Table of Contents
Journal of Amino Acids
Volume 2011 (2011), Article ID 656051, 25 pages
http://dx.doi.org/10.4061/2011/656051
Review Article

Signal Protein-Derived Peptides as Functional Probes and Regulators of Intracellular Signaling

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 194223 St. Petersburg, Russia

Received 31 December 2010; Accepted 1 June 2011

Academic Editor: Andrei Malkov

Copyright © 2011 Alexander O. Shpakov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Conner, J. Simms, J. Barwell, M. Wheatley, and D. R. Poyner, “Ligand binding and activation of the CGRP receptor,” Biochemical Society Transactions, vol. 35, no. 4, pp. 729–732, 2007. View at Google Scholar · View at Scopus
  2. K. P. Hofmann, P. Scheerer, P. W. Hildebrand et al., “A G protein-coupled receptor at work: the rhodopsin model,” Trends in Biochemical Sciences, vol. 34, no. 11, pp. 540–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Zheng, H. H. Loh, and P. Y. Law, “Agonist-selective signaling of G protein-coupled receptor: mechanisms and implications,” International Union of Biochemistry and Molecular Biology Life, vol. 62, no. 2, pp. 112–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. V. Smrcka, “G protein βγ subunits: central mediators of G protein-coupled receptor signaling,” Cellular and Molecular Life Sciences, vol. 65, no. 14, pp. 2191–2214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Dupré, M. Robitaille, R. V. Rebois, and T. E. Hébert, “The role of Gβγ subunits in the organization, assembly, and function of GPCR signaling complexes,” Annual Review of Pharmacology and Toxicology, vol. 49, pp. 31–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Woehler and E. G. Ponimaskin, “G protein-mediated signaling: same receptor, multiple effectors,” Current Molecular Pharmacology, vol. 2, no. 3, pp. 237–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. M. Cabrera-Vera, J. Vanhauwe, T. O. Thomas et al., “Insights into G protein structure, function and regulation,” Endocrine Reviews, vol. 24, no. 6, pp. 765–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. R. McCudden, M. D. Hains, R. J. Kimple, D. P. Siderovski, and F. S. Willard, “G-protein signaling: back to the future,” Cellular and Molecular Life Sciences, vol. 62, no. 5, pp. 551–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Johnston and D. P. Siderovski, “Receptor-mediated activation of heterotrimeric G-proteins: current structural insights,” Molecular Pharmacology, vol. 72, no. 2, pp. 219–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Sprang, Z. Chen, and X. Du, “Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins,” Advances in Protein Chemistry, vol. 74, pp. 1–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. B. Patel, “Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signaling cascades,” Pharmacological Reviews, vol. 56, no. 3, pp. 371–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Plum, M. Schubert, and J. C. Brüning, “The role of insulin receptor signaling in the brain,” Trends in Endocrinology and Metabolism, vol. 16, no. 2, pp. 59–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Morandell, T. Stasyk, S. Skvortsov, S. Ascher, and L. A. Huber, “Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network,” Proteomics, vol. 8, no. 21, pp. 4383–4401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. O. Shpakov, “The homology of the primary structure of the third cytoplasmic domains in rhodopsin-type receptors and of the cytoplasmic tail in the β-subunit of the insulin receptor,” Tsitologiia, vol. 38, no. 11, pp. 1179–1190, 1996 (Russian). View at Google Scholar · View at Scopus
  15. M. N. Pertseva, A. O. Shpakov, S. A. Plesneva, and L. A. Kuznetsova, “A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system,” Comparative Biochemistry and Physiology, vol. 134, no. 1, pp. 11–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. O. Shpakov and M. N. Pertseva, “The peptide strategy as a novel approach to the study of G protein-coupled signaling systems,” in Signal Transduction Research Trend, N. O. Grachevsky, Ed., pp. 45–93, Nova Science Publishers, New York, NY, USA, 2007. View at Google Scholar
  17. K. Palczewski, T. Kumasaka, T. Hori et al., “Crystal structure of rhodopsin: a G protein-coupled receptor,” Science, vol. 289, no. 5480, pp. 739–745, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Bockaert, P. Marin, A. Dumuis, and L. Fagni, “The “magic tail” of G protein-coupled receptors: an anchorage for functional protein networks,” Federation of the Societies of Biochemistry and Molecular Biology Letters, vol. 546, no. 1, pp. 65–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. W. Schwartz, T. M. Frimurer, B. Holst, M. M. Rosenkilde, and C. E. Elling, “Molecular mechanism of 7TM receptor activation—a global toggle switch model,” Annual Review of Pharmacology and Toxicology, vol. 46, pp. 481–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. R. Bourne, “How receptors talk to trimeric G proteins,” Current Opinion in Cell Biology, vol. 9, no. 2, pp. 134–142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wess, “G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition,” Federation of American Societies for Experimental Biology Journal, vol. 11, no. 5, pp. 346–354, 1997. View at Google Scholar · View at Scopus
  22. A. O. Shpakov, “Molecular basis of the functional coupling of receptors to GTP-binding proteins,” Membrane and Cell Biology, vol. 9, no. 5, pp. 467–487, 1996. View at Google Scholar · View at Scopus
  23. A. O. Shpakov, “The molecular determinants in the serpentine type receptors, responsible for its functional coupling with the heterotrimeric G-protein,” Tsitologiia, vol. 44, pp. 242–258, 2002 (Russian). View at Google Scholar
