Table of Contents
Journal of Amino Acids
Volume 2012, Article ID 816032, 19 pages
http://dx.doi.org/10.1155/2012/816032
Review Article

Real-Time Analysis of Specific Protein-DNA Interactions with Surface Plasmon Resonance

Department of Chemistry, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany

Received 24 August 2011; Accepted 7 November 2011

Academic Editor: Alice Vrielink

Copyright © 2012 Markus Ritzefeld and Norbert Sewald. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Rohs, X. Jin, S. M. West, R. Joshi, B. Honig, and R. S. Mann, “Origins of specificity in protein-DNA recognition,” Annual Review of Biochemistry, vol. 79, pp. 233–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” in Proceedings of the 2nd International Conference on Sensors, pp. 310–315, October 2003. View at Scopus
  3. M. A. Cooper, “Label-free screening of bio-molecular interactions,” Analytical and Bioanalytical Chemistry, vol. 377, no. 5, pp. 834–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Wollschläger, K. Gaus, A. Körnig et al., “Single-molecule experiments to elucidate the minimal requirement for DNA recognition by transcription factor epitopes,” Small, vol. 5, no. 4, pp. 484–495, 2009. View at Publisher · View at Google Scholar
  5. R. Eckel, S. D. Wilking, A. Becker, N. Sewald, R. Ros, and D. Anselmetti, “Single-molecule experiments in synthetic biology: an approach to the affinity ranking of DNA-binding peptides,” Angewandte Chemie, vol. 44, no. 25, pp. 3921–3924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Xu, K.-W. Liu, K. S. Matthews, and S. L. Biswal, “Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation,” Langmuir, vol. 27, no. 8, pp. 4900–4905, 2011. View at Publisher · View at Google Scholar
  7. C. Crane-Robinson, A. I. Dragan, and C. M. Read, “Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry,” in DNA-Protein Interactions, B. Leblanc and T. Moss, Eds., pp. 625–651, Humana Press, Totowa, NJ, USA, 2009. View at Google Scholar
  8. R. L. Rich and D. G. Myszka, “Survey of the year 2007 commercial optical biosensor literature,” Journal of Molecular Recognition, vol. 21, no. 6, pp. 355–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. GE Healthcare (Biacore), Technology Note 1, Surface plasmon resonance, 2069.
  10. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” Journal of Sensors, vol. 2009, Article ID 979761, 12 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sensors Journal, vol. 7, no. 8, pp. 1118–1129, 2007. View at Publisher · View at Google Scholar
  12. B. Nguyen, F. A. Tanious, and W. D. Wilson, “Biosensor-surface plasmon resonance: Quantitative analysis of small molecule-nucleic acid interactions,” Methods, vol. 42, no. 2, pp. 150–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. M. Davis and W. D. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Analytical Biochemistry, vol. 284, no. 2, pp. 348–353, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Majka and C. Speck, “Analysis of protein-DNA interactions using surface plasmon resonance,” Advances in Biochemical Engineering/Biotechnology, vol. 104, pp. 13–36, 2007. View at Google Scholar · View at Scopus
  15. C. Di Primo and I. Lebars, “Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance,” Analytical Biochemistry, vol. 368, no. 2, pp. 148–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. GE Healthcare (Biacore), Technology Note 23, Label-free interaction analysis in real-time using surface plasmon resonance, 2007.
