Table of Contents
Journal of Amino Acids
Volume 2011 (2011), Article ID 836569, 10 pages
http://dx.doi.org/10.4061/2011/836569
Review Article

NOP Receptor Ligands as Potential Agents for Inflammatory and Autoimmune Diseases

1Laboratório de Farmacologia Comportamental, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil
2Laboratório de Biologia Celular e Imunologia, Programa de Pós-Graduação em Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170 Porto Alegre, RS, Brazil

Received 8 February 2011; Revised 31 August 2011; Accepted 24 September 2011

Academic Editor: Andreas Wyttenbach

Copyright © 2011 Elaine C. Gavioli and Pedro R. T. Romão. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Meunier, C. Mollereau, L. Toll et al., “Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor,” Nature, vol. 377, no. 6549, pp. 532–535, 1995. View at Google Scholar · View at Scopus
  2. R. K. Reinscheid, H. P. Nothacker, A. Bourson et al., “Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor,” Science, vol. 270, no. 5237, pp. 792–794, 1995. View at Google Scholar · View at Scopus
  3. B. M. Cox, C. Chavkin, M. J. Christie et al., “Opioid receptors,” in The IUPHAR Compendium of Receptor Characterization and Classification, D. Girdlestone, Ed., pp. 321–333, IUPHAR Media, London, UK, 2nd edition, 2000. View at Google Scholar
  4. D. G. Lambert, “The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential,” Nature Reviews Drug Discovery, vol. 7, no. 8, pp. 694–710, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. Mollereau and L. Mouledous, “Tissue distribution of the opioid receptor-like (ORL1) receptor,” Peptides, vol. 21, no. 7, pp. 907–917, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Boom, C. Mollereau, J. C. Meunier et al., “Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system,” Neuroscience, vol. 91, no. 3, pp. 991–1007, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. C. R. Neal Jr., A. Mansour, R. Reinscheid, H. P. Nothacker, O. Civelli, and S. J. Watson, “Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat,” Journal of Comparative Neurology, vol. 406, no. 4, pp. 503–547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. B. Wang, P. S. Johnson, and Y. Imai, “cDNA cloning of an orphan opiate receptor gene family member and its splice variant,” FEBS Letters, vol. 348, no. 1, pp. 75–79, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Makman and B. Dvorkin, “Presence of nociceptin (orphanin FQ) receptors in rat retina: comparison with receptors in striatum,” European Journal of Pharmacology, vol. 338, no. 2, pp. 171–176, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dumont and S. Lemaire, “Characterization of the high affinity [3H]nociceptin binding site in membrane preparations of rat heart: correlations with the non-opioid dynorphin binding site,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 12, pp. 2751–2760, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. A. Osinski, M. S. Pampusch, M. P. Murtaugh, and D. R. Brown, “Cloning, expression and functional role of a nociceptin/orphanin FQ receptor in the porcine gastrointestinal tract,” European Journal of Pharmacology, vol. 365, no. 2-3, pp. 281–289, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. W. P. Halford, B. M. Gebhardt, and D. J. J. Carr, “Functional role and sequence analysis of a lymphocyte orphan opioid receptor,” Journal of Neuroimmunology, vol. 59, no. 1-2, pp. 91–101, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Peluso, K. S. Laforge, H. W. Matthes, M. J. Kreek, B. L. Kieffer, and C. Gavériaux-Ruff, “Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells,” Journal of Neuroimmunology, vol. 81, no. 1-2, pp. 184–192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Wick, S. R. Minnerath, S. Roy, S. Ramakrishnan, and H. H. Loh, “Expression of alternate forms of brain opioid 'orphan' receptor mRNA in activated human peripheral blood lymphocytes and lymphocytic cell lines,” Molecular Brain Research, vol. 32, no. 2, pp. 342–347, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. Pomonis, C. J. Billington, and A. S. Levine, “Orphanin FQ, agonist of orphan opioid receptor ORL1, stimulates feeding in rats,” NeuroReport, vol. 8, no. 1, pp. 369–371, 1997. View at Google Scholar · View at Scopus
