Table of Contents
Journal of Amino Acids
Volume 2013 (2013), Article ID 864757, 11 pages
http://dx.doi.org/10.1155/2013/864757
Research Article

Total 4EBP1 Is Elevated in Liver of Rats in Response to Low Sulfur Amino Acid Intake

1Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
2College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

Received 19 April 2013; Accepted 30 July 2013

Academic Editor: Dorothy Gietzen

Copyright © 2013 Angelos K. Sikalidis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Le Bacquer, E. Petroulakis, S. Paglialunga et al., “Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2,” Journal of Clinical Investigation, vol. 117, no. 2, pp. 387–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Martineau, R. Azar, C. Bousquet, and S. Pyronnet S, “Anti-oncogenic potential of the eIF4E-binding proteins,” Oncogene, vol. 32, no. 6, pp. 671–677, 2012. View at Publisher · View at Google Scholar
  3. G. Armengol, F. Rojo, J. Castellví et al., “4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications,” Cancer Research, vol. 67, no. 16, pp. 7551–7555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Nasr, F. Robert, J. A. Porco Jr., W. J. Muller, and J. Pelletier, “eIF4F suppression in breast cancer affects maintenance and progression,” Oncogene, vol. 32, no. 7, pp. 861–871, 2012. View at Publisher · View at Google Scholar
  5. Y. Shi, S. I. Taylor, S.-L. Tan, and N. Sonenberg, “When translation meets metabolism: multiple links to diabetes,” Endocrine Reviews, vol. 24, no. 1, pp. 91–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Yamaguchi, H. Ishihara, T. Yamada et al., “ATF4-mediated induction of 4E-BP1 contributes to pancreatic β cell survival under endoplasmic reticulum stress,” Cell Metabolism, vol. 7, no. 3, pp. 269–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Holcik and N. Sonenberg, “Translational control in stress and apoptosis,” Nature Reviews Molecular Cell Biology, vol. 6, no. 4, pp. 318–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. P. Harding, I. Novoa, Y. Zhang et al., “Regulated translation initiation controls stress-induced gene expression in mammalian cells,” Molecular Cell, vol. 6, no. 5, pp. 1099–1108, 2000. View at Google Scholar · View at Scopus
  10. J.-I. Lee, J. E. Dominy Jr., A. K. Sikalidis, L. L. Hirschberger, W. Wang, and M. H. Stipanuk, “HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway,” Physiological Genomics, vol. 33, no. 2, pp. 218–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Sikalidis, J.-I. Lee, and M. H. Stipanuk, “Gene expression and integrated stress response in HepG2/C3A cells cultured in amino acid deficient medium,” Amino Acids, vol. 41, no. 1, pp. 159–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Shan, M.-C. Lopez, H. V. Baker, and M. S. Kilberg, “Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells,” Physiological Genomics, vol. 41, no. 3, pp. 315–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A.-C. Gingras, B. Raught, S. P. Gygi et al., “Hierarchical phosphorylation of the translation inhibitor 4E-BP1,” Genes and Development, vol. 15, no. 21, pp. 2852–2864, 2001. View at Google Scholar · View at Scopus
  14. C. C. Thoreen, L. Chantranupong, H. R. Keys, T. Wang, N. S. Gray, and D. M. Sabatini, “A unifying model for mTORC1-mediated regulation of mRNA translation,” Nature, vol. 485, no. 7396, pp. 109–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Mothe-Satney, D. Yang, P. Fadden, T. A. J. Haystead, and J. C. Lawrence Jr., “Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression,” Molecular and Cellular Biology, vol. 20, no. 10, pp. 3558–3567, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Wang, A. Beugnet, M. Murakami, S. Yamanaka, and C. G. Proud, “Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins,” Molecular and Cellular Biology, vol. 25, no. 7, pp. 2558–2572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Tsukiyama-Kohara, F. Poulin, M. Kohara et al., “Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1,” Nature Medicine, vol. 7, no. 10, pp. 1128–1132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Tsukiyama-Kohara, S. M. Vidal, A.-C. Gingras et al., “Tissue distribution, genomic structure, and chromosome mapping of mouse and human eukaryotic initiation factor 4E-binding proteins 1 and 2,” Genomics, vol. 38, no. 3, pp. 353–363, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Poulin, A.-C. Gingras, H. Olsen, S. Chevalier, and N. Sonenberg, “4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 14002–14007, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Chen, J. C. Lee, and M. C. Chang, “4E-BP3 regulates eIF4E-mediated nuclear mRNA export and interacts with replication protein A2,” FEBS Letters, vol. 586, no. 16, pp. 2260–2266, 2012. View at Google Scholar
  21. R. Azar, A. Alard, C. Susini, C. Bousquet, and S. Pyronnet, “4E-BP1 is a target of Smad4 essential for TGFΒ-mediated inhibition of cell proliferation,” The EMBO Journal, vol. 28, no. 22, pp. 3514–3522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. B. S. Balakumaran, A. Porrello, D. S. Hsu et al., “MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy,” Cancer Research, vol. 69, no. 19, pp. 7803–7810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. D. Lu, C. Jousse, S. J. Marciniak et al., “Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2,” The EMBO Journal, vol. 23, no. 1, pp. 169–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Rolli-Derkinderen, F. Machavoine, J. M. Baraban, A. Grolleau, L. Beretta, and M. Dy, “ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1,” Journal of Biological Chemistry, vol. 278, no. 21, pp. 