Table of Contents
Journal of Applied Chemistry
Volume 2016 (2016), Article ID 3971579, 12 pages
http://dx.doi.org/10.1155/2016/3971579
Review Article

Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells

1Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
2General Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India

Received 10 April 2016; Revised 27 July 2016; Accepted 9 August 2016

Academic Editor: Junsheng Yu

Copyright © 2016 Shraavya Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution,” Progress in Photovoltaics: Research and Applications, vol. 17, no. 3, pp. 183–189, 2009. View at Publisher · View at Google Scholar
  2. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Materials, vol. 2, no. 3, pp. 96–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sharma, K. K. Jain, and A. Sharma, “Solar cells: in research and applications—a review,” Materials Sciences and Applications, vol. 06, no. 12, pp. 1145–1155, 2015. View at Publisher · View at Google Scholar
  4. G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8970–8980, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. http://pveducation.com/.
  6. National Center for Biotechnology Information, PubChem Compound Database, CID=123591, https://pubchem.ncbi.nlm.nih.gov/compound/123591.
  7. National Center for Biotechnology Information, PubChem Compound Database; CID=6809, https://pubchem.ncbi.nlm.nih.gov/compound/6809.
  8. Bryan Derksen, wikipedia.
  9. NREL, http://www.nrel.gov/ncpv/.
  10. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, and M. Saiful Islam, “Ionic transport in hybrid lead iodide perovskite solar cells,” Nature Communications, vol. 6, article 7497, 2015. View at Publisher · View at Google Scholar
  11. H. Spanggaard and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics,” Solar Energy Materials & Solar Cells, vol. 83, no. 2-3, pp. 125–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” Journal of Materials Research, vol. 19, no. 7, pp. 1924–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Bernède, “Organic photovoltaic cells: history, principle and techniques,” Journal of Chilean Chemical Society, vol. 53, no. 3, pp. 1549–1564, 2008. View at Publisher · View at Google Scholar
  14. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nature Photonics, vol. 6, no. 9, pp. 591–595, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. E. Small, S. Chen, J. Subbiah et al., “High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells,” Nature Photonics, vol. 6, no. 2, pp. 115–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Tan, W. Zhang, Z. Zhang et al., “High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode,” Advanced Materials, vol. 24, no. 11, pp. 1476–1481, 2012. View at Google Scholar
  17. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, “Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency,” Angewandte Chemie International Edition, vol. 50, no. 13, pp. 2995–2998, 2011. View at Google Scholar
  18. K. M. O'Malley, C.-Z. Li, H.-L. Yip, and A. K.-Y. Jen, “Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60 surfactant,” Advanced Energy Materials, vol. 2, no. 1, pp. 82–86, 2012. View at Publisher · View at Google Scholar
  19. B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber,” Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 72–76, 2013. View at Publisher · View at Google Scholar
  20. H. Katagiri, K. Jimbo, S. Yamada et al., “Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique,” Applied Physics Express, vol. 1, no. 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, “A high efficiency electrodeposited Cu2ZnSnS4 solar cell,” Advanced Energy Materials, vol. 2, no. 2, pp. 253–259, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Maeda, K. Tanaka, Y. Fukui, and H. Uchiki, “Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization,” Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2855–2860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. V. Moholkar, S. S. Shinde, A. R. Babar et al., “Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells,” Journal of Alloys and Compounds, vol. 509, no. 27, pp. 7439–7446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Burschka, N. Pellet, S.-J. Moon et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316–319, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Zhou, Q. Chen, G. Li et al., “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542–546, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Qin, S. Tanaka, S. Ito et al., “Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency,” Nature Communications, vol. 5, article 3834, 2014. View at Publisher · View at Google Scholar