  16. J. Sandin, S. O. Ögren, and L. Terenius, “Nociceptin/orphanin FQ modulates spatial learning via ORL-1 receptors in the dorsal hippocampus of the rat,” Brain Research, vol. 997, no. 2, pp. 222–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. N. P. Murphy, Y. Lee, and N. T. Maidment, “Orphanin FQ/nociceptin blocks acquisition of morphine place preference,” Brain Research, vol. 832, no. 1-2, pp. 168–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Ciccocioppo, I. Panocka, C. Polidori, D. Regoli, and M. Massi, “Effect of nociceptin on alcohol intake in alcohol-preferring rats,” Psychopharmacology, vol. 141, no. 2, pp. 220–224, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Jenck, J. L. Moreau, J. R. Martin et al., “Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14854–14858, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Giuliani, M. Tramontana, A. Lecci, and C. A. Maggi, “Effect of nociceptin on heart rate and blood pressure in anaesthetized rats,” European Journal of Pharmacology, vol. 333, no. 2-3, pp. 177–179, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Kapusta, S. F. Sezen, J. K. Chang, H. Lippton, and V. A. Kenigs, “Diuretic and antinatriuretic responses produced by the endogenous opioid-like peptide, nociceptin (orphanin FQ),” Life Sciences, vol. 60, no. 1, pp. L-15–L-21, 1996. View at Google Scholar · View at Scopus
  22. A. Fischer, W. G. Forssmann, and B. J. Undem, “Nociceptin-induced inhibition of tachykinergic neurotransmission in guinea pig bronchus,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 2, pp. 902–907, 1998. View at Google Scholar · View at Scopus
  23. R. L. Mcleod, L. E. Parra, J. C. Mutter et al., “Nociceptin inhibits cough in the guinea-pig by activation of ORL1 receptors,” British Journal of Pharmacology, vol. 132, no. 6, pp. 1175–1178, 2001. View at Google Scholar · View at Scopus
  24. S. Giuliani, A. Lecci, M. Tramontana, and C. A. Maggi, “The inhibitory effect of nociceptin on the micturition reflex in anaesthetized rats,” British Journal of Pharmacology, vol. 124, no. 7, pp. 1566–1572, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Delgado, D. Pozo, and D. Ganea, “The significance of vasoactive intestinal peptide in immunomodulation,” Pharmacological Reviews, vol. 56, no. 2, pp. 249–290, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. Gonzalez-Rey, A. Chorny, and M. Delgado, “Regulation of immune tolerance by anti-inflammatory neuropeptides,” Nature Reviews Immunology, vol. 7, no. 1, pp. 52–63, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. E. Gonzalez-Rey, D. Ganea, and M. Delgado, “Neuropeptides: keeping the balance between pathogen immunity and immune tolerance,” Current Opinion in Pharmacology, vol. 10, no. 4, pp. 473–481, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. S. Pampusch, M. A. Osinski, J. R. Serie, M. P. Murtaugh, and D. R. Brown, “Opioid receptor gene expression in the porcine immune system,” Advances in Experimental Medicine and Biology, vol. 437, pp. 59–65, 1998. View at Google Scholar · View at Scopus
  29. M. S. Pampusch, J. R. Serie, M. A. Osinski, V. S. Seybold, M. P. Murtaugh, and D. R. Brown, “Expression of nociceptin/OFQ receptor and prepro-nociceptin/OFQ in lymphoid tissues,” Peptides, vol. 21, no. 12, pp. 1865–1870, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Arjomand, S. Cole, and C. J. Evans, “Novel orphanin FQ/nociceptin transcripts are expressed in human immune cells,” Journal of Neuroimmunology, vol. 130, no. 1-2, pp. 100–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. C. N. Serhan, I. M. Fierro, N. Chiang, and M. Pouliot, “Cutting edge: nociceptin stimulates neutrophil chemotaxis and recruitment: Inhibition by aspirin-triggered-15-epi-lipoxin A4,” Journal of Immunology, vol. 166, no. 6, pp. 3650–3654, 2001. View at Google Scholar · View at Scopus
