human Molecular Genetics, vol. 17, no. 23, pp. 3697–3707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. R. Aroor, C. Mandavia, J. Ren et al., “Mitochondria and oxidative stress in the cardiorenal metabolic syndrome,” Cardio Renal Medicine, vol. 2, no. 2, pp. 87–109, 2012. View at Google Scholar
  34. G. Sesti, M. Cardellini, M. A. Marini et al., “A common polymorphism in the promoter of UCP2 contributes to the variation in insulin secretion in glucose-tolerant subjects,” Diabetes, vol. 52, no. 5, pp. 1280–1283, 2003. View at Google Scholar
  35. L. M. Sparks, H. Xie, R. A. Koza et al., “A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle,” Diabetes, vol. 54, no. 7, pp. 1926–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. S. Nunemaker, M. Chen, H. Pei et al., “12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by western diet,” American Journal of Physiology, vol. 295, no. 5, pp. E1065–E1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. B. K. Cole, M. A. Morris, W. J. Grzesik et al., “Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet,” Mediators of Inflammation, vol. 2012, Article ID 851798, 13 pages, 2012. View at Publisher · View at Google Scholar
  38. D. D. Sears, P. D. Miles, J. Chapman et al., “12/15-Lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice,” PLoS ONE, vol. 4, no. 9, Article ID e7250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. K. Cole, N. S. Kuhn, S. M. Green-Mitchell et al., “12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response,” American Journal of Physiology, vol. 302, no. 6, pp. E654–E665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Schewe, “15-lipoxygenase-1: a prooxidant enzyme,” Biological Chemistry, vol. 383, no. 3-4, pp. 365–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Pallast, K. Arai, X. Wang, E. H. Lo, and K. Van Leyen, “12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress,” Journal of Neurochemistry, vol. 111, no. 3, pp. 882–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. U. Mabalirajan, R. Rehman, T. Ahmad, S. Kumar, S. Singh, G. D. Leishangthem et al., “Linoleic acid metabolite drives severe asthma by causing airway epithelial injury,” Scientific Reports, vol. 3, p. 1349, 2013. View at Google Scholar
  43. U. Mabalirajan, R. Rehman, T. Ahmad, S. Kumar, S. Singh, G. D. Leishangthem et al., “12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma,” Scientific Reports, vol. 3, article 1540, 2013. View at Google Scholar
  44. R. R. Nazarewicz, W. J. Zenebe, A. Parihar et al., “12(S)-Hydroperoxyeicosatetraenoic acid (12-HETE) increases mitochondrial nitric oxide by increasing intramitochondrial calcium,” Archives of Biochemistry and Biophysics, vol. 468, no. 1, pp. 114–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. S. K. Chakrabarti, B. K. Cole, Y. Wen, S. R. Keller, and J. L. Nadler, “12/15-Lipoxygenase products induce inflammation and impair insulin signaling in 3t3-l1 adipocytes,” Obesity, vol. 17, no. 9, pp. 1657–1663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. L. Huang, “eNOS, metabolic syndrome and cardiovascular disease,” Trends in Endocrinology and Metabolism, vol. 20, no. 6, pp. 295–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Sydow, C. E. Mondon, and J. P. Cooke, “Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA,” Vascular Medicine, vol. 10, no. 1, pp. S35–S43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Leighton, S. Miranda-Rottmann, and I. Urquiaga, “A central role of eNOS in the protective effect of wine against metabolic syndrome,” Cell Biochemistry and Function, vol. 24, no. 4, pp. 291–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. W. Bradbury, “Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis,” American Journal of Physiology, vol. 290, no. 2, pp. G194–G198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Schrauwen and M. K. C. Hesselink, “Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes,” Diabetes, vol. 53, no. 6, pp. 1412–1417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. R. H. Unger, “Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications,” Diabetes, vol. 44, no. 8, pp. 863–870, 1995. View at Google Scholar · View at Scopus