  24. F. Fanelli, P. G. De Benedetti, F. Raimondi, and M. Seeber, “Computational modeling of intramolecular and intermolecular communication in GPCRs,” Current Protein and Peptide Science, vol. 10, no. 2, pp. 173–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Taylor and R. R. Neubig, “Peptides as probes for G protein signal transduction,” Cellular Signalling, vol. 6, no. 8, pp. 841–849, 1994. View at Google Scholar · View at Scopus
  26. J. Miller, A. Agarwal, L. A. Devi et al., “Insider access: pepducin symposium explores a new approach to GPCR modulation,” Annals of the New York Academy of Sciences, vol. 1180, no. 1, pp. E1–E12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Tressel, G. Koukos, B. Tchernychev, S. L. Jacques, L. Covic, and A. Kuliopulos, “Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models,” Methods in Molecular Biology, vol. 683, pp. 259–275, 2011. View at Google Scholar
  28. W. J. Phillips and R. A. Cerione, “A C-terminal peptide of bovine rhodopsin binds to the transducin α-subunit and facilitates its activation,” Biochemical Journal, vol. 299, no. 2, pp. 351–357, 1994. View at Google Scholar · View at Scopus
  29. P. L. Yeagle, J. L. Alderfer, and A. D. Albert, “Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain in bovine rhodopsin,” Molecular Vision, vol. 2, p. 12, 1996. View at Google Scholar · View at Scopus
  30. T. Okamoto and I. Nishimoto, “Detection of G protein-activator regions in M4 subtype muscarinic, cholinergic, and α2-adrenergic receptors based upon characteristics in primary structure,” Journal of Biological Chemistry, vol. 267, no. 12, pp. 8342–8346, 1992. View at Google Scholar · View at Scopus
  31. S. M. Wade, H. M. Dalman, S. Z. Yang, and R. R. Neubig, “Multisite interactions of receptors and G proteins: enhanced potency of dimeric receptor peptides in modifying G protein function,” Molecular Pharmacology, vol. 45, no. 6, pp. 1191–1197, 1994. View at Google Scholar · View at Scopus
  32. C. A. Johnston and D. P. Siderovski, “Structural basis for nucleotide exchange on Gαi subunits and receptor coupling specificity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 2001–2006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Palm, G. Munch, C. Dees, and M. Hekman, “Mapping of β-adrenoceptor coupling domains to Gs-protein by site-specific synthetic peptides,” Federation of the Societies of Biochemistry and Molecular Biology Letters, vol. 254, no. 1-2, pp. 89–93, 1989. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Munch, C. Dees, M. Hekman, and D. Palm, “Multisite contacts involved in coupling of the β-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein: structural and functional studies by β-receptor-site-specific synthetic peptides,” European Journal of Biochemistry, vol. 198, no. 2, pp. 357–364, 1991. View at Google Scholar · View at Scopus
  35. T. Okamoto, Y. Murayama, Y. Hayashi, M. Inagaki, E. Ogata, and I. Nishimoto, “Identification of a Gs activator region of the β2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation,” Cell, vol. 67, no. 4, pp. 723–730, 1991. View at Google Scholar · View at Scopus
  36. J. M. Taylor, G. G. Jacob-Mosier, R. G. Lawton, A. E. Remmers, and R. R. Neubig, “Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβ and the amino terminus of Gα,” Journal of Biological Chemistry, vol. 269, no. 44, pp. 27618–27624, 1994. View at Google Scholar · View at Scopus
  37. A. M. Cypess, C. G. Unson, C. R. Wu, and T. P. Sakmar, “Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP of intracellular calcium,” Journal of Biological Chemistry, vol. 274, no. 27, pp. 19455–19464, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Konig and M. Gratzel, “Site of dopamine D1 receptor binding to Gs protein mapped with synthetic peptides,” Biochimica et Biophysica Acta, vol. 1223, no. 2, pp. 261–266, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko, K. V. Derkach, and G. P. Vlasov, “The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system,” International Journal of Peptide Research and Therapeutics, vol. 16, no. 2, pp. 95–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Voss, E. Wallner, A. P. Czernilofsky, and M. Freissmuth, “Amphipathic α-helical structure does not predict the ability of receptor-derived synthetic peptides to interact with guanine nucleotide-binding regulatory proteins,” Journal of Biological Chemistry, vol. 268, no. 7, pp. 4637–4642, 1993. View at Google Scholar · View at Scopus
  41. Q. Q. Sun and N. Dale, “G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca2+ channels,” Journal of Neuroscience, vol. 19, no. 3, pp. 890–899, 1999. View at Google Scholar · View at Scopus
  42. C. Nanoff, R. Koppensteiner, Q. Yang, E. Fuerst, H. Ahorn, and M. Freissmuth, “The carboxyl terminus of the Gα-subunit is the latch for triggered activation of heterotrimeric G proteins,” Molecular Pharmacology, vol. 69, no. 1, pp. 397–405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kubota and K. Wakamatsu, “Peptide fragment of the m3 muscarinic acetylcholine receptor activates Gq but not Gi2,” Journal of Peptide Science, vol. 14, no. 8, pp. 998–1002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. O. Shpakov, I. I. Tarasenko, and E. A. Shpakova, “Peptides derived from the third cytoplasmic loop of type 6 serotonin receptor as regulators of serotonin-sensitive adenylyl cyclase signaling system,” Doklady Biochemistry and Biophysics, vol. 431, no. 1, pp. 94–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Morou and Z. Georgoussi, “Expression of the third intracellular loop of the δ-opioid receptor inhibits signaling by opioid receptors and other G protein-coupled receptors,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 3, pp. 1368–1379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Grasso, M. R. Deziel, and L. E. Reichert, “Selective effects of charge on G protein activation by FSH-receptor residues 551–555 and 650–653,” Peptide Research, vol. 8, no. 5, pp. 278–284, 1995. View at Google Scholar · View at Scopus