  32. M. É. Fiset, C. Gilbert, P. E. Poubelle, and M. Pouliot, “Human neutrophils as a source of nociceptin: a novel link between pain and inflammation,” Biochemistry, vol. 42, no. 35, pp. 10498–10505, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. B. Buzas, J. Rosenberger, K. W. Kim, and B. M. Cox, “Inflammatory mediators increase the expression of nociceptin/orphanin FQ in rat astrocytes in culture,” GLIA, vol. 39, no. 3, pp. 237–246, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. R. Miller and A. J. Fulford, “Regulation of nociceptin/orphaninFQ secretion by immune cells and functional modulation of interleukin-2,” Peptides, vol. 28, no. 11, pp. 2243–2252, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Trombella, R. Vergura, S. Falzarano, R. Guerrini, G. Calo, and S. Spisani, “Nociceptin/orphanin FQ stimulates human monocyte chemotaxis via NOP receptor activation,” Peptides, vol. 26, no. 8, pp. 1497–1502, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. E. Kaminsky and T. J. Rogers, “Suppression of CCL2/MCP-1 and CCL5/RANTES expression by nociceptin in human monocytes,” Journal of NeuroImmune Pharmacology, vol. 3, no. 2, pp. 75–82, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. O. M. Zack Howard, J. J. Oppenheim, and J. M. Wang, “Chemokines as molecular targets for therapeutic intervention,” Journal of Clinical Immunology, vol. 19, no. 5, pp. 280–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. D. D. Taub and J. J. Oppenheim, “Chemokines, inflammation and the immune system,” Therapeutic Immunology, vol. 1, no. 4, pp. 229–246, 1994. View at Google Scholar · View at Scopus
  39. M. J. Finley, C. M. Happel, D. E. Kaminsky, and T. J. Rogers, “Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression,” Cellular Immunology, vol. 252, no. 1-2, pp. 146–154, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. Peluso, C. Gavériaux-Ruff, H. W. D. Matthes, D. Filliol, and B. L. Kieffer, “Orphanin FQ/nociceptin binds to functionally coupled ORL1 receptors on human immune cell lines and alters peripheral blood mononuclear cell proliferation,” Brain Research Bulletin, vol. 54, no. 6, pp. 655–660, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. P. S. Waits, W. M. Purcell, A. J. Fulford, and J. D. McLeod, “Nociceptin/orphanin FQ modulates human T cell function in vitro,” Journal of Neuroimmunology, vol. 149, no. 1-2, pp. 110–120, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. K. H. Easten, R. A. Harry, W. M. Purcell, and J. D. McLeod, “Nociceptin-induced modulation of human T cell function,” Peptides, vol. 30, no. 5, pp. 926–934, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. B. Anton, P. Leff, J. J. Meissler et al., “Nociceptin/Orphanin FQ suppresses adaptive immune responses in vivo and at picomolar levels in vitro,” Journal of Neuroimmune Pharmacology, vol. 5, no. 1, pp. 143–154, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. L. N. Du, G. C. Wu, and X. D. Cao, “Modulation of orphanin FQ or electroacupuncture (EA) on immune function of traumatic rats,” Acupuncture and Electro-Therapeutics Research, vol. 23, no. 1, pp. 1–8, 1998. View at Google Scholar · View at Scopus
  45. Y. Goldfarb, R. K. Reinscheid, and A. W. Kusnecov, “Orphanin FQ/nociceptin interactions with the immune system in vivo: gene expression changes in lymphoid organs and regulation of the cytokine response to staphylococcal enterotoxin A,” Journal of Neuroimmunology, vol. 176, no. 1-2, pp. 76–85, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. H. Zhao, G. C. Wu, and X. D. Cao, “Immunomodulatory activity of orphanin FQ/nociceptin on traumatic rats,” Acta Pharmacologica Sinica, vol. 23, no. 4, pp. 343–348, 2002. View at Google Scholar · View at Scopus