  52. A. E. Civitarese, S. R. Smith, and E. Ravussin, “Diet, energy metabolism and mitochondrial biogenesis,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 6, pp. 679–687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. Reynolds, H. B. Suliman, J. W. Hollingsworth, K. E. Welty-Wolf, M. S. Carraway, and C. A. Piantadosi, “Nitric oxide synthase-2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 564–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Mercy, A. De Pauw, L. Payen et al., “Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import,” FEBS Journal, vol. 272, no. 19, pp. 5031–5055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, article e76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. P. J. Fernandez-Marcos and J. Auwerx, “Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis,” American Journal of Clinical Nutrition, vol. 93, no. 4, pp. 884S–890S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Flick and B. Lüscher, “Regulation of sirtuin function by posttranslational modifications,” Frontiers in Pharmacology, vol. 3, article 29, 2012. View at Google Scholar
  58. W. He, J. C. Newman, M. Z. Wang et al., “Mitochondrial sirtuins: regulators of protein acylation and metabolism,” Trends in Endocrinology & Metabolism, vol. 23, no. 9, pp. 467–476, 2012. View at Google Scholar
  59. M. D. Hirschey, T. Shimazu, E. Goetzman et al., “SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation,” Nature, vol. 464, no. 7285, pp. 121–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Kong, R. Wang, Y. Xue et al., “Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis,” PLoS ONE, vol. 5, no. 7, Article ID e11707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. F. Oliveti, C. M. Kercsmar, and S. Redline, “Pre- and perinatal risk factors for asthma in inner city African-American children,” American Journal of Epidemiology, vol. 143, no. 6, pp. 570–577, 1996. View at Google Scholar · View at Scopus
  63. A. A. Litonjua, V. J. Carey, H. A. Burge, S. T. Weiss, and D. R. Gold, “Parental history and the risk for childhood asthma: does mother confer more risk than father?” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 1, pp. 176–181, 1998. View at Google Scholar · View at Scopus
  64. M. E. Soto-Quiros, E. K. Silverman, L. Å. Hanson, S. T. Weiss, and J. C. Celedón, “Maternal history, sensitization to allergens, and current wheezing, rhinitis, and eczema among children in Costa Rica,” Pediatric Pulmonology, vol. 33, no. 4, pp. 237–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. B. A. Raby, B. Klanderman, A. Murphy et al., “A common mitochondrial haplogroup is associated with elevated total serum IgE levels,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 351–358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Zifa, Z. Daniil, Z. E et al., “Mitochondrial genetic background plays a role in increasing risk to asthma,” Molecular Biology Reports, vol. 39, no. 4, pp. 4697–4708, 2012. View at Google Scholar
  67. E. M. Schauberger, S. L. Ewart, S. H. Arshad et al., “Identification of ATPAF1 as a novel candidate gene for asthma in children,” Journal of Allergy and Clinical Immunology, vol. 128, no. 4, pp. 753.e11–760.e11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Jones, P. Mitchell, J. J. Wang, and C. Sue, “MELAS A3243G mitochondrial DNA mutation and age related maculopathy,” American Journal of Ophthalmology, vol. 138, no. 6, pp. 1051–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. L. P. Ngoc, D. R. Gold, A. O. Tzianabos, S. T. Weiss, and J. C. Celedón, “Cytokines, allergy, and asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 5, no. 2, pp. 161–166, 2005. View at Google Scholar · View at Scopus
  70. B. N. Lambrecht and H. Hammad, “The airway epithelium in asthma,” Nature Medicine, vol. 18, no. 5, pp. 684–692, 2012. View at Google Scholar
  71. M. Swamy, C. Jamora, W. Havran, and A. Hayday, “Epithelial decision makers: in search of the ‘epimmunome’,” Nature Immunology, vol. 11, no. 8, pp. 656–665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. R. He and R. S. Geha, “Thymic stromal lymphopoietin,” Annals of the New York Academy of Sciences, vol. 1183, pp. 13–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Borish and J. W. Steinke, “Interleukin-33 in asthma: how big of a role does it play?” Current Allergy and Asthma Reports, vol. 11, no. 1, pp. 7–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Suzukawa, H. Morita, A. Nambu, K. Arae, E. Shimura, A. Shibui et al., “Epithelial cell-derived IL-25, but not Th17 cell-Derived IL-17 or IL-17F, is crucial for murine asthma,” Journal of Immunology, vol. 189, no. 7, pp. 3641–3652.