  17. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Current Opinion in Biotechnology, vol. 17, no. 4, pp. 400–405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Shumaker-Parry and C. T. Campbell, “Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy,” Analytical Chemistry, vol. 76, no. 4, pp. 907–917, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Kodoyianni, “Label-free analysis of biomolecular interactions using SPR imaging,” BioTechniques, vol. 50, no. 1, pp. 32–40, 2011. View at Publisher · View at Google Scholar
  20. S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” Journal of the Chemical Society, no. 21, pp. 1526–1528, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Analytical Biochemistry, vol. 198, no. 2, pp. 268–277, 1991. View at Google Scholar · View at Scopus
  22. D. Peelen and L. M. Smith, “Immobilization of amine-modified oligonucleotides on aldehyde-terminated alkanethiol monolayers on gold,” Langmuir, vol. 21, no. 1, pp. 266–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Peelen, V. Kodoyianni, J. Lee, T. Zheng, M. M. Shortreed, and L. M. Smith, “Specific capture of mammalian cells by cell surface receptor binding to ligand immobilized on gold thin films,” Journal of Proteome Research, vol. 5, no. 7, pp. 1580–1585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Löfås, B. Johnsson, A. Edstrom et al., “Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors,” Biosensors and Bioelectronics, vol. 10, no. 9-10, pp. 813–822, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. GE Healthcare (Biacore), Technology Note 9 Ligand immobilization using thiol-disulphide exchange, 2002.
  26. GE Healthcare, Biacore Sensor Surface Handbook, 2008.
  27. C. Y. Lee, P. C. T. Nguyen, D. W. Grainger, L. J. Gamble, and D. G. Castner, “Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers,” Analytical Chemistry, vol. 79, no. 12, pp. 4390–4400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Smith, M. G. Erickson, A. T. Ulijasz, B. Weisblum, and R. M. Corn, “Surface plasmon resonance imaging of transcription factor proteins: interactions of bacterial response regulators with DNA arrays on gold films,” Langmuir, vol. 19, no. 5, pp. 1486–1492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Helms, I. Van Baal, M. Merkx, and E. W. Meijer, “Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation,” ChemBioChem, vol. 8, no. 15, pp. 1790–1794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Y. Lee, H. E. Canavan, L. J. Gamble, and D. G. Castner, “Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold,” Langmuir, vol. 21, no. 11, pp. 5134–5141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Kufer, H. Dietz, C. Albrecht et al., “Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy,” European Biophysics Journal, vol. 35, no. 1, pp. 72–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Clow, J. D. Fraser, and T. Proft, “Immobilization of proteins to biacore sensor chips using Staphylococcus aureus sortase A,” Biotechnology Letters, vol. 30, no. 9, pp. 1603–1607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Li, H. J. Lee, and R. M. Corn, “Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging,” Nucleic Acids Research, vol. 34, no. 22, pp. 6416–6424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. W. Chung, J. M. Park, R. Bernhardt, and J. C. Pyun, “Immunosensor with a controlled orientation of antibodies by using NeutrAvidin-protein A complex at immunoaffinity layer,” Journal of Biotechnology, vol. 126, no. 3, pp. 325–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Jung, M. L. Jeong, H. Jung, and H. C. Bong, “Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate,” Analytical Chemistry, vol. 79, no. 17, pp. 6534–6541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Morgan and D. M. Taylor, “A surface plasmon resonance immunosensor based on the streptavidin-biotin complex,” Biosensors and Bioelectronics, vol. 7, no. 6, pp. 405–410, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. D. J. O'Shannessy, M. Brigham-Burke, and K. Peck, “Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector,” Analytical Biochemistry, vol. 205, no. 1, pp. 132–136, 1992. View at Google Scholar · View at Scopus
  38. E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: Principles and applications in biotechnology,” Clinical Chemistry, vol. 37, no. 5, pp. 625–636, 1991. View at Google Scholar · View at Scopus
  39. S. Chattopadhaya, F. B. Abu Bakar, and S. Q. Yao, “Use of intein-mediated protein ligation strategies for the fabrication of functional protein arrays,” Methods in Enzymology, vol. 462, pp. 195–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Saviranta, T. Haavisto, P. Rappu, M. Karp, and T. Lövgren, “In vitro enzymatic biotinylation of recombinant Fab fragments through a peptide acceptor tail,” Bioconjugate Chemistry, vol. 9, no. 6, pp. 725–735, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. J. L. Woodhead, H. Figueiredo, and A. D. Malcolm, “Detection of DNA sequences using biotinylated probes,” Methods in Molecular Biology, vol. 4, pp. 425–430, 1988. View at Google Scholar
  42. L. K. Riley, M. E. Marshall, and M. S. Coleman, “A method for biotinylating oligonucleotide probes for use in molecular hybridizations,” DNA, vol. 5, no. 4, pp. 333–337, 1986. View at Google Scholar · View at Scopus
  43. Y. J. Li, L. J. Bi, X. E. Zhang et al., “Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip,” Analytical and Bioanalytical Chemistry, vol. 386, no. 5, pp. 1321–1326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. Pierce, “Instruction for NeutrAvidin biotin-binding protein,” 2010.
