Table of Contents
Journal of Amino Acids
Volume 2011 (2011), Article ID 912382, 8 pages
http://dx.doi.org/10.4061/2011/912382
Research Article

Simple Preparation of Pacific Cod Trypsin for Enzymatic Peptide Synthesis

1Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
2Laboratory of Marine Products and Food Science, Research Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
3Department of Food Science and Technology, Faculty of Technology and Community Development, Thaksin University, Phattalung Campus, Phattalung 93110, Thailand
4Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Choakhunthaharn Building, Choakhunthaharn Road, Ladkrabang, Bangkok 10520, Thailand
5Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
6Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea

Received 24 February 2011; Revised 19 June 2011; Accepted 16 July 2011

Academic Editor: Nabil Miled

Copyright © 2011 Tomoyoshi Fuchise et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Amiza and R. K. O. Apenten, “Thermal inactivation parameters for alkaline proteinases from North Sea cod (Gadus morhua) and bovine alpha-chymotrypsin,” Journal of the Science of Food and Agriculture, vol. 66, no. 3, pp. 389–391, 1994. View at Google Scholar · View at Scopus
  2. B. Ásgeirsson, J. W. Fox, and J. B. Bjarnason, “Purification and characterization of trypsin from the poikilotherm Gadus morhua,” European Journal of Biochemistry, vol. 180, no. 1, pp. 85–94, 1989. View at Google Scholar · View at Scopus
  3. M. M. Kristjansson, “Purification and characterization of trypsin from the pyloric caeca of rainbow trout (Oncorhynchus mykiss),” Journal of Agricultural Food and Chemistry, vol. 39, no. 10, pp. 1738–1742, 1991. View at Google Scholar
  4. B. K. Simpson and N. F. Haard, “Cold-adapted enzymes from fish,” in Food Biotechnology, D. Knorr, Ed., pp. 495–528, Marcel Dekker, New York, NY, USA, 1987. View at Google Scholar
  5. T. Fuchise, H. Kishimura, H. Sekizaki et al., “Purification and characteristics of trypsins from cold-zone fish, Pacific cod (Gadus macrocephalus) and saffron cod (Eleginus gracilis),” Food Chemistry, vol. 116, no. 3, pp. 611–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Tsuzuki, T. Oka, and K. Morihara, “Coupling between Cbz-Arg-OH and leu-X catalyzed by trypsin and papain,” Journal of Biochemistry, vol. 88, no. 3, pp. 669–675, 1980. View at Google Scholar · View at Scopus
  7. T. Nakatsuka, T. Sasaki, and E. T. Kaiser, “Peptide segment coupling catalyzed by the semisynthetic enzyme thiolsubtilisin,” Journal of the American Chemical Society, vol. 109, no. 12, pp. 3808–3810, 1987. View at Google Scholar · View at Scopus
  8. C. H. Wong, “Enzymatic catalysts in organic synthesis,” Science, vol. 244, no. 4909, pp. 1145–1152, 1989. View at Google Scholar · View at Scopus
  9. V. Schellenberger and H. D. Jakubke, “Protease-catalyzed kinetically controlled peptide synthesis,” Angewandte Chemie, vol. 30, no. 11, pp. 1437–1449, 1991. View at Google Scholar · View at Scopus
  10. I. Gill, R. López-Fandiño, X. Jorba, and E. N. Vulfson, “Biologically active peptides and enzymatic approaches to their production,” Enzyme and Microbial Technology, vol. 18, no. 3, pp. 162–183, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Bordusa, “Proteases in organic synthesis,” Chemical Reviews, vol. 102, no. 12, pp. 4817–4867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Kumar and T. C. Bhalla, “Microbial proteases in peptide synthesis: approaches and applications,” Applied Microbiology and Biotechnology, vol. 68, no. 6, pp. 726–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Itoh, H. Sekizaki, E. Toyota, N. Fujiwara, and K. Tanizawa, “Application of inverse substrates to trypsin-catalyzed peptide synthesis,” Bioorganic Chemistry, vol. 24, no. 1, pp. 59–68, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Itoh, H. Sekizaki, E. Toyota, and K. Tanizawa, “Synthesis and properties of N-(tert-butyloxycarbonyl)peptide p- guanidinophenyl esters as trypsin substrates,” Chemical and Pharmaceutical Bulletin, vol. 43, no. 12, pp. 2082–2087, 1995. View at Google Scholar · View at Scopus