  75. V. Konrádová, C. Copová, B. Suková, and J. Houstěk, “Ultrastructure of the bronchial epithelium in three children with asthma,” Pediatric Pulmonology, vol. 1, no. 4, pp. 182–187, 1985. View at Google Scholar · View at Scopus
  76. T. Hayashi, A. Ishii, S. Nakai, and K. Hasegawa, “Ultrastructure of goblet-cell metaplasia from Clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo,” Virchows Archiv, vol. 444, no. 1, pp. 66–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. U. Mabalirajan, T. Ahmad, R. Rehman, G. D. Leishangthem, A. K. Dinda et al., “Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation,” PLoS ONE, vol. 8, no. 4, Article ID e62916, 2013. View at Google Scholar
  78. U. Mabalirajan, A. K. Dinda, S. K. Sharma, and B. Ghosh, “Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model,” Journal of Immunology, vol. 183, no. 3, pp. 2059–2067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. U. Mabalirajan, J. Aich, G. D. Leishangthem, S. K. Sharma, A. K. Dinda, and B. Ghosh, “Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model,” Journal of Applied Physiology, vol. 107, no. 4, pp. 1285–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Aich, U. Mabalirajan, T. Ahmad et al., “Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A),” International Immunopharmacology, vol. 14, no. 4, pp. 438–443, 2012. View at Google Scholar
  81. T. Ahmad, U. Mabalirajan, A. Sharma et al., “Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from asymmetric dimethyl-arginine to asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 4, pp. 531–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Kumar, U. Mabalirajan, R. Rehman et al., “A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model,” International Immunopharmacology, vol. 15, no. 1, pp. 150–159, 2013. View at Google Scholar
  83. L. Aguilera-Aguirre, A. Bacsi, A. Saavedra-Molina, A. Kurosky, S. Sur, and I. Boldogh, “Mitochondrial dysfunction increases allergic airway inflammation,” Journal of Immunology, vol. 183, no. 8, pp. 5379–5387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Xu, S. A. A. Comhair, A. J. Janocha et al., “Alteration of nitric oxide synthesis related to abnormal cellular bioenergetics in asthmatic airway epithelium,” American Journal of Respiratory and Critical Care Medicine, vol. 181, Article ID A1436, 2010. View at Google Scholar
  85. L. A. Macmillan-Crow and D. L. Cruthirds, “Invited review: manganese superoxide dismutase in disease,” Free Radical Research, vol. 34, no. 4, pp. 325–336, 2001. View at Google Scholar · View at Scopus
  86. A. Ahmad, M. Shameem, and Q. Husain, “Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma,” Annals of Thoracic Medicine, vol. 7, no. 4, pp. 226–232, 2012. View at Google Scholar
  87. G. Chodaczek, A. Bacsi, N. Dharajiya, S. Sur, T. K. Hazra, and I. Boldogh, “Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction,” Molecular Immunology, vol. 46, no. 13, pp. 2505–2514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. J. A. Elias, “Airway remodeling in asthma: unanswered questions,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, pp. S168–S171, 2000. View at Google Scholar · View at Scopus
  89. A. Shifren, C. Witt, C. Christie, and M. Castro, “Mechanisms of remodeling in asthmatic airways,” Journal of Allergy, vol. 2012, Article ID 316049, 12 pages, 2012. View at Publisher · View at Google Scholar
  90. T. Trian, G. Benard, H. Begueret et al., “Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma,” Journal of Experimental Medicine, vol. 204, no. 13, pp. 3173–3181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. E. D. Telenga, S. W. Tideman, H. A. Kerstjens, N. H. Hacken et al., “Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response,” Allergy, vol. 67, no. 8, pp. 1060–1068, 2012. View at Google Scholar
  92. A. Van Huisstede and G. J. Braunstahl, “Obesity and asthma: co-morbidity or causal relationship?” Monaldi Archives for Chest Disease, vol. 73, no. 3, pp. 116–123, 2010. View at Google Scholar · View at Scopus
  93. N. L. Lugogo, M. Kraft, and A. E. Dixon, “Does obesity produce a distinct asthma phenotype?” Journal of Applied Physiology, vol. 108, no. 3, pp. 729–734, 2010. View at Google Scholar
  94. D. Ziora, P. Sitek, E. Machura, and K. Ziora, “Bronchial asthma in obesity–a distinct phenotype of asthma?” Pneumonologia i Alergologia Polska, vol. 80, no. 5, pp. 454–462, 2012. View at Google Scholar
  95. A. E. Dixon, “Obesity: changing asthma in the 21st century, ‘type’,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 5, pp. 395–396, 2012. View at Google Scholar
