Abstract

This paper presents a novel approach for a free structure analog circuit design using genetic algorithms (GAs). A major problem in a free structure circuit is its sensitivity calculations as a polynomial approximation for the design is not available. A further problem is the effect of parasitic elements on the resulting circuit's performance. In a single design stage, circuits that are produced satisfy a specific frequency response specifications using circuit structures that are unrestricted and with component values that are chosen from a set of preferred values including their parasitic effects. The sensitivity to component variations for the resulting designs is performed using a novel technique and is incorporated in the fitness evaluation function. The extra degrees of freedom resulting form unbounded circuit structures create a huge search space. The application chosen is an RLC ladder filters circuit design.