  47. P. Grasso, N. Leng, and L. E. Reichert, “A synthetic peptide corresponding to the third cytoplasmic loop (residues 533 to 555) of the testicular follicle-stimulating hormone receptor affects signal transduction in rat testis membranes and in intact cultured rat Sertoli cells,” Molecular and Cellular Endocrinology, vol. 110, no. 1-2, pp. 35–41, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Mukherjee, K. Palczewski, V. V. Gurevich, and M. Hunzicker-Dunn, “β-Arrestin-dependent desensitization of luteinizing hormone/choriogonadotropin receptor is prevented by a synthetic peptide corresponding to the third intracellular loop of the receptor,” Journal of Biological Chemistry, vol. 274, no. 19, pp. 12984–12989, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. A. O. Shpakov, M.N. Pertseva, G. P. Gur’ianov, and I. A. Vlasov, “The influence of the peptides, derivatives of the third cytoplasmic loop of type 1 relaxin receptor, on the stimulation of GTP binding activity of the G proteins by relaxin,” Journal of Membrane Biology, vol. 22, pp. 435–442, 2005 (Russian). View at Google Scholar
  50. A. O. Shpakov, I. A. Gur'yanov, L. A. Kuznetsova et al., “Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor,” Neuroscience and Behavioral Physiology, vol. 37, no. 7, pp. 705–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. O. Shpakov, I. A. Gur’yanov, I. I. Tarasenko, and G. P. Vlasov, “Effects of polycationic peptides of different natures on the functional state of the serotonin-regulated adenylate cyclase system in the rat brain,” Journal of Neurochemistry, vol. 3, pp. 272–281, 2009. View at Google Scholar
  52. J. Plati, N. Tsomaia, A. Piserchio, and D. F. Mierke, “Structural features of parathyroid hormone receptor coupled to Gαs-protein,” Biophysical Journal, vol. 92, no. 2, pp. 535–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Bavec, M. Hällbrink, U. Langel, and M. Zorko, “Different role of intracellular loops of glucagon-like peptide-1 receptor in G-protein coupling,” Regulatory Peptides, vol. 111, no. 1–3, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. S. M. Wade, M. K. Scribner, H. M. Dalman, J. M. Taylor, and R. R. Neubig, “Structural requirements for Go activation by receptor-derived peptides: activation and modulation domains of the α2-adrenergic receptor i3c region,” Molecular Pharmacology, vol. 50, no. 2, pp. 351–358, 1996. View at Google Scholar · View at Scopus
  55. S. Granier, S. Terrillon, R. Pascal et al., “A cyclic peptide mimicking the third intracellular loop of the V2 vasopressin receptor inhibits signaling through its interaction with receptor dimer and G protein,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 50904–50914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. A. C. Howlett, C. Song, B. A. Berglund, G. H. Wilken, and J. J. Pigg, “Characterization of CB1 cannabinoid receptors using receptor peptide fragments and site-directed antibodies,” Molecular Pharmacology, vol. 53, no. 3, pp. 504–510, 1998. View at Google Scholar · View at Scopus
  57. S. Mukhopadhyay and A. C. Howlett, “CB1 receptor-G protein association: subtype selectivity is determined by distinct intracellular domains,” European Journal of Biochemistry, vol. 268, no. 3, pp. 499–505, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. A. L. Ulfers, J. L. McMurry, A. Miller, L. Wang, D. A. Kendall, and D. F. Mierke, “Cannabinoid receptor-G protein interactions: Gαi1-bound structures of IC3 and a mutant with altered G protein specificity,” Protein Science, vol. 11, no. 10, pp. 2526–2531, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Shirai, K. Takahashi, T. Katada, and T. Inagami, “Mapping of G protein coupling sites of the angiotensin II type 1 receptor,” Hypertension, vol. 25, no. 4, pp. 726–730, 1995. View at Google Scholar · View at Scopus
  60. T. Sano, K. Ohyama, Y. Yamano et al., “A domain for G protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A,” Journal of Biological Chemistry, vol. 272, no. 38, pp. 23631–23636, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Kai, R. W. Alexander, M. Ushio-Fukai, P. R. Lyons, M. Akers, and K. K. Griendling, “G-protein binding domains of the angiotensin II AT1A receptors mapped with synthetic peptides selected from the receptor sequence,” Biochemical Journal, vol. 332, no. 3, pp. 781–787, 1998. View at Google Scholar · View at Scopus
  62. L. Franzoni, G. Nicastro, T. A. Pertinhez et al., “Structure of the C-terminal fragment 300–320 of the rat angiotensin II AT1A receptor and its relevance with respect to G-protein coupling,” Journal of Biological Chemistry, vol. 272, no. 15, pp. 9734–9741, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. R. E. Schreiber, E. R. Prossnitz, R. D. Ye, C. G. Cochrane, and G. M. Bokoch, “Domains of the human neutrophil N-formyl peptide receptor involved in G protein coupling: mapping with receptor-derived peptides,” Journal of Biological Chemistry, vol. 269, no. 1, pp. 326–331, 1994. View at Google Scholar · View at Scopus
  64. R. K. Bommakanti, E. A. Dratz, D. W. Siemsen, and A. J. Jesaitis, “Extensive contact between Gi2 and N-formyl peptide receptor of human neutrophils: mapping of binding sites using receptor-mimetic peptides,” Biochemistry, vol. 34, pp. 6720–6728, 1995. View at Google Scholar
  65. L. Zhang, G. Huang, J. Wu, and K. H. Ruan, “A profile of the residues in the first intracellular loop critical for Gs mediated signaling of human prostacyclin receptor characterized by an integrative approach of NMR-experiment and mutagenesis,” Biochemistry, vol. 44, no. 34, pp. 11389–11401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Zhang, J. Wu, and K. H. Ruan, “Solution structure of the first intracellular loop of prostacyclin receptor and implication of its interaction with the C-terminal segment of Gαs protein,” Biochemistry, vol. 45, no. 6, pp. 1734–1744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. K. Kole, M. J. Garant, S. Kole, and M. Bernier, “A peptide-based protein-tyrosine phosphatase inhibitor specifically enhances insulin receptor function in intact cells,” Journal of Biological Chemistry, vol. 271, no. 24, pp. 14302–14307, 1996. View at Publisher · View at Google Scholar · View at Scopus