  47. H. Zhao, H. W. Huang, G. C. Wu, and X. D. Cao, “Effect of orphanin FQ on interleukin-1β mRNA transcripts in the rat CNS,” Neuroscience, vol. 114, no. 4, pp. 1019–1031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. B. M. Tavares-Murta, M. Zaparoli, R. B. Ferreira et al., “Failure of neutrophil chemotactic function in septic patients,” Critical Care Medicine, vol. 30, no. 5, pp. 1056–1061, 2002. View at Google Scholar · View at Scopus
  49. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. J. C. Alves-Filho, A. De Freitas, M. Russo, and F. Q. Cunha, “Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis,” Critical Care Medicine, vol. 34, no. 2, pp. 461–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Alves-Filho, C. Benjamim, B. M. Tavares-Murta, and F. Q. Cunha, “Failure of neutrophil migration toward infectious focus in severe sepsis: a critical event for the outcome of this syndrome,” Memorias do Instituto Oswaldo Cruz, vol. 100, no. 1, pp. 223–226, 2005. View at Google Scholar · View at Scopus
  52. H. K. De Jong, T. Van Der Poll, and W. J. Wiersinga, “The systemic pro-inflammatory response in sepsis,” Journal of Innate Immunity, vol. 2, no. 5, pp. 422–430, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. C. Reddy and T. J. Standiford, “Effects of sepsis on neutrophil chemotaxis,” Current Opinion in Hematology, vol. 17, no. 1, pp. 18–24, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. C. Nascimento, J. C. Alves-Filho, F. Sônego et al., “Role of regulatory T cells in long-term immune dysfunction associated with severe sepsis,” Critical Care Medicine, vol. 38, no. 8, pp. 1718–1725, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. D. Carvalho, F. Petronilho, F. Vuolo et al., “The nociceptin/orphanin FQ-NOP receptor antagonist effects on an animal model of sepsis,” Intensive care medicine, vol. 34, no. 12, pp. 2284–2290, 2008. View at Google Scholar · View at Scopus
  56. J. P. Williams, J. P. Thompson, S. P. Young et al., “Nociceptin and urotensin-II concentrations in critically ill patients with sepsis,” British Journal of Anaesthesia, vol. 100, no. 6, pp. 810–814, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Serrano-Gomez, J. P. Thompson, and D. G. Lambert, “Nociceptin/orphanin FQ in inflammation and sepsis,” British journal of anaesthesia, vol. 106, no. 1, pp. 6–12, 2011. View at Google Scholar
  58. U. M. Stamer, M. Book, C. Comos, L. Zhang, F. Nauck, and F. Stüber, “Expression of the nociceptin precursor and nociceptin receptor is modulated in cancer and septic patients,” British Journal of Anaesthesia, vol. 106, no. 4, pp. 566–572, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. S. Kato, Y. Tsuzuki, R. Hokari et al., “Role of nociceptin/orphanin FQ (Noc/oFQ) in murine experimental colitis,” Journal of Neuroimmunology, vol. 161, no. 1-2, pp. 21–28, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. P. L. McGeer and E. G. McGeer, “Inflammation and neurodegeneration in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 10, no. 1, pp. S3–S7, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. G. Tansey, M. K. McCoy, and T. C. Frank-Cannon, “Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention,” Experimental Neurology, vol. 208, no. 1, pp. 1–25, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. J. K. Lee, T. Tran, and M. G. Tansey, “Neuroinflammation in Parkinson's disease,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 419–429, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. R. M. Ransohoff and V. H. Perry, “Microglial physiology: unique stimuli, specialized responses,” Annual Review of Immunology, vol. 27, pp. 119–145, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. D. Blum-Degena, T. Müller, W. Kuhn, M. Gerlach, H. Przuntek, and P. Riederer, “Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients,” Neuroscience Letters, vol. 202, no. 1-2, pp. 17–20, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. R. J. Dobbs, A. Charlett, A. G. Purkiss, S. M. Dobbs, C. Weller, and D. W. Peterson, “Association of circulating TNF-α and IL-6 with ageing and parkinsonism,” Acta Neurologica Scandinavica, vol. 100, no. 1, pp. 34–41, 1999. View at Google Scholar · View at Scopus