  96. F. Rasmussen, R. J. Hancox, P. Nair et al., “Associations between airway hyperresponsiveness, obesity and lipoproteins in a longitudinal cohort,” The Clinical Respiratory Journal, 2012. View at Publisher · View at Google Scholar
  97. A. S. Williams, L. Chen, D. I. Kasahara et al., “Obesity and airway responsiveness: role of TNFR2,” Pulmonary Pharmacology and Therapeutics, 2012. View at Publisher · View at Google Scholar
  98. C. S. Farah and C. M. Salome, “Asthma and obesity: a known association but unknown mechanism,” Respirology, vol. 17, no. 3, pp. 412–421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. V. N. Mineev, T. M. Lalaeva, and V. I. Trofimov, “Bronchial asthma and obesity: common mechanisms,” Klinicheskaia Meditsina, vol. 90, no. 4, pp. 4–10, 2012. View at Google Scholar
  100. S. A. Shore, “Obesity and asthma: lessons from animal models,” Journal of Applied Physiology, vol. 102, no. 2, pp. 516–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. S. A. Shore, “Obesity, airway hyperresponsiveness, and inflammation,” Journal of Applied Physiology, vol. 108, no. 3, pp. 735–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. N. L. Lugogo, D. Bappanad, and M. Kraft, “Obesity, metabolic dysregulation and oxidative stress in asthma,” Biochimica et Biophysica Acta, vol. 1810, no. 11, pp. 1120–1126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. B. E. Del-Rio-Navarro, J. A. Castro-Rodriguez, N. Garibay Nieto et al., “Higher metabolic syndrome in obese asthmatic compared to obese nonasthmatic adolescent males,” Journal of Asthma, vol. 47, no. 5, pp. 501–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. S. M. Rapoport and T. Schewe, “The maturational breakdown of mitochondria in reticulocytes,” Biochimica et Biophysica Acta, vol. 864, no. 3-4, pp. 471–495, 1986. View at Google Scholar · View at Scopus
  105. A. R. Hajek, A. R. Lindley, S. Favoreto Jr., R. Carter, R. P. Schleimer, and D. A. Kuperman, “12/15-Lipoxygenase deficiency protects mice from allergic airways inflammation and increases secretory IgA levels,” Journal of Allergy and Clinical Immunology, vol. 122, no. 3, pp. 633.e3–639.e3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. C. K. Andersson, H.-E. Claesson, K. Rydell-Törmänen, S. Swedmark, A. Hällgren, and J. S. Erjefält, “Mice lacking 12/15-lipoxygenase have attenuated airway allergic inflammation and remodeling,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 6, pp. 648–656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Holguin, S. A. Comhair, S. L. Hazen et al., “An association between (L)-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthmaonset phenotype,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 2, pp. 153–159, 2013. View at Google Scholar
  108. U. Mabalirajan, T. Ahmad, G. D. Leishangthem et al., “Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma,” Journal of Allergy and Clinical Immunology, vol. 125, no. 3, pp. 626–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. L. D. Monti, M. C. Casiraghi, E. Setola et al., “L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome,” Metabolism, vol. 62, no. 2, pp. 255–264, 2013. View at Google Scholar
  110. F. Leighton and I. Urquiaga, “Endothelial nitric oxide synthase as a mediator of the positive health effects of Mediterranean diets and wine against metabolic syndrome,” World Review of Nutrition and Dietetics, vol. 97, pp. 33–51, 2007. View at Google Scholar
  111. C. M. Prado, M. A. Martins, and I. F. L. C. Tibério, “Nitric oxide in asthma physiopathology,” ISRN Allergy, vol. 2011, Article ID 832560, 13 pages, 2011. View at Publisher · View at Google Scholar
  112. R. Ten Broeke, R. De Crom, R. Van Haperen et al., “Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice,” Respiratory Research, vol. 7, article 58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. N. N. Chan and J. C. N. Chan, “Asymmetric dimethylarginine (ADMA): a potential link between endothelial dysfunction and cardiovascular diseases in insulin resistance syndrome?” Diabetologia, vol. 45, no. 12, pp. 1609–1616, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Ahmad, U. Mabalirajan, B. Ghosh, and A. Agrawal, “Altered asymmetric dimethyl arginine metabolism in allergically inflamed mouse lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 3–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. U. Mabalirajan, T. Ahmad, G. D. Leishangthem, A. K. Dinda, A. Agrawal, and B. Ghosh, “L-Arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation,” International Immunopharmacology, vol. 10, no. 12, pp. 1514–1519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Carlström, F. J. Larsen, T. Nyström et al., “Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17716–17720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Yu, M. R. Eckart, A. A. Morgan