Table of Contents
Journal of Applied Chemistry
Volume 2014, Article ID 325627, 9 pages
http://dx.doi.org/10.1155/2014/325627
Research Article

Investigation of Regenerated Cellulose/Poly(acrylic acid) Composite Films for Potential Wound Healing Applications: A Preliminary Study

Polymer Research Laboratory, Department of Chemistry, Government Model Science College, Jabalpur 482001, India

Received 20 January 2014; Revised 14 March 2014; Accepted 17 March 2014; Published 6 May 2014

Academic Editor: Alejandro Rodriguez

Copyright © 2014 Manjula Bajpai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Peh, T. Khan, and H. S. Ch'ng, “Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing,” Journal of Pharmacy & Pharmaceutical Sciences, vol. 3, no. 3, pp. 303–311, 2000. View at Google Scholar · View at Scopus
  2. G. Majno, The Healing Hand: Man and Wound in the Ancient World, Harvard University, Cambridge, UK, 1975.
  3. S. Thomas, Wound Management and Dressing, Pharmaceutical Press, London, UK, 1990.
  4. L. G. Ovington, “Advances in wound dressings,” Clinics in Dermatology, vol. 25, no. 1, pp. 33–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Abdelrahman and H. Newton, “Wound dressings: principles and practice,” Surgery, vol. 29, no. 10, pp. 491–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Singer and A. B. Dagum, “Current management of acute cutaneous wounds,” The New England Journal of Medicine, vol. 359, no. 10, pp. 1037–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. M. G. Fouda, R. Wittke, D. Knittel, and E. Schollmeyer, “Use of chitosan/polyamine biopolymers based cotton as a model system to prepare antimicrobial wound dressing,” International Journal of Diabetes Mellitus, vol. 1, no. 1, pp. 61–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Steffansen and S. P. K. Herping, “Novel wound models for characterizing ibuprofen release from foam dressings,” International Journal of Pharmaceutics, vol. 364, no. 1, pp. 150–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Xu, L. Ma, H. Shi, C. Gao, and C. Han, “Chitosan-Hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies,” Polymers for Advanced Technologies, vol. 18, no. 11, pp. 869–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 9, pp. 9–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Pandima Devi, M. Sekar, M. Chamundeshwari et al., “A novel wound dressing material-Fibrin-chitosan-sodium alginate composite sheet,” Bulletin of Materials Science, vol. 35, no. 7, pp. 1157–1163, 2012. View at Publisher · View at Google Scholar
  12. H. V. Pawar, J. Tetteh, and J. S. Boateng, “Polyox and carrageenan based composite films dressings containing antimicrobial and anti-inflammatory drugs for effective wound healing,” International Journal of Pharmaceutics, vol. 441, no. 1-2, pp. 181–191, 2013. View at Publisher · View at Google Scholar
  13. S. Bielecki, A. Krystynowicz, M. Turkiewicz, and H. Kalinowska, “Bacterial cellulose,” in Biopolymers: Polysaccharides I. Munster, A. Steinbuchel, Ed., vol. 5, pp. 37–90, Wiley-VCH, GmbH, Weinheim, Gremany, 2002. View at Google Scholar
  14. Y. Nishi, M. Uryu, S. Yamanaka et al., “The structure and mechanical properties of sheets prepared from bacterial cellulose—part 2: improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers,” Journal of Materials Science, vol. 25, no. 6, pp. 2997–3001, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Shah and R. M. Brown Jr., “Towards electronic paper displays made from microbial cellulose,” Applied Microbiology and Biotechnology, vol. 66, no. 4, pp. 352–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. R. Evans, H. M. O'Neill, V. P. Malyvanh, I. Lee, and J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosensors and Bioelectronics, vol. 18, no. 7, pp. 917–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Fontana, A. M. de Souza, C. K. Fontana et al., “Acetobacter cellulose pellicle as a temporary skin substitute,” Applied Biochemistry and Biotechnology, vol. 24-25, pp. 253–264, 1990. View at Google Scholar · View at Scopus
  18. O. M. Alvarez, M. Patel, J. Booker, and L. Markowitz, “Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients,” Wounds, vol. 16, no. 7, pp. 224–233, 2004. View at Google Scholar · View at Scopus
  19. W. Czaja, M. Kawecki, A. Krystynowicz, K. Wysota, S. Sakiel, and P. Wroblewski, “Application of bacterial cellulose in treatment of second and third degree burns,” in Proceedings of the 227th ACS National Meeting, Anaheim, Calif, USA, April 2004.
  20. M. Ul-Islam, T. Khan, W. A. Khattak, and J. K. Park, “Bacterial cellulose- MMT Nano reinforced composite films: novel wound dressing material with antibacterial properties,” Cellulose, vol. 20, no. 2, pp. 589–596, 2013. View at Publisher · View at Google Scholar
  21. I. Siró and D. Plackett, “Microfibrillated cellulose and new nanocomposite materials: a review,” Cellulose, vol. 17, no. 3, pp. 459–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Czaja, A. Krystynowicz, S. Bielecki, and R. M. Brown Jr., “Microbial cellulose—the natural power to heal wounds,” Biomaterials, vol. 27, no. 2, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. V. Cartmell and W. R. Sturtevant, “Transparent hydrogel wound dressing,” U S Patent 5106629 A, 1992. View at Google Scholar