  66. K. Hisanaga, M. Asagi, Y. Itoyama, and Y. Iwasaki, “Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease,” Archives of Neurology, vol. 58, no. 10, pp. 1580–1583, 2001. View at Google Scholar · View at Scopus
  67. M. Rentzos, C. Nikolaou, E. Andreadou et al., “Circulating interleukin-15 and RANTES chemokine in Parkinson's disease,” Acta Neurologica Scandinavica, vol. 116, no. 6, pp. 374–379, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” The Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Qian, P. M. Flood, and J. S. Hong, “Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy,” Journal of Neural Transmission, vol. 117, no. 8, pp. 971–979, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. M. Marti, F. Mela, C. Veronesi et al., “Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior,” Journal of Neuroscience, vol. 24, no. 30, pp. 6659–6666, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. M. Marti, F. Mela, M. Fantin et al., “Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson's disease,” Journal of Neuroscience, vol. 25, no. 42, pp. 9591–9601, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. N. P. Visanji, R. M. A. de Bie, T. H. Johnston, A. C. McCreary, J. M. Brotchie, and S. H. Fox, “The nociceptin/orphanin FQ (NOP) receptor antagonist J-113397 enhances the effects of levodopa in the MPTP-lesioned nonhuman primate model of Parkinson's disease,” Movement Disorders, vol. 23, no. 13, pp. 1922–1925, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. R. Viaro, R. Sanchez-Pernaute, M. Marti, C. Trapella, O. Isacson, and M. Morari, “Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism,” Neurobiology of Disease, vol. 30, no. 3, pp. 430–438, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. O. S. Mabrouk, M. Marti, and M. Morari, “Endogenous nociceptin/orphanin FQ (N/OFQ) contributes to haloperidol-induced changes of nigral amino acid transmission and parkinsonism: a combined microdialysis and behavioral study in naïve and nociceptin/orphanin FQ receptor knockout mice,” Neuroscience, vol. 166, no. 1, pp. 40–48, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. M. Volta, O. S. Mabrouk, S. Bido, M. Marti, and M. Morari, “Further evidence for an involvement of nociceptin/orphanin FQ in the pathophysiology of Parkinson's disease: a behavioral and neurochemical study in reserpinized mice,” Journal of Neurochemistry, vol. 115, no. 6, pp. 1543–1555, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. M. Marti, S. Sarubbo, F. Latini et al., “Brain interstitial nociceptin/orphanin FQ levels are elevated in Parkinson's disease,” Movement Disorders, vol. 25, no. 11, pp. 1723–1732, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. C. Acosta and A. Davies, “Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons,” Journal of Neuroscience Research, vol. 86, no. 5, pp. 1077–1086, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. C. Zhang and J. J. McDougall, “Stimulation of sensory neuropeptide release by nociceptin/orphanin FQ leads to hyperaemia in acutely inflamed rat knees,” British Journal of Pharmacology, vol. 148, no. 7, pp. 938–946, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. T. Kimura, K. Kitaichi, K. Hiramatsu et al., “Intradermal application of nociceptin increases vascular permeability in rats: the possible involvement of histamine release from mast cells,” European Journal of Pharmacology, vol. 407, no. 3, pp. 327–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. L. S. Brookes, E. N. Stedman, R. Guerrini, B. K. Lawton, G. Calo, and D. G. Lambert, “Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine,” American Journal of Physiology, vol. 293, no. 5, pp. H2977–H2985, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. T. Andoh, Y. Yageta, H. Takeshima, and Y. Kuraishi, “Intradermal nociceptin elicits itch-associated responces through leukotriene B4 in mice,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 196–201, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. K. Fukuda, T. Shoda, H. Morikawa, S. Kato, and