et al., “Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma,” Journal of Clinical Investigation, vol. 121, no. 8, pp. 3133–3143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Smeitink, J. Loeffen, R. Smeets et al., “Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I,” Human Genetics, vol. 103, no. 2, pp. 245–250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Liu, W. Shen, B. Zhao et al., “Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients,” Advanced Drug Delivery Reviews, vol. 61, no. 14, pp. 1343–1352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Gvozdjáková, J. Kucharská, M. Bartkovjaková, K. Gazdíková, and F. Gazdík, “Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma,” BioFactors, vol. 25, no. 1–4, pp. 235–240, 2005. View at Google Scholar · View at Scopus
  121. M. Kunitomo, Y. Yamaguchi, S. Kagota, and K. Otsubo, “Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome,” Journal of Pharmacological Sciences, vol. 107, no. 2, pp. 128–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. G. T. Chew and G. F. Watts, “Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the ‘recoupling hypothesis’,” Monthly Journal of the Association of Physicians, vol. 97, no. 8, pp. 537–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Devaraj, S. Leonard, M. G. Traber, and I. Jialal, “Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 1203–1208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. J. R. Mercer, E. Yu, N. Figg et al., “The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice,” Free Radical Biology and Medicine, vol. 52, no. 5, pp. 841–849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. H. A. Pershadsingh, “α-lipoic acid: physiologic mechanism and indications for the treatment of metabolic syndrome,” Expert Opinion on Investigational Drugs, vol. 16, no. 3, pp. 291–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Sook Cho, J. Lee, T.-H. Lee et al., “α-lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma,” Journal of Allergy and Clinical Immunology, vol. 114, no. 2, pp. 429–435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. T. Wenz, F. Diaz, B. M. Spiegelman, and C. T. Moraes, “Activation of the PPAR/PGC-1α pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype,” Cell Metabolism, vol. 8, no. 3, pp. 249–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. J.-L. Beaudeux, V. Nivet-Antoine, and P. Giral, “Resveratrol: a relevant pharmacological approach for the treatment of metabolic syndrome?” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 6, pp. 729–736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. P. K. Bagul, H. Middela, S. Matapally et al., “Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats,” Pharmacological Research, vol. 66, no. 3, pp. 260–268, 2012. View at Google Scholar
  130. L. Vetterli and P. Maechler, “Resveratrol-activated SIRT1 in liver and pancreatic β-cells: a Janus head looking to the same direction of metabolic homeostasis,” Aging, vol. 3, no. 4, pp. 444–449, 2011. View at Google Scholar · View at Scopus
  131. T. Ichikawa, R. Hayashi, K. Suzuki et al., “Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma,” Respirology, vol. 18, no. 2, pp. 332–339, 2013. View at Google Scholar
  132. A. Agrawal, U. Mabalirajan, T. Ahmad, and B. Ghosh, “Emerging interface between metabolic syndrome and asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 3, pp. 270–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Aich, U. Mabalirajan, T. Ahmad, A. Agrawal, and B. Ghosh, “Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation,” Nature Communications, vol. 3, article 877, 2012. View at Google Scholar
  134. M. Sharma, J. Batra, U. Mabalirajan et al., “A genetic variation in inositol polyphosphate 4 phosphatase A enhances susceptibility to asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 7, pp. 712–719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. J. Teixeira, T. Silva, S. Benfeito et al., “Exploring nature profits: development of novel and potent lipophilic antioxidants based on galloyl-cinnamic hybrids,” European Journal of Medicinal Chemistry, vol. 62, pp. 289–296, 2013. View at Google Scholar
  136. J. Teixeira, T. Silva, P. B. Andrade, and F. Borges, “Alzheimer disease and antioxidant therapy: how long how far?” Current Medicinal Chemistry. In press.
  137. M. Rocha, A. Hernandez-Mijares, K. Garcia-Malpartida, C. Bañuls, L. Bellod, and V. M. Victor, “Mitochondria-targeted antioxidant peptides,” Current Pharmaceutical Design, vol. 16, no. 28, pp. 3124–3131, 2010. View at Publisher · View at Google Scholar · View at Scopus