  68. H. K. Kole, A. S. Liotta, S. Kole, J. Roth, C. Montrose-Rafizadeh, and M. Bernier, “A synthetic peptides derived from a COOH-terminal domain of the insulin receptor specifically enhances insulin receptor signaling,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31619–31626, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Sun, J. M. Seyer, and T. B. Patel, “A region in the cytosolic domain of the epidermal growth factor receptor antithetically regulates the stimulatory and inhibitory guanine nucleotide-binding regulatory proteins of adenylyl cyclase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 6, pp. 2229–2233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Pagano and M. B. Anand-Srivastava, “Cytoplasmic domain of natriuretic peptide receptor C constitutes Gi activator sequences that inhibit adenylyl cyclase activity,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22064–22070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Zhou and K. S. Murthy, “Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C),” American Journal of Physiology, vol. 284, no. 5, pp. 1255–1261, 2003. View at Google Scholar · View at Scopus
  72. S. Hashim, Y. Li, and M. B. Anand-Srivastava, “Small cytoplasmic domain peptides of natriuretic peptide receptor-C attenuate cell proliferation through Giα protein/MAP kinase/PI3-kinase/AKT pathways,” American Journal of Physiology, vol. 291, no. 6, pp. 3144–3153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. H. E. Hamm, D. Deretic, A. Arendt, P. A. Hargrave, B. Koenig, and K. P. Hofmann, “Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit,” Science, vol. 241, no. 4867, pp. 832–835, 1988. View at Google Scholar · View at Scopus
  74. T. Morizumi, H. Imai, and Y. Shichida, “Two-step mechanism of interaction of rhodopsin intermediates with the C-terminal region of the transducin α-subunit,” Journal of Biochemistry, vol. 134, no. 2, pp. 259–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. T. E. Angel, P. C. Kraft, and E. A. Dratz, “Metarhodopsin-II stabilization by crosslinked Gtα C-terminal peptides and implications for the mechanism of GPCR-G protein coupling,” Vision Research, vol. 46, no. 27, pp. 4547–4555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Scheerer, J. H. Park, P. W. Hildebrand et al., “Crystal structure of opsin in its G-protein-interacting conformation,” Nature, vol. 455, no. 7212, pp. 497–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. R. Mazzoni, S. Taddei, L. Giusti et al., “A Gαs carboxyl-terminal peptide prevents Gs activation by the A2A adenosine receptor,” Molecular Pharmacology, vol. 58, no. 1, pp. 226–236, 2000. View at Google Scholar · View at Scopus
  78. Y. Chen, B. Yoo, J. B. Lee, G. Weng, and R. Iyengar, “The signal transfer regions of Gαs,” Journal of Biological Chemistry, vol. 276, no. 49, pp. 45751–45754, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Vorherr, L. Knöpfel, F. Hofmann, S. Mollner, T. Pfeuffer, and E. Carafoli, “The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase,” Biochemistry, vol. 32, no. 23, pp. 6081–6088, 1993. View at Google Scholar · View at Scopus
  80. S. Diel, M. Beyermann, J. M. N. Lloréns, B. Wittig, and C. Kleuss, “Two interaction sites on mammalian adenylyl cyclase type I and II: modulation by calmodulin and Gβγ,” Biochemical Journal, vol. 411, no. 2, pp. 449–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Yoo, R. Iyengar, and Y. Chen, “Functional analysis of the interface regions involved in interactions between the central cytoplasmic loop and the C-terminal tail of adenylyl cyclase,” Journal of Biological Chemistry, vol. 279, no. 14, pp. 13925–13933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. D. R. Grubb, O. Vasilevski, H. Huynh, and E. A. Woodcock, “The extreme C-terminal region of phospholipase Cβ1 determines subcellular localization and function; the “b” splice variant mediates α1-adrenergic receptor responses in cardiomyocytes,” Federation of American Societies for Experimental Biology Journal, vol. 22, no. 8, pp. 2768–2774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. M. Filtz, D. R. Grubb, T. J. McLeod-Dryden, J. Luo, and E. A. Woodcock, “Gq-initiated cardiomyocyte hypertrophy is mediated by phospholipase Cβ1b,” Federation of American Societies for Experimental Biology Journal, vol. 23, no. 10, pp. 3564–3570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. J. I. Hwang, H. S. Kim, J. R. Lee, E. Kim, S. H. Ryu, and P. G. Suh, “The interaction of phospholipase C-β3 with Shank2 regulates mGluR-mediated calcium signal,” Journal of Biological Chemistry, vol. 280, no. 13, pp. 12467–12473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. K. Komma, M. Yamasaki, S. Ohmi, and Y. Homma, “Inhibition of phosphoinositide hydrolysis and cell growth of Swiss 3T3 cells by myristoylated phospholipase C inhibitor peptides,” Journal of Biochemistry, vol. 122, no. 4, pp. 738–742, 1997. View at Google Scholar · View at Scopus
  86. R. S. Sidhu, R. R. Clough, and R. P. Bhullar, “Regulation of phospholipase C-δ1 through direct interactions with the small GTPase Ral and calmodulin,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 21933–21941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. T. H. Lai, Y. F. Lin, F. C. Wu, and Y. H. Tsai, “Follicle-stimulating hormone-induced Gαh/phospholipase C-δ1 signaling mediating a noncapacitative Ca2+ influx through T-type Ca+2 channels in rat sertoli cells,” Endocrinology, vol. 149, no. 3, pp. 1031–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. T. T. Ching, H. P. Lin, C. C. Yang, M. Oliveira, P. J. Lu, and C. S. Chen, “Specific binding of the C-terminal Src homology 2 domain of the p85α subunit of phosphoinositide 3-kinase to phosphatidylinositol 3,4,5-trisphosphate: localization and engineering of the phosphoinositide-binding motif,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43932–43938, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Krotova, H. Hu, S. L. Xia et al., “Peptides modified by myristoylation activate eNOS in endothelial cells through Akt phosphorylation,” British Journal of Pharmacology, vol. 148, no. 5, pp. 732–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. N. H. Lee, N. S. M. Geoghagen, E. Cheng, R. T. Cline, and C. M. Fraser, “Alanine scanning mutagenesis of conserved arginine/lysine-arginine/lysine-XX-arginine/lysine G protein-activating motifs on m1 muscarinic acetylcholine receptors,” Molecular Pharmacology, vol. 50, no. 1, pp. 140–148, 1996. View at Google Scholar · View at Scopus