  45. D. J. Francis, C. R. Parish, M. McGarry et al., “Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation,” Circulation research, vol. 92, no. 8, pp. e70–e77, 2003. View at Google Scholar · View at Scopus
  46. C. I. Webster, M. A. Cooper, L. C. Packman, D. H. Williams, and J. C. Gray, “Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer,” Nucleic Acids Research, vol. 28, no. 7, pp. 1618–1624, 2000. View at Google Scholar · View at Scopus
  47. M. Fischer, A. P. Leech, and R. E. Hubbard, “Comparative assessment of different histidine-tags for immobilization of protein onto surface plasmon resonance sensorchips,” Analytical Chemistry, vol. 83, no. 5, pp. 1800–1807, 2011. View at Publisher · View at Google Scholar
  48. G. J. Wegner, H. J. Lee, G. Marriott, and R. M. Corn, “Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein—protein and protein—DNA interactions,” Analytical Chemistry, vol. 75, no. 18, pp. 4740–4746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. E. J. Jeong, Y. S. Jeong, K. Park et al., “Directed immobilization of DNA-binding proteins on a cognate DNA-modified chip surface,” Journal of Biotechnology, vol. 135, no. 1, pp. 16–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. G. Myszka, “Improving biosensor analysis,” Journal of Molecular Recognition, vol. 12, no. 5, pp. 279–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. F. E. Ahmed, J. E. Wiley, D. A. Weidner, C. Bonnerup, and H. Mota, “Surface plasmon resonance (SPR) spectrometry as a tool to analyze nucleic acid-protein interactions in crude cellular extracts,” Cancer Genomics and Proteomics, vol. 7, no. 6, pp. 303–310, 2010. View at Google Scholar · View at Scopus
  52. X. Su, S. J. Neo, W. Y. X. Peh, and J. S. Thomsen, “A two-step antibody strategy for surface plasmon resonance spectroscopy detection of protein-DNA interactions in nuclear extracts,” Analytical Biochemistry, vol. 376, no. 1, pp. 137–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Biacore AB, Kinetic and Affinity Analysis with Biacore—Level 1, 2006.
  54. P. O. Markgren, M. T. Lindgren, K. Gertow, R. Karlsson, M. Hämäläinen, and U. H. Danielson, “Determination of interaction kinetic constants for HIV-1 protease inhibitors using optical biosensor technology,” Analytical Biochemistry, vol. 291, no. 2, pp. 207–218, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Nordström, T. Gossas, M. Hämäläinen et al., “Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library,” Journal of Medicinal Chemistry, vol. 51, no. 12, pp. 3449–3459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Moyroud, M. C. A. Reymond, C. Hamès, F. Parcy, and C. P. Scutt, “The analysis of entire gene promoters by surface plasmon resonance,” Plant Journal, vol. 59, no. 5, pp. 851–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Luan, Y. Xue, X. Yao, and W. Lu, “Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase,” Analyst, vol. 135, no. 2, pp. 414–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Liu and W. D. Wilson, “Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection,” Methods in Molecular Biology, vol. 613, pp. 1–23, 2010. View at Google Scholar · View at Scopus
