Table of Contents
Journal of Applied Chemistry
Volume 2014, Article ID 450294, 7 pages
http://dx.doi.org/10.1155/2014/450294
Research Article

Measurement and Correlation for Solubility of Some Pyrimidine Derivatives in Different Solvents

Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot, Gujarat 360005, India

Received 15 August 2013; Accepted 9 December 2013; Published 3 March 2014

Academic Editor: Zhen Zhao

Copyright © 2014 Kapil Bhesaniya and Shipra Baluja. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Radi, S. Schenone, and M. Botta, “Recent highlights in the synthesis of highly functionalized pyrimidines,” Organic & Biomolecular Chemistry, vol. 7, no. 14, pp. 2841–2847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Hughes, C. Wang, A. S. Batsanov et al., “New pyrimidine- and fluorene-containing oligo(arylene)s: synthesis, crystal structures, optoelectronic properties and a theoretical study,” Organic & Biomolecular Chemistry, vol. 1, pp. 3069–3077, 2003. View at Google Scholar
  3. K. Itami, D. Yamazaki, and J. Yoshida, “Pyrimidine-core extended π-systems: general synthesis and interesting fluorescent properties,” Journal of the Americal Chemical Society, vol. 126, no. 47, pp. 15396–11537, 2004. View at Google Scholar
  4. J. Cieplik, M. Stolarczyk, J. Pluta et al., “Synthesis and antibacterial properties of pyrimidine derivatives,” Acta Poloniae Pharmaceutica Drug Research, vol. 68, no. 1, pp. 57–65, 2011. View at Google Scholar · View at Scopus
  5. M. S. Mohamed, S. M. Awad, and N. M. Ahmed, “Synthesis and antimicrobial activities of new indolyl-pyrimidine derivatives,” Journal of Applied Pharmaceutical Science, vol. 1, no. 5, pp. 76–80, 2011. View at Google Scholar
  6. R. Morgan, R. J. Haritakul, and P. A. Keller, “Antimalarial activity of 2,4-diaminopyrimidines,” Letters in Drug Design & Discovery, vol. 5, no. 4, pp. 277–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Ramesh and S. V. Kulakarni, “Design, synthesis and anticancer activity of some new pyrimidine derivatives,” Journal of Global Pharma Technology, vol. 2, no. 4, pp. 110–112, 2010. View at Google Scholar · View at Scopus
  8. J. A. Riddick, W. B. Bunger, and T. Sakano, “Organic solvents-physical properties and methods of purification, techniques of chemistry,” New York, NY, USA, 1986.
  9. M. Zhu, “Solubility and density of the disodium salt hemiheptahydrate of ceftriaxone in water + ethanol mixtures,” Journal of Chemical & Engineering Data, vol. 46, no. 2, pp. 175–176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Q.-S. Li, M.-G. Su, and S. Wang, “Solubility of 2-(4-ethylbenzoyl)benzoic acid in eleven organic solvents between 279.55 K and 343.15 K,” Journal of Chemical & Engineering Data, vol. 52, no. 6, pp. 2477–2479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Daneshfar, H. S. Ghaziaskar, and N. Homayoun, “Solubility of gallic acid in methanol, ethanol, water, and ethyl acetate,” Journal of Chemical & Engineering Data, vol. 53, no. 3, pp. 776–778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. R. Krug, W. G. Hunter, and R. A. Grieger, “Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect,” The Journal of Physical Chemistry, vol. 80, no. 21, pp. 2341–2351, 1976. View at Google Scholar · View at Scopus
  13. D. M. Aragón, M. A. Ruidiaz, E. F. Vargas et al., “Solubility of the antimicrobial agent triclosan in organic solvents of different hydrogen bonding capabilities at several temperatures,” Journal of Chemical & Engineering Data, vol. 53, no. 11, pp. 2576–2580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Bustamante, A. P. Romero, B. Escalera, and A. Reillo, “Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water,” Journal of Pharmaceutical Sciences, vol. 87, no. 12, pp. 1590–1596, 1998. View at Google Scholar
  15. E. K. Panteli and E. K. Voutsas, “Solubilities of cinnamic acid esters in ionic liquids,” Journal of Chemical & Engineering Data, vol. 54, no. 3, pp. 812–818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. El-Bindary, A. Z. El-Sonbati, E. H. El-Mosalamy, and R. M. Ahmed, “Potentiometric and thermodynamic studies of azosulfonamide drugs. X,” Chemical Papers, vol. 57, no. 4, pp. 255–258, 2003. View at Google Scholar · View at Scopus