  91. A. O. Shpakov, “Involvement of charged amino acid residues of cytoplasmic loops of serpentine type receptors in the process of hormone signal transduction,” Zhurnal Evoliutsionnoi Biokhimii i Fiziologii, vol. 39, no. 3, pp. 205–217, 2003. View at Google Scholar · View at Scopus
  92. B. R. Conklin, Z. Farfel, K. D. Lustig, D. Julius, and H. R. Bourne, “Substitution of three amino acids switches receptor specificity of Gqα to that of Giα,” Nature, vol. 363, no. 6426, pp. 274–276, 1993. View at Publisher · View at Google Scholar · View at Scopus
  93. D. G. Lambright, J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler, “The 2.0 A crystal structure of a heterotrimeric G protein,” Nature, vol. 379, no. 6563, pp. 311–319, 1996. View at Google Scholar · View at Scopus
  94. J. E. Slessareva, H. Ma, K. M. Depree et al., “Closely related G-protein-coupled receptors use multiple and distinct domains on G-protein α subunits for selective coupling,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 50530–50536, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Bae, T. M. Cabrera-Vera, K. M. Depree, S. G. Graber, and H. E. Hamm, “Two amino acids within the helix of Gαi1 mediate coupling with 5- hydroxytryptamine1B receptors,” Journal of Biological Chemistry, vol. 274, no. 21, pp. 14963–14971, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Muramatsu and M. Suwa, “Statistical analysis and prediction of functional residues effective for GPCR-G-protein coupling selectivity,” Protein Engineering, Design and Selection, vol. 19, no. 6, pp. 277–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Covic, A. L. Gresser, J. Talavera, S. Swift, and A. Kuliopulos, “Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 643–648, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Covic, M. Misra, J. Badar, C. Singh, and A. Kuliopulos, “Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation,” Nature Medicine, vol. 8, no. 10, pp. 1161–1165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Light, L. Tsirulnikov, H. Reuveni, T. Yarnitzky, and S. A. Ben-Sasson, “Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3),” Blood, vol. 102, no. 6, pp. 2099–2107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. N. C. Kaneider, A. Agarwal, A. J. Leger, and A. Kuliopulos, “Reversing systemic inflammatory response syndrome with chemokine receptor pepducins,” Nature Medicine, vol. 11, no. 6, pp. 661–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Swift, A. J. Leger, J. Talavera, L. Zhang, A. Bohm, and A. Kuliopulos, “Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 4109–4116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. R. J. Edwards, N. Moran, M. Devocelle et al., “Bioinformatic discovery of novel bioactive peptides,” Nature Chemical Biology, vol. 3, no. 2, pp. 108–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Majumdar, T. Tarui, B. Shi, N. Akakura, W. Ruf, and Y. Takada, “Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin α9β1,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37528–37534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Boire, L. Covic, A. Agarwal, S. Jacques, S. Sherifi, and A. Kuliopulos, “PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells,” Cell, vol. 120, no. 3, pp. 303–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. N. C. Kaneider, A. J. Leger, A. Agarwal et al., “‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage,” Nature Immunology, vol. 8, no. 12, pp. 1303–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. A. J. Leger, S. L. Jacques, J. Badar et al., “Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis,” Circulation, vol. 113, no. 9, pp. 1244–1254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. J. R. Remsberg, H. Lou, S. G. Tarasov, M. Dean, and N. I. Tarasova, “Structural analogues of smoothened intracellular loops as potent inhibitors of Hedgehog pathway and cancer cell growth,” Journal of Medicinal Chemistry, vol. 50, no. 18, pp. 4534–4538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Agarwal, L. Covic, L. M. Sevigny et al., “Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer,” Molecular Cancer Therapeutics, vol. 7, no. 9, pp. 2746–2757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. V. Trivedi, A. Boire, B. Tchernychev et al., “Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site,” Cell, vol. 137, no. 2, pp. 332–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. M. D. Hollenberg, M. Saifeddine, S. Sandhu, S. Houle, and N. Vergnolle, “Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo,” British Journal of Pharmacology, vol. 143, no. 4, pp. 443–454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. S. H. Slofstra, M. F. Bijlsma, A. P. Groot et al., “Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation,” Blood, vol. 110, no. 9, pp. 3176–3182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Kubo, T. Ishiki, I. Doe et al., “Distinct activity of peptide mimetic intracellular ligands (pepducins) for proteinase-activated receptor-1 in multiple cells/tissues,” Annals of the New York Academy of Sciences, vol. 1091, pp. 445–459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. C. K. Derian, B. P. Damiano, M. F. Addo et al., “Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 2, pp. 855–861, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. S. S. Smyth, D. S. Woulfe, J. I. Weitz et al., “G-protein-coupled receptors as signaling targets for antiplatelet therapy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, pp. 449–457, 2009. View at Google Scholar