  59. GE Healthcare, Biacore 3000 Instrument Handbook, 2008.
  60. I. Navratilova and D. G. Myszka, “Investigating biomolecular interactions and binding properties using SPR biosensors,” in Surface Plasmon Resonance Based Sensors, J. Homola, Ed., pp. 155–176, Springer, Berlin, Germany, 2006. View at Google Scholar
  61. D. G. Myszka, X. He, M. Dembo, T. A. Morton, and B. Goldstein, “Extending the range of rate constants available from BIACORE: Interpreting mass transport-influenced binding data,” Biophysical Journal, vol. 75, no. 2, pp. 583–594, 1998. View at Google Scholar · View at Scopus
  62. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annual Review of Biophysics and Biomolecular Structure, vol. 26, pp. 541–566, 1997. View at Publisher · View at Google Scholar · View at Scopus
  63. D. G. Myszka, “Survey of the 1998 optical biosensor literature,” Journal of Molecular Recognition, vol. 12, no. 6, pp. 390–408, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Svitel, H. Boukari, D. Van Ryk, R. C. Willson, and P. Schuck, “Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation,” Biophysical Journal, vol. 92, no. 5, pp. 1742–1758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Biacore AB, BIAevaluation 3.0 Software Handbook, 1997.
  66. D. J. Hart, R. E. Speight, M. A. Cooper, J. D. Sutherland, and J. M. Blackburn, “The salt dependence of DNA recognition by NF-κB p50: a detailed kinetic analysis of the effects on affinity and specificity,” Nucleic Acids Research, vol. 27, no. 4, pp. 1063–1069, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. J. S. Shumaker-Parry, R. Aebersold, and C. T. Campbell, “Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy,” Analytical Chemistry, vol. 76, no. 7, pp. 2071–2082, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. K. L. Brogan, J. H. Shin, and M. H. Schoenfisch, “Influence of surfactants and antibody immobilization strategy on reducing nonspecific protein interactions for molecular recognition force microscopy,” Langmuir, vol. 20, no. 22, pp. 9729–9735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Y. Yang, E. Brooks, Y. Li et al., “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab on a Chip - Miniaturisation for Chemistry and Biology, vol. 5, no. 10, pp. 1017–1023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Nayeri, D. Aili, T. Nayeri et al., “Hepatocyte growth factor (HGF) in fecal samples: rapid detection by surface plasmon resonance,” BMC Gastroenterology, vol. 5, article 13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. R. L. Rich and D. G. Myszka, “Grading the commercial optical biosensor literature—class of 2008: “The Mighty Binders”,” Journal of Molecular Recognition, vol. 23, no. 1, pp. 1–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. P. W. Kenny, “Comment on: Rich and Myszka, Grading the commercial optical biosensor literature—Class of 2008: 'The Mighty Binders'. Journal of Molecular Recognition, vol. 23, pp. 1–64, 2010,” Journal of Molecular Recognition, vol. 23, no. 4, p. 393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Havard, “Response to grading of the commercial optical biosensor literature—class of 2008,” Journal of Molecular Recognition, vol. 23, no. 4, p. 394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. BioLogic Software, “Scrubber 2.0 Tutorial,” 2006.
  75. D. J. O'Shannessy, M. Brigham-Burke, K. K. Soneson, P. Hensley, and I. Brooks, “Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods,” Analytical Biochemistry, vol. 212, no. 2, pp. 457–468, 1993. View at Publisher · View at Google Scholar · View at Scopus
  76. T. A. Morton, D. G. Myszka, and I. M. Chaiken, “Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration,” Analytical Biochemistry, vol. 227, no. 1, pp. 176–185, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. GraphPad Software, curvefit.com. The Complete Guide to Nonlinear Regression, 1999.