  27. S. Chavhan, O. Miguel, H.-J. Grande et al., “Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact,” Journal of Materials Chemistry A, vol. 2, no. 32, pp. 12754–12760, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Wu, S. Bai, J. Xiang et al., “Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor,” Nanoscale, vol. 6, no. 18, pp. 10505–10510, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. Heo, S. H. Im, J. H. Noh et al., “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature Photonics, vol. 7, no. 6, pp. 486–491, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 46),” Progress in Photovoltaics: Research and Applications, vol. 23, no. 7, pp. 805–812, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Hosoya, H. Oooka, H. Nakao et al., “Organic thin film photovoltaic modules,” in Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan, pp. 21–37, 2013.
  32. J. Yan, Q. Wang, T. Wei, and Z. Fan, “Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities,” Advanced Energy Materials, vol. 4, no. 4, Article ID 1300816, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Tajima, T. Itoh, H. Hazama, K. Ohishi, and R. Asahi, “Improvement of the open-circuit voltage of Cu2ZnSnS4 cells using a two-layered process,” in Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC '14), pp. 431–434, Denver, Colo, USA, June 2014. View at Publisher · View at Google Scholar
  34. W. S. Yang, J. H. Noh, N. J. Jeon et al., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, no. 6240, pp. 1234–1237, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. http://www.nims.go.jp/eng/news/press/2015/06/201506170.html.
  36. N. Kaur, M. Singh, D. Pathak, T. Wagner, and J. M. Nunzi, “Organic materials for photovoltaic applications: review and mechanism,” Synthetic Metals, vol. 190, pp. 20–26, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Applied Physics Letters, vol. 84, no. 16, pp. 3013–3015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Applied Physics Letters, vol. 85, no. 23, pp. 5757–5759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Ameri, P. Khoram, J. Min, and C. J. Brabec, “Organic ternary solar cells: a review,” Advanced Materials, vol. 25, no. 31, pp. 4245–4266, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. J.-M. Nunzi, “Organic photovoltaic materials and devices,” Comptes Rendus Physique, vol. 3, no. 4, pp. 523–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” Journal of the American Chemical Society, vol. 128, no. 25, pp. 8108–8109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Li and Y. Zou, “Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility,” Advanced Materials, vol. 20, no. 15, pp. 2952–2958, 2008. View at Publisher · View at Google Scholar
  43. J. Hou, M.-H. Park, S. Zhang et al., “Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[l,2-b:4,5-b′]dithiophene,” Macromolecules, vol. 41, no. 16, pp. 6012–6018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Zhang, X. Guo, Z.-G. Zhang, and Y. Li, “D-A copolymers based on dithienosilole and phthalimide for photovoltaic materials,” Polymer, vol. 52, no. 24, pp. 5464–5470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J.-F. Nierengarten, T. Gu, G. Hadziioannou, D. Tsamouras, and V. Krasnikov, “A new iterative approach for the synthesis of oligo(phenyleneethynediyl) derivatives and its application for the preparation of fullerene-oligo(phenyleneethynediyl) conjugates as active photovoltaic materials,” Helvetica Chimica Acta, vol. 87, no. 11, pp. 2948–2966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Edoff, “Thin film solar cells: research in an industrial perspective,” AMBIO, vol. 41, no. 2, pp. 112–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Jiang and X. Yan, “Cu2ZnSnS4 thin film solar cells: present status and future prospects,” in Solar Cells—Research and Application Perspectives, A. Morales-Acevedo, Ed., chapter 5, InTech, Rijeka, Croatia, 2013. View at Publisher · View at Google Scholar
  48. G. Altamura, “Development of CZTSSe thin films based solar cells,” Material Chemistry, Université Joseph-Fourier-Grenoble I, 2014.
  49. P. Zawadzki, L. L. Baranowski, H. Peng et al., “Evaluation of photovoltaic materials within the Cu-Sn-S family,” Applied Physics Letters, vol. 103, no. 25, Article ID 253902, 2013. View at Publisher · View at Google Scholar
  50. I. Grinberg, D. Vincent West, M. Torres et al., “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature, vol. 503, no. 7477, pp. 509–512, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Bisquert, “The swift surge of perovskite photovoltaics,” The Journal of Physical Chemistry Letters, vol. 4, no. 15, pp. 2597–2598, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, and Y. M. Lam, “Perovskite-based solar cells: impact of morphology and device architecture on device performance,” Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8943–8969, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, pp. 506–514, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. M. I. El-Henawey, R. S. Gebhardt, M. M. El-Tonsy, and S. Chaudhary, “Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells,” Journal of Materials Chemistry A, vol. 4, no. 5, pp. 1947–1952, 2016. View at Publisher · View at Google Scholar · View at Scopus