  24. M.-R. Hwang, J. O. Kim, J. H. Lee et al., “Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation,” AAPS PharmSciTech, vol. 11, no. 3, pp. 1092–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Bajpai, S. K. Bajpai, and D. J. Goutam, “Atom transfer radical polymerization of glycidyl methacrylate (GMA) in emulsion,” Journal of Macromolecular Science A Pure and Applied Chemistry, vol. 50, pp. 120–127, 2013. View at Google Scholar
  26. N. A. Pascarelli, E. Moretti, G. Terzuoli et al., “Effects of gold and silver nanoparticles in cultured human osteoarthritic chondrocytes,” Journal of Applied Toxicology, vol. 33, no. 12, pp. 1506–1513, 2013. View at Google Scholar
  27. X. Q. Wang, H. E. Chang, and R. J. Francis, “Silver deposits in cutaneous burn scar tissue is a common phenomenon following application of a silver dressing,” Journal of Cutaneous Pathology, vol. 36, no. 7, pp. 788–792, 2009. View at Publisher · View at Google Scholar
  28. X. Gan, T. Liu, J. Zhong, X. Liu, and G. Li, “Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin,” ChemBioChem, vol. 5, no. 12, pp. 1686–1691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M.-C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicological Sciences, vol. 88, no. 2, pp. 412–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Jin, C. Zha, and L. Gu, “Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution,” Carbohydrate Research, vol. 342, no. 6, pp. 851–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Zhou, C. Chang, R. Zhang, and L. Zhang, “Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution,” Macromolecular Bioscience, vol. 7, no. 6, pp. 804–809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Xu, L. Ma, H. Shi, C. Gao, and C. Han, “Chitosan-hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies,” Polymers for Advanced Technologies, vol. 18, no. 11, pp. 869–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. X. L. Shen, J. M. Wu, Y. Chen, and G. Zhao, “Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan,” Food Hydrocolloids, vol. 24, no. 4, pp. 285–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. “ASTM standard test method for water vapour transmission of materials,” Designation E, vol. 701, pp. 93–96, 1993.
  35. S. Park, P. S. K. Murthy, S. Park, Y. M. Mohan, and W.-G. Koh, “Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly(acrylamide) with antibacterial property,” Journal of Industrial and Engineering Chemistry, vol. 17, no. 2, pp. 293–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. V. Chavda and C. N. Patel, “Effect of crosslinker concentration on characteristics of superporous hydrogels,” International Journal of Pharmaceutical Investigation, vol. 1, no. 1, pp. 17–21, 2011. View at Publisher · View at Google Scholar
  37. A. R. Khare and N. A. Peppas, “Swelling/deswelling of anionic copolymer gels,” Biomaterials, vol. 16, no. 7, pp. 559–567, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Özeroglu and A. Birdal, “Swelling properties of acrylamide-N,N′-methylene bis(acrylamide) hydrogels synthesized by using meso-2,3-dimercaptosuccinic acid-cerium(IV) redox couple,” Express Polymer Letters, vol. 3, no. 3, pp. 168–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Rattanaruengsrikul, N. Pimpha, and P. Supaphol, “Development of gelatin hydrogel pads as antibacterial wound dressings,” Macromolecular Bioscience, vol. 9, no. 10, pp. 1004–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Thu, M. H. Zulfakar, and S. Ng, “Alginate based bilayer hydrocolloid films as potential slow release modern wound dressing,” International Journal of Pharmaceutics, vol. 434, no. 1-2, pp. 375–383, 2012. View at Google Scholar
  41. F. Febriyenti, A. M. Noor, and S. B. B. Baie, “Mechanical properties and water vapour permeability of film from Haruan (Channa striatus) and Fusidic acid spray for wound dressing and wound healing,” Pakistan Journal of Pharmaceutical Sciences, vol. 23, no. 2, pp. 155–159, 2010. View at Google Scholar · View at Scopus
  42. B. Singh and L. Pal, “Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 9, pp. 9–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. Y.-B. Wu, S.-H. Yu, F.-L. Mi et al., “Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends,” Carbohydrate Polymers, vol. 57, no. 4, pp. 435–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Jia, Y. Fang, and K. Yao, “Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films,” Food and Bioproducts Processing, vol. 87, no. 1, pp. 7–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Q.-P. Zhong and W.-S. Xia, “Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol,” Food Technology and Biotechnology, vol. 46, no. 3, pp. 262–269, 2008. View at Google Scholar · View at Scopus
  46. N. J. Trengrove, S. R. Langton, and M. C. Stacy, “Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers,” Wound Repair and Regeneration, vol. 4, no. 2, pp. 234–239, 1996. View at Publisher · View at Google Scholar
  47. J. Bonnema, D. A. Ligtenstein, T. Wiggers, and A. N. van Geel, “The composition of serous fluid after axillary dissection,” European Journal of Surgery, vol. 165, no. 1, pp. 9–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices,” Journal of Pharmaceutical Sciences, vol. 52, no. 12, pp. 1145–1149, 1963. View at Publisher · View at Google Scholar
  49. R. B. Najafi, Z. Maghrouri, and M. Peikanpour, “Preparation and pharmaceutical evaluation of miconazole nitrate mucoadhesive films for vaginal candidiasis,” Journal of Isfahan Medical School, vol. 30, no. 216, pp. 2103–2112, 2013. View at Google Scholar