18859–18867, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Azar, S. Najib, H. Lahlou, C. Susini, and S. Pyronnet, “Phosphatidylinositol 3-kinase-dependent transcriptional silencing of the translational repressor 4E-BP1,” Cellular and Molecular Life Sciences, vol. 65, no. 19, pp. 3110–3117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. Palii, C. E. Kays, C. Deval, A. Bruhat, P. Fafournoux, and M. S. Kilberg, “Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation,” Amino Acids, vol. 37, no. 1, pp. 79–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Sikalidis and M. H. Stipanuk, “Growing rats respond to a sulfur amino acid-deficient diet by phosphorylation of the α subunit of eukaryotic initiation factor 2 heterotrimeric complex and induction of adaptive components of the integrated stress response,” The Journal of Nutrition, vol. 140, no. 6, pp. 1080–1085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Kilberg, J. Shan, and N. Su, “ATF4-dependent transcription mediates signaling of amino acid limitation,” Trends in Endocrinology and Metabolism, vol. 20, no. 9, pp. 436–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Bagley and M. H. Stipanuk, “Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes,” The Journal of Nutrition, vol. 125, no. 4, pp. 933–940, 1995. View at Google Scholar · View at Scopus
  30. Y. Hosokawa, S. Niizeki, H. Tojo, I. Sato, and K. Yamaguchi, “Hepatic cysteine dioxygenase activity and sulfur amino acid metabolism in rats: possible indicators in the evaluation of protein quality,” The Journal of Nutrition, vol. 118, no. 4, pp. 456–461, 1988. View at Google Scholar · View at Scopus
  31. M. K. Gaitonde Jr., “A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids,” Biochemical Journal, vol. 104, no. 2, pp. 627–633, 1967. View at Google Scholar · View at Scopus
  32. J. E. Dominy Jr., J. Hwang, and M. H. Stipanuk, “Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells,” American Journal of Physiology. Endocrinology and Metabolism, vol. 293, no. 1, pp. E62–E69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Cereser, J. Guichard, J. Drai et al., “Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts,” Journal of Chromatography B, vol. 752, no. 1, pp. 123–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. T. A. Gautsch, J. C. Anthony, S. R. Kimball, G. L. Paul, D. K. Layman, and L. S. Jefferson, “Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise,” American Journal of Physiology. Cell Physiology, vol. 274, no. 2, pp. C406–C414, 1998. View at Google Scholar · View at Scopus
  35. S. R. Kimball, R. L. Horetsky, and L. S. Jefferson, “Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts,” Journal of Biological Chemistry, vol. 273, no. 47, pp. 30945–30953, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Balage, S. Sinaud, M. Prod'Homme et al., “Amino acids and insulin are both required to regulate assembly of the eIF4E·eIF4G complex in rat skeletal muscle,” American Journal of Physiology. Endocrinology and Metabolism, vol. 281, no. 3, pp. E565–E574, 2001. View at Google Scholar · View at Scopus
  37. J. Escobar, J. W. Frank, A. Suryawan, H. V. Nguyen, and T. A. Davis, “Amino acid availability and age affect the leucine stimulation of protein synthesis and eIF4F formation in muscle,” American Journal of Physiology. Endocrinology and Metabolism, vol. 293, no. 6, pp. E1615–E1621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Suryawan, R. M. Torrazza, M. C. Gazzaneo et al., “Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways,” Pediatric Research, vol. 71, no. 4, pp. 324–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Matsumura, Y. Morinaga, S. Fujitani, K. Takehana, S. Nishitani, and I. Sonaka, “Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver,” Hepatology Research, vol. 33, no. 1, pp. 27–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. R. Kimball, R. A. Orellana, P. M. J. O'Connor et al., “Endotoxin induces differential regulation of mTOR-dependent signaling in skeletal muscle and liver of neonatal pigs,” American Journal of Physiology. Endocrinology and Metabolism, vol. 285, no. 3, pp. E637–E644, 2003. View at Google Scholar · View at Scopus
  41. I. Novoa, Y. Zhang, H. Zeng, R. Jungreis, H. P. Harding, and D. Ron, “Stress-induced gene expression requires programmed recovery from translational repression,” The EMBO Journal, vol. 22, no. 5, pp. 1180–1187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Chen, Y.-X. Pan, E. E. Dudenhausen, and M. S. Kilberg, “Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 50829–50839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Mounir, J. L. Krishnamoorthy, S. Wang et al., “Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway,” Science Signaling, vol. 4, no. 192, article ra62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. N. H. Kwon, T. Kang, J. Y. Lee et al., “Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 49, pp. 19635–19640, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. R. Murguía and R. Serrano, “New functions of protein kinase Gcn2 in yeast and mammals,” IUBMB Life, vol. 64, no. 12, pp. 971–974, 2012. View at Google Scholar
  46. V. Carraro, A.-C. Maurin, S. Lambert-Langlais et al., “Amino acid availability controls TRB3 transcription in liver through the GCN2/EIF2a/ATF4 pathway,” PLoS One, vol. 5, no. 12, Article ID e15716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Shan, M.-C. Lopez, H. V. Baker, and M. S. Kilberg, “Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells,” Physiological Genomics, vol. 41, no. 3, pp. 315–327, 2010. View at Publisher · View at Google Scholar · View at Scopus