  115. S. J. Wielders, A. Bennaghmouch, C. P. Reutelingsperger, E. M. Bevers, and T. Lindhout, “Anticoagulant and antithrombotic properties of intracellular protease-activated receptor antagonists,” Journal of Thrombosis and Haemostasis, vol. 5, pp. 571–576, 2007. View at Google Scholar
  116. J. Kreuzer, B. Nürnberg, and H. I. Krieger-Brauer, “Ligand-dependent autophosphorylation of the insulin receptor is positively regulated by Gi-proteins,” Biochemical Journal, vol. 380, no. 3, pp. 831–836, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Okamoto, T. Okamoto, Y. Murayama, Y. Hayashi, E. Ogata, and I. Nishimoto, “GTP-binding protein-activator sequences in the insulin receptor,” Federation of the Societies of Biochemistry and Molecular Biology Letters, vol. 334, no. 1, pp. 143–148, 1993. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Jo, W. Radding, G. M. Anantharamaiah, and J. M. McDonald, “An insulin receptor peptide (1135–1156) stimulates guanosine 5'-[γ-thio]triphosphate binding to the 67 kDa G-protein associated with the insulin receptor,” Biochemical Journal, vol. 294, no. 1, pp. 19–24, 1993. View at Google Scholar · View at Scopus
  119. S. A. Plesneva, A. O. Shpakov, L. A. Kuznetsova, and M. N. Pertseva, “A dual role of protein kinase C in insulin signal transduction via adenylyl cyclase signaling system in muscle tissues of vertebrates and invertebrates,” Biochemical Pharmacology, vol. 61, no. 10, pp. 1277–1291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. A. S. Liotta, H. K. Kole, H. M. Fales, J. Roth, and M. Bernier, “A synthetic tris-sulfotyrosyl dodecapeptide analogue of the insulin receptor 1146-kinase domain inhibits tyrosine dephosphorylation of the insulin receptor in situ,” Journal of Biological Chemistry, vol. 269, no. 37, pp. 22996–23001, 1994. View at Google Scholar · View at Scopus
  121. M. Bernier, H. K. Kole, C. Montrose-Rafizadeh, and S. Kole, “Discrete region of the insulin receptor carboxyl terminus plays key role in insulin action,” Journal of Cellular Biochemistry, vol. 78, no. 1, pp. 160–169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Kaliman, V. Baron, F. Alengrin et al., “The insulin receptor C-terminus is involved in regulation of the receptor kinase activity,” Biochemistry, vol. 32, pp. 9539–9544, 1993. View at Google Scholar
  123. V. Baron, P. Kaliman, F. Alengrin, and E. Van Obberghen, “Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity,” European Journal of Biochemistry, vol. 229, no. 1, pp. 27–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Gual, V. Baron, F. Alengrin, I. Mothe, and E. Van Obberghen, “Insulin receptor-induced phosphorylation of cellular and synthetic substrates is regulated by the receptor β-subunit C-terminus,” Endocrinology, vol. 137, no. 8, pp. 3416–3423, 1996. View at Publisher · View at Google Scholar · View at Scopus
  125. C. S. Lee, K. L. Kim, J. H. Jang, Y. S. Choi, P. G. Suh, and S. H. Ryu, “The roles of phospholipase D in EGFR signaling,” Biochimica et Biophysica Acta, vol. 1791, pp. 862–868, 2009. View at Google Scholar
  126. D. N. Dhanasekaran, “Transducing the signals: a G protein takes a new identity,” Science's: Signal Transduction Knowledge Environment, vol. 2006, no. 347, p. pe31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Cao, X. Huang, Y. Han et al., “Gαi1 and Gαi3 are required for epidermal growth factor-mediated activation of the Akt-mTORC1 pathway,” Science Signaling, vol. 2, no. 68, p. ra17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. W. X. Schulze and M. Mann, “A novel proteomic screen for peptide-protein interactions,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10756–10764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. W. X. Schulze, L. Deng, and M. Mann, “Phosphotyrosine interactome of the ErbB-receptor kinase family,” Molecular Systems Biology, vol. 1, p. 2005.0008, 2005. View at Google Scholar
  130. R. Mouawad, Y. Li, and M. B. Anand-Srivastava, “Atrial natriuretic peptide-C receptor-induced attenuation of adenylyl cyclase signaling activates phosphatidylinositol turnover in A10 vascular smooth muscle cells,” Molecular Pharmacology, vol. 65, no. 4, pp. 917–924, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. M. B. Anand-Srivastava, P. D. Sehl, and D. G. Lowe, “Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein,” Journal of Biological Chemistry, vol. 271, no. 32, pp. 19324–19329, 1996. View at Publisher · View at Google Scholar · View at Scopus
  132. K. S. Murthy and G. M. Makhlouf, “Identification of the G protein-activating domain of the natriuretic peptide clearance receptor (NPR-C),” Journal of Biological Chemistry, vol. 274, no. 25, pp. 17587–17592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. T. Okamoto, T. Katada, Y. Murayama, M. Ui, E. Ogata, and I. Nishimoto, “A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor,” Cell, vol. 62, no. 4, pp. 709–717, 1990. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Offermanns, “G-proteins as transducers in transmembrane signalling,” Progress in Biophysics and Molecular Biology, vol. 83, no. 2, pp. 101–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. N. Van Eps, L. L. Anderson, O. G. Kisselev, T. J. Baranski, W. L. Hubbell, and G. R. Marshall, “Electron paramagnetic resonance studies of functionally active, nitroxide spin-labeled peptide analogues of the C-terminus of a G-protein α subunit,” Biochemistry, vol. 49, no. 32, pp. 6877–6886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. K. P. Hofmann, “Signalling states of photoactivated rhodopsin,” Novartis Foundation Symposium, vol. 224, pp. 158–175, 1999. View at Google Scholar · View at Scopus