  15. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides,” Chemical and Pharmaceutical Bulletin, vol. 44, no. 8, pp. 1577–1579, 1996. View at Google Scholar · View at Scopus
  16. K. Tanizawa, Y. Kasaba, and Y. Kanaoka, ““Inverse substrates” for trypsin. Efficient enzymatic hydrolysis of certain esters with a cationic center in the leaving group,” Journal of the American Chemical Society, vol. 99, no. 13, pp. 4485–4488, 1977. View at Google Scholar · View at Scopus
  17. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “Trypsin-catalyzed peptide synthesis with various p-guanidinophenyl esters as acyl donors,” Chemical and Pharmaceutical Bulletin, vol. 44, no. 8, pp. 1585–1587, 1996. View at Google Scholar · View at Scopus
  18. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “Enzymatic peptide synthesis with p-guanidinophenyl and p- (guanidinomethyl)phenyl esters as acyl donors,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 5, pp. 846–849, 1998. View at Google Scholar · View at Scopus
  19. H. Sekizaki, E. Toyota, T. Fuchise, S. Zhou, Y. Noguchi, and K. Horita, “Application of several types of substrates to ficin-catalyzed peptide synthesis,” Amino Acids, vol. 34, no. 1, pp. 149–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component,” Amino Acids, vol. 17, no. 3, pp. 285–291, 1999. View at Google Scholar · View at Scopus
  21. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “The structural requirements for an inverse substrate for enzymatic peptide synthesis: position isomers of guanidinonaphthyl esters as the acyl donor component,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 1, pp. 104–110, 1999. View at Google Scholar · View at Scopus
  22. H. Sekizaki, K. Itoh, A. Shibuya, E. Toyota, and K. Tanizawa, “A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 10, pp. 1514–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  24. B. C. W. Hummel, “A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 12, pp. 1393–1399, 1959. View at Google Scholar
  25. K. S. Satvinder and T. H. Maxwell, “Microplate reader-based kinetic determination of α-amylase activity: application to quantitation of secretion from rat parotid acini,” Analytical Biochemistry, vol. 188, no. 1, pp. 187–191, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Chase Jr. and E. Shaw, “p-Nitrophenyl-p-guanidinobenzoate HCl: a new active site titrant for trypsin,” Biochemical and Biophysical Research Communications, vol. 29, no. 4, pp. 508–514, 1967. View at Google Scholar · View at Scopus
  27. B. F. Erlanger, N. Kokowsky, and W. Cohen, “The preparation and properties of two new chromogenic substrates of trypsin,” Archives of Biochemistry and Biophysics, vol. 95, no. 2, pp. 271–278, 1961. View at Google Scholar · View at Scopus
  28. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  29. M. N. Ahsan and S. Watabe, “Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of japanese anchovy, engraulis japonicus,” Journal of Protein Chemistry, vol. 20, no. 1, pp. 49–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. B. K. Simpson, J. P. Smith, V. Yaylayan, and N. F. Haard, “Kinetic and thermodynamic characteristics of a digestive protease from Atlantic cod, Gadus morhua,” Journal of Food Biochemistry, vol. 13, no. 3, pp. 201–213, 1989. View at Google Scholar
  31. E. DeVillez and K. Buschlen, “Survey of a tryptic digestive enzyme in various species of crustacea,” Comparative Biochemistry and Physiology, vol. 21, no. 3, pp. 541–546, 1967. View at Google Scholar · View at Scopus
  32. K. K. Osnes and V. Mohr, “On the purification and characterization of three anionic, serine-type peptide hydrolases from antarctic krill, Euphausia Superba,” Comparative Biochemistry and Physiology B, vol. 82, no. 4, pp. 607–619, 1985. View at Google Scholar · View at Scopus
  33. H. Sekizaki, K. Itoh, E. Toyota, and K. Tanizawa, “Chum salmon trypsin-catalyzed preferential formation of peptides containing D-amino acid,” Amino Acids, vol. 21, no. 2, pp. 175–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente, “Improvement of enzyme activity, stability and selectivity via immobilization techniques,” Enzyme and Microbial Technology, vol. 40, no. 6, pp. 1451–1463, 2007. View at Publisher · View at Google Scholar · View at Scopus