K. Mori, “Activation of mitogen-activated protein kinase by the nociceptin receptor expressed in Chinese hamster ovary cells,” FEBS Letters, vol. 412, no. 2, pp. 290–294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. B. E. Hawes, M. P. Graziano, and D. G. Lambert, “Cellular actions of nociceptin: transduction mechanisms,” Peptides, vol. 21, no. 7, pp. 961–967, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. A. M. F. Liu and Y. H. Wong, “Mu-Opioid receptor-mediated phosphorylation of IκB kinase in human neuroblastoma SH-SY5Y cells,” NeuroSignals, vol. 14, no. 3, pp. 136–142, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. C. L. Donica, V. I. Ramirez, H. O. Awwad, N. T. Zaveri, L. Toll, and K. M. Standifer, “Orphanin FQ/Nociceptin Activates Nuclear Factor Kappa B,” Journal of Neuroimmune Pharmacology, vol. 6, no. 4, pp. 617–625, 2011. View at Publisher · View at Google Scholar · View at PubMed
  86. M. Connor, A. Yeo, and G. Henderson, “The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line,” British Journal of Pharmacology, vol. 118, no. 2, pp. 205–207, 1996. View at Google Scholar · View at Scopus
  87. H. Matthes, E. P. Seward, B. Kieffer, and R. A. North, “Functional selectivity of orphanin FQ for its receptor coexpressed with potassium channel subunits in Xenopus laevis oocytes,” Molecular Pharmacology, vol. 50, no. 3, pp. 447–450, 1996. View at Google Scholar · View at Scopus
  88. J. C. Meunier, “Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor,” European Journal of Pharmacology, vol. 340, no. 1, pp. 1–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. J. S. C. Chan, L. Y. Yung, J. W. M. Lee, Y. L. Wu, G. Pei, and Y. H. Wong, “Pertussis toxin-insensitive signaling of the ORL1 receptor: coupling to G(z) and G16 proteins,” Journal of Neurochemistry, vol. 71, no. 5, pp. 2203–2210, 1998. View at Google Scholar · View at Scopus
  90. D. C. New and Y. H. Wong, “The ORL1 receptor: molecular pharmacology and signalling mechanisms,” NeuroSignals, vol. 11, no. 4, pp. 197–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. L. G. Lou, L. Ma, and G. Pei, “Nociceptin/Orphanin FQ activates protein kinase C, and this effect is mediated through phospholipase C/Ca2+ pathway,” Biochemical and Biophysical Research Communications, vol. 240, no. 2, pp. 304–308, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. W. M. Armstead, “Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury,” European Journal of Pharmacology, vol. 529, no. 1–3, pp. 129–135, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. B. E. Hawes, S. Fried, X. Yao, B. Weig, and M. P. Graziano, “Nociceptin (ORL-1) and μ-opioid receptors mediate mitogen-activated protein kinase activation in CHO cells through a G(i)-coupled signaling pathway: Evidence for distinct mechanisms of agonist-mediated desensitization,” Journal of Neurochemistry, vol. 71, no. 3, pp. 1024–1033, 1998. View at Google Scholar · View at Scopus
  94. L. M. Harrison and D. K. Grandy, “Opiate modulating properties of nociceptin/orphanin FQ,” Peptides, vol. 21, no. 1, pp. 151–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. E. H. T. Wu, R. K. H. Lo, and Y. H. Wong, “Regulation of STAT3 activity by G16-coupled receptors,” Biochemical and Biophysical Research Communications, vol. 303, no. 3, pp. 920–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. J. S. Mogil and G. W. Pasternak, “The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family,” Pharmacological Reviews, vol. 53, no. 3, pp. 381–415, 2001. View at Google Scholar
  97. L. F. Chuang, T. K. Chuang Jr., K. F. Killam et al., “Expression of kappa opioid receptors in human and monkey lymphocytes,” Biochemical and Biophysical Research Communications, vol. 209, no. 3, pp. 1003–1010, 1995. View at Publisher · View at Google Scholar
  98. J. P. Williams, J. P. Thompson, J. McDonald et al., “Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but notμδ, or κ opioid receptors,” Anesthesia and Analgesia, vol. 105, no. 4, pp. 998–1005, 2007. View at Publisher · View at Google Scholar · View at PubMed