  137. S. Acharya, Y. Saad, and S. S. Karnik, “Transducin-α C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin,” Journal of Biological Chemistry, vol. 272, no. 10, pp. 6519–6524, 1997. View at Publisher · View at Google Scholar · View at Scopus
  138. O. G. Kisselev, J. Kao, J. W. Ponder, Y. C. Fann, N. Gautam, and G. R. Marshall, “Light-activated rhodopsin induces structural binding motif in G protein α subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4270–4275, 1998. View at Publisher · View at Google Scholar · View at Scopus
  139. B. W. Koenig, G. Kontaxis, D. C. Mitchell, J. M. Louis, B. J. Litman, and A. Bax, “Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings,” Journal of Molecular Biology, vol. 322, no. 2, pp. 441–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Fahmy, “Binding of transducin and transducin-derived peptides to rhodopsin studies by attenuated total reflection-Fourier transform infrared difference spectroscopy,” Biophysical Journal, vol. 75, no. 3, pp. 1306–1318, 1998. View at Google Scholar · View at Scopus
  141. L. Aris, A. Gilchrist, S. Rens-Domiano et al., “Structural requirements for the stabilization of metarhodopsin II by the C terminus of the α subunit of transducin,” Journal of Biological Chemistry, vol. 276, no. 4, pp. 2333–2339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. E. L. Martin, S. Rens-Domiano, P. J. Schatz, and H. E. Hamm, “Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library,” Journal of Biological Chemistry, vol. 271, no. 1, pp. 361–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  143. M. M. Rasenick, M. Watanabe, M. B. Lazarevic, S. Hatta, and H. E. Hamm, “Synthetic peptides as probes for G protein function. Carboxyl-terminal Gαs peptides mimic G2 and evoke high affinity agonist binding to β-adrenergic receptors,” Journal of Biological Chemistry, vol. 269, no. 34, pp. 21519–21525, 1994. View at Google Scholar · View at Scopus
  144. J. Novotny, B. Gustafson, and L. A. Ransnas, “Inhibition of β-adrenergic receptor-mediated signals by a synthetic peptide derived from the α subunit of the stimulatory G-protein,” Biochemical and Biophysical Research Communications, vol. 219, pp. 619–624, 1996. View at Google Scholar
  145. M. Chang, L. Zhang, J. P. Tam, and E. Sanders-Bush, “Dissecting G protein-coupled receptor signaling pathways with membrane-permeable blocking peptides. Endogenous 5-HT2C receptors in choroid plexus epithelial cells,” Journal of Biological Chemistry, vol. 275, no. 10, pp. 7021–7029, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. D. S. Feldman, A. M. Zamah, K. L. Pierce et al., “Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Gαs carboxyl terminus,” Journal of Biological Chemistry, vol. 277, no. 32, pp. 28631–28640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Grieco, S. Albrizio, A. M. D'Ursi et al., “A structure-activity relationship study on position-2 of the Gαs C-terminal peptide able to inhibit Gs activation by A2A adenosine receptor,” European Journal of Medicinal Chemistry, vol. 38, no. 1, pp. 13–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. A. O. Shpakov, I. A. Gur’ianov, L. A. Kuznetsova et al., “The using of C-terminal peptides of G protein α-subunits for the study of their functional coupling with receptors of biogenic amines in rat and mollusk tissues,” Journal of Membrane Biology, vol. 21, pp. 441–450, 2004 (Russian). View at Google Scholar
  149. A. O. Shpakov, V. I. Korolkov, S. A. Plesneva, L. A. Kuznetsova, and M. N. Pertseva, “Effects of the C-terminal peptide of the αs subunit of the G protein on the regulation of adenylyl cyclase and protein kinase A activities by biogenic amines and glucagon in mollusk and rat muscles,” Neuroscience and Behavioral Physiology, vol. 35, pp. 177–186, 2005. View at Google Scholar
  150. A. O. Shpakov, V. N. Shipilov, and V. M. Bondareva, “Sensitivity of adenylyl cyclase signaling system of the mollusk A. cygnea ganglions to serotonin and adrenergic agonists,” Annals of the New York Academy of Sciences, vol. 1040, pp. 466–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. A. M. D'Ursi, L. Giusti, S. Albrizio et al., “A membrane-permeable peptide containing the last 21 residues of the Gαs carboxyl terminus inhibits Gs-coupled receptor signaling in intact cells: correlations between peptide structure and biological activity,” Molecular Pharmacology, vol. 69, no. 3, pp. 727–736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. R. K. Sunahara, J. J. G. Tesmer, A. G. Gilman, and S. R. Sprang, “Crystal structure of the adenylyl cyclase activator Gsα,” Science, vol. 278, no. 5345, pp. 1943–1947, 1997. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Albrizio, A. D'Ursi, C. Fattorusso et al., “Conformational studies on a synthetic C-terminal fragment of the α subunit of Gs proteins,” Biopolymers, vol. 54, no. 3, pp. 186–194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Gilchrist, M. Bünemann, A. Li, M. M. Hosey, and H. E. Hamm, “A dominant-negative strategy for studying roles of G proteins in vivo,” Journal of Biological Chemistry, vol. 274, no. 10, pp. 6610–6616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Gilchrist, J. F. Vanhauwe, A. Li, T. O. Thomas, T. Voyno-Yasenetskaya, and H. E. Hamm, “Gα minigenes expressing C-terminal peptides serves as specific inhibitors of thrombin-mediated endothelial activation,” Journal of Biological Chemistry, vol. 276, no. 28, pp. 25672–25679, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. J. F. Vanhauwe, T. O. Thomas, R. D. Minshall et al., “Thrombin receptors activate Go proteins in endothelial cells to regulate intracellular calcium and cell shape changes,” Journal of Biological Chemistry, vol. 277, no. 37, pp. 34143–34149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Chillar, J. Wu, V. Cervantes, and K. H. Ruan, “Structural and functional analysis of the C-terminus of Gαq in complex with the human thromboxane A2 receptor provides evidence of constitutive activity,” Biochemistry, vol. 49, no. 30, pp. 6365–6374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. A. O. Shpakov, I. A. Gur'ianov, E. V. Avdeeva, V. I. Vorob'ev, and G. P. Vlasov, “Molecular mechanisms of action of dendrons, containing 48–60 sequence of HIV-1 TAT-protein, on the functional activity of the adenylyl cyclase signaling systems,” Tsitologiia, vol. 46, no. 11, pp. 1011–1022, 2004 (Russian). View at Google Scholar · View at Scopus