  78. Y. Nominé, M. V. Botuyan, Z. Bajzer et al., “Kinetic analysis of interaction of BRCA1 tandem breast cancer C-terminal domains with phosphorylated peptides reveals two binding conformations,” Biochemistry, vol. 47, no. 37, pp. 9866–9879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Milkani, S. Morais, C. R. Lambert, and W. G. McGimpsey, “Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor,” Biosensors and Bioelectronics, vol. 25, no. 5, pp. 1217–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Ananthanawat, V. P. Hoven, T. Vilaivan, and X. Su, “Surface plasmon resonance study of PNA interactions with double-stranded DNA,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 1918–1923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Liu, C. J. Collar, A. Kumar, C. E. Stephens, D. W. Boykin, and W. D. Wilson, “Heterocyclic diamidine interactions at AT base Pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length,” Journal of Physical Chemistry B, vol. 112, no. 37, pp. 11809–11818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. J. P. Jost, O. Munch, and T. Andersson, “Study of protein-DNA interactions by surface plasmon resonance (real time kinetics),” Nucleic Acids Research, vol. 19, no. 10, p. 2788, 1991. View at Google Scholar · View at Scopus
  83. K. Bondeson, A. Frostell-Karlsson, L. Fagerstam, and G. Magnusson, “Lactose repressor-operator DNA interactions: Kinetic analysis by a surface plasmon resonance biosensor,” Analytical Biochemistry, vol. 214, no. 1, pp. 245–251, 1993. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Blaesing, C. Weigel, M. Welzeck, and W. Messer, “Analysis of the DNA-binding domain of Escherichia coli DnaA protein,” Molecular Microbiology, vol. 36, no. 3, pp. 557–569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Neylon, S. E. Brown, A. V. Kralicek, C. S. Miles, C. A. Love, and N. E. Dixon, “Interaction of the Escherichia coli replication terminator protein (Tus) with DNA: A model derived from DNA-binding studies of mutant proteins by surface plasmon resonance,” Biochemistry, vol. 39, no. 39, pp. 11989–11999, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Y. Tsoi and M. Yang, “Kinetic study of various binding modes between human DNA polymerase β and different DNA substrates by surface-plasmon-resonance biosensor,” Biochemical Journal, vol. 361, no. 2, pp. 317–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Analytical Chemistry, vol. 77, no. 20, pp. 6528–6534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” Journal of the American Chemical Society, vol. 126, no. 13, pp. 4086–4087, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. H. J. Lee, A. W. Wark, and R. M. Corn, “Creating advanced multifunctional biosensors with surface enzymatic transformations,” Langmuir, vol. 22, no. 12, pp. 5241–5250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Bouffartigues, H. Leh, M. Anger-Leroy, S. Rimsky, and M. Buckle, “Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions,” Nucleic Acids Research, vol. 35, no. 6, article e39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Di Primo, “Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: From a decaying surface to a standard kinetic analysis,” Journal of Molecular Recognition, vol. 21, no. 1, pp. 37–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Pollet, F. Delport, K. P. F. Janssen et al., “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 864–869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Pan, J. Xu, Y. Shu et al., “Double recognition of oligonucleotide and protein in the detection of DNA methylation with surface plasmon resonance biosensors,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 850–853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Šípová, H. Vaisocherová, J. Štěpánek, and J. Homola, “A dual surface plasmon resonance assay for the determination of ribonuclease H activity,” Biosensors and Bioelectronics, vol. 26, no. 4, pp. 1605–1611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Pollet, K. P.F. Janssen, K. Knez, and J. Lammertyn, “Real-time monitoring of solid-phase PCR using fiber-optic SPR,” Small, vol. 7, no. 8, pp. 1003–1006, 2011. View at Publisher · View at Google Scholar
  96. M. Ritzefeld, K. Wollschläger, G. Niemann, D. Anselmetti, and N. Sewald, “Minor groove recognition is important for the transcription factor PhoB: a surface plasmon resonance study,” Molecular BioSystems, vol. 7, no. 11, pp. 3132–3142, 2011. View at Publisher · View at Google Scholar