  99. N. Sitte, M. Busch, S. A. Mousa et al., “Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo,” Journal of Neuroimmunology, vol. 183, no. 1-2, pp. 133–145, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. P. D. Lyons and J. E. Blalock, “Pro-opiomelanocortin gene expression and protein processing in rat mononuclear leukocytes,” Journal of Neuroimmunology, vol. 78, no. 1-2, pp. 47–56, 1997. View at Publisher · View at Google Scholar
  101. M. Verma-Gandhu, E. F. Verdu, D. Cohen-Lyons, and S. M. Collins, “Lymphocyte-mediated regulation of β-endorphin in the myenteric plexus,” American Journal of Physiology, vol. 292, no. 1, pp. G344–G348, 2007. View at Publisher · View at Google Scholar · View at PubMed
  102. D. Labuz, Y. Schmidt, A. Schreiter, H. L. Rittner, S. A. Mousa, and H. Machelska, “Immune cell-derived opioids protect against neuropathic pain in mice,” Journal of Clinical Investigation, vol. 119, no. 2, pp. 278–286, 2009, Erratum in: The Journal of Clinical Investigation, vol. 119, no. 4, pp. 1051, 2009. View at Publisher · View at Google Scholar · View at PubMed
  103. H. Machelska and C. Stein, “Leukocyte-derived opioid peptides and inhibition of pain,” Journal of Neuroimmune Pharmacology, vol. 1, no. 1, pp. 90–97, 2006. View at Publisher · View at Google Scholar · View at PubMed
  104. C. Börner, R. Stumm, V. Höllt, and J. Kraus, “Comparative analysis of mu-opioid receptor expression in immune and neuronal cells,” Journal of Neuroimmunology, vol. 188, no. 1-2, pp. 56–63, 2007. View at Publisher · View at Google Scholar · View at PubMed
  105. J. Kraus, C. Börner, E. Giannini et al., “Regulation of μ-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43901–43908, 2001. View at Publisher · View at Google Scholar · View at PubMed
  106. J. Wybran, T. Appelboom, J. P. Famaey, and A. Govaerts, “Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes,” Journal of Immunology, vol. 123, no. 3, pp. 1068–1070, 1979. View at Google Scholar
  107. B. M. Sharp, W. F. Keane, and H. J. Suh, “Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages,” Endocrinology, vol. 117, no. 2, pp. 793–795, 1985. View at Google Scholar
  108. H. M. Johnson, E. M. Smith, B. A. Torres, and J. E. Blalock, “Regulation of the in vitro antibody response by neuroendocrine hormones,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 13, pp. 4171–4174, 1982. View at Google Scholar
  109. T. K. Eisenstein and M. E. Hilburger, “Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations,” Journal of Neuroimmunology, vol. 83, no. 1-2, pp. 36–44, 1998. View at Publisher · View at Google Scholar
  110. H. H. Hussey and S. Katz, “Infections resulting from narcotic addiction. Report of 102 cases,” The American Journal of Medicine, vol. 9, no. 2, pp. 186–193, 1950. View at Google Scholar
  111. G. Wei, J. Moss, and C. S. Yuan, “Opioid-induced immunosuppression: is it centrally mediated or peripherally mediated?” Biochemical Pharmacology, vol. 65, no. 11, pp. 1761–1766, 2003. View at Publisher · View at Google Scholar
  112. D. P. Devine, S. J. Watson, and H. Akil, “Nociceptin/orphanin FQ regulates neuroendocrine function of the limbic-hypothalamic-pituitary-adrenal axis,” Neuroscience, vol. 102, no. 3, pp. 541–553, 2001. View at Publisher · View at Google Scholar
  113. M. K. Green, E. V. Barbieri, B. D. Brown, K. W. Chen, and D. P. Devine, “Roles of the bed nucleus of stria terminalis and of the amygdala in N/OFQ-mediated anxiety and HPA axis activation,” Neuropeptides, vol. 41, no. 6, pp. 399–410, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. J. D. Leggett, K. L. Dawe, D. S. Jessop, and A. J. Fulford, “Endogenous nociceptin/orphanin fq system involvement in hypothalamic-pituitary-adrenal axis responses: relevance to models of inflammation,” Journal of Neuroendocrinology, vol. 21, no. 11, pp. 888–897, 2009. View at Publisher · View at Google Scholar · View at PubMed