  159. A. O. Shpakov, I. A. Gur'ianov, G. P. Vlasov, and M. N. Pertseva, “The molecular mechanisms of the interaction of polycationic peptides with the serpentine type receptors and the heterotrimeric G proteins in rat tissues,” Journal of Evolutionary Biochemistry and Physiology, vol. 42, pp. 321–327, 2006. View at Google Scholar
  160. A. O. Shpakov, I. A. Gur'yanov, N. V. Bayanova, and G. P. Vlasov, “Receptor of the serpentine type and heterotrimeric G protein as targets of action of polylysine dendrimers,” Cell and Tissue Biology, vol. 3, no. 1, pp. 14–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. G. Grishina and C. H. Berlot, “Identification of common and distinct residues involved in the interaction of αi2 and αs with adenylyl cyclase,” Journal of Biological Chemistry, vol. 272, no. 33, pp. 20619–20626, 1997. View at Publisher · View at Google Scholar · View at Scopus
  162. M. J. Rebecchi and S. N. Pentyala, “Structure, function, and control of phosphoinositide-specific phospholipase C,” Physiological Reviews, vol. 80, no. 4, pp. 1291–1335, 2000. View at Google Scholar · View at Scopus
  163. I. Litosch, “Novel mechanisms for feedback regulation of phospholipase C-β activity,” International Union of Biochemistry and Molecular Biology Life, vol. 54, no. 5, pp. 253–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. S. A. Akhter, L. M. Luttrell, H. A. Rockman, G. Iaccarino, R. J. Lefkowitz, and W. J. Koch, “Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy,” Science, vol. 280, no. 5363, pp. 574–577, 1998. View at Publisher · View at Google Scholar · View at Scopus
  165. N. Wettschureck, H. Rütten, A. Zywietz et al., “Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes,” Nature Medicine, vol. 7, no. 11, pp. 1236–1240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  166. B. Sankaran, J. Osterhout, D. Wu, and A. V. Smrcka, “Identification of a structural element in phospholipase C β2 that interacts with G protein βγ,” Journal of Biological Chemistry, vol. 273, no. 12, pp. 7148–7154, 1998. View at Publisher · View at Google Scholar · View at Scopus
  167. Y. F. Lin, M. J. Tseng, H. L. Hsu, Y. W. Wu, Y. H. Lee, and Y. H. Tsai, “A novel follicle-stimulating hormone-induced Gαh/phospholipase C-δ1 signaling pathway mediating rat Sertoli cell Ca2+-influx,” Molecular Endocrinology, vol. 20, no. 10, pp. 2514–2527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. R. L. Patterson, D. B. van Rossum, N. Nikolaidis, D. L. Gill, and S. H. Snyder, “Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling,” Trends in Biochemical Sciences, vol. 30, no. 12, pp. 688–697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. Y. Homma and T. Takenawa, “Inhibitory effect of src homology (SH) 2/SH3 fragments of phospholipase C- γ on the catalytic activity of phospholipase C isoforms,” Journal of Biological Chemistry, vol. 267, no. 30, pp. 21844–21849, 1992. View at Google Scholar · View at Scopus
  170. Y. Homma, “Suppression of membrane phospholipase C activity by synthetic autoinhibitor peptides,” Methods: Companion to Methods in Enzymology, vol. 5, pp. 229–232, 1993. View at Google Scholar
  171. P. T. Hawkins, K. E. Anderson, K. Davidson, and L. R. Stephens, “Signalling through Class I PI3Ks in mammalian cells,” Biochemical Society Transactions, vol. 34, no. 5, pp. 647–662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. A. C. Newton, “Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions,” Chemical Reviews, vol. 101, no. 8, pp. 2353–2364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Roffey, C. Rosse, M. Linch, A. Hibbert, N. Q. McDonald, and P. J. Parker, “Protein kinase C intervention: the state of play,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 268–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. T. Eichholtz, D. B. A. de Bont, J. de Widt, R. M. J. Liskamp, and H. L. Ploegh, “A myristoylated pseudosubstrate peptide, a novel protein kinase C inhibitor,” Journal of Biological Chemistry, vol. 268, no. 3, pp. 1982–1986, 1993. View at Google Scholar · View at Scopus
  175. S. J. Persaud, “Protein kinase C signalling in pancreatic β-cells: cellular and molecular approaches,” Digestion, vol. 58, no. 2, pp. 86–92, 1997. View at Google Scholar · View at Scopus
  176. M. H. Disatnik, S. C. Boutet, C. H. Lee, D. Mochly-Rosen, and T. A. Rando, “Sequential activation of individual PKC isozymes in integrin-mediated muscle cell spreading: a role for MARCKS in an integrin signaling pathway,” Journal of Cell Science, vol. 115, no. 10, pp. 2151–2163, 2002. View at Google Scholar · View at Scopus
  177. A. Harishchandran and R. Nagaraj, “Interaction of a pseudosubstrate peptide of protein kinase C and its myristoylated form with lipid vesicles: only the myristoylated form translocates into the lipid bilayer,” Biochimica et Biophysica Acta, vol. 1713, pp. 73–82, 2005. View at Google Scholar
  178. I. Spyridopoulos, C. Luedemann, D. Chen et al., “Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, pp. 901–906, 2002. View at Google Scholar
  179. A. Shpakov, M. Pertseva, L. Kuznetsova, and S. Plesneva, “A novel, adenylate cyclase, signaling mechanism of relaxin H2 action,” Annals of the New York Academy of Sciences, vol. 1041, pp. 305–307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. F. M. Cunha, D. A. Berti, Z. S. Ferreira, C. F. Klitzke, R. P. Markus, and E. S. Ferro, “Intracellular peptides as natural regulators of cell signaling,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24448–24459, 2008. View at Publisher · View at Google Scholar · View at Scopus