Abstract

After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the quantization of the system is investigated using the canonical path integral approximation.

1. Introduction

The efforts to quantize systems with constraints started with the work of Dirac [1, 2], who first set up a formalism for treating singular systems and the constraints involved for the purpose of quantizing his field, with special emphasis on the gravitational field. In Dirac’s canonical quantization method, the Poisson brackets of classical mechanics are replaced with quantum commutators.

A new formalism for investigating first-order singular systems-, the canonical-, was developed by Rabei and Guler [3]. These authors obtained a set of Hamilton-Jacobi partial differential equations (HJPDEs) for singular systems using Caratheodory’s equivalent-Lagrangian method [4]. In this formalism, the equations of motion are obtained as total differential equations and the set of HJPDEs was determined. Recently, the formalism has been extended to second- and higher-order Lagrangians [5, 6]. Depending on this method, the path-integral quantization of first-and higher-order constrained Lagrangian systems has been applied [7–10].

Moreover, the quantization of constrained systems has been studied for first-order singular Lagrangians using the WKB approximation [11]. The HJPDEs for these systems have been constructed using the canonical method; the Hamilton-Jacobi functions have then been obtained by solving these equations.

The Hamiltonian formulation for systems with higher-order regular Lagrangians was first developed by Ostrogradski [12]. This led to Euler's and Hamilton's equations of motion. However, in Ostrogradski's construction the structure of phase space and in particular of its local simplistic geometry is not immediately transparent which leads to confusion when considering canonical path integral quantization.

In Ostrogradski's construction, this problem can be resolved within the well-established context of constrained systems [13] described by Lagrangians depending on coordinates and velocities only. Therefore, higher-order systems can be set in the form of ordinary constrained systems [14]. These new systems will be functions only of first-order time derivative of the degrees of freedom and coordinates which can be treated using the theory of constrained systems [1–11].

The purpose of the present paper is to study the canonical path integral quantization for singular systems with arbitrary higher-order Lagrangian. In fact, this work is a continuation of the previous work [15], where the path integral for certain kinds of higher-order Lagrangian systems has been obtained.

The present work is organized as follows: in Section 2, a review of the canonical method is introduced. In Section 3, Ostrogradski's formalism of higher-order Lagrangians is discussed. In Section 4, the formulation of the canonical Hamiltonian is reviewed briefly. In Section 5, the canonical path integral quantization of the extended Lagrangian is applied. In Section 6, two illustrative examples are investigated in detail. The work closes with some concluding remarks in Section 7.

2. Review of the Canonical Method

The starting point is a singular Lagrangian 𝐿=𝐿(π‘žπ‘–,Μ‡π‘žπ‘–), 𝑖=1,2,…,𝑁, with the Hessian matrix πœ•2𝐿/πœ•Μ‡π‘žπ‘–πœ•Μ‡π‘žπ‘— of rank 𝑁-𝑅,𝑅<𝑁.

The canonical formulation [3] gives the set of the Hamilton-Jacobi partial differential equations asπ»ξ…ž0=𝑝0+𝐻0β‰‘πœ•π‘†πœ•π‘‘+𝐻0ξ‚΅π‘žπ›½,π‘žπ‘Ž,π‘π‘Ž=πœ•π‘†πœ•π‘žπ‘Žξ‚Άπ»=0,ξ…žπœ‡=π‘πœ‡+π»πœ‡β‰‘πœ•π‘†πœ•π‘žπœ‡+π»πœ‡ξ‚΅π‘žπ›½,π‘žπ‘Ž,π‘π‘Ž=πœ•π‘†πœ•π‘žπ‘Žξ‚Ά=0,π‘Ž=1,…,π‘βˆ’π‘…,πœ‡=π‘βˆ’π‘…+1,…,𝑁,(2.1) where 𝑝0 and π‘žπœ‡are the momenta conjugate to 𝑑 andπ‘žπœ‡, respectively,𝑝0=ξ€·π‘žπœ•π‘†π‘–ξ€Έ,π‘‘πœ•π‘‘,π‘πœ‡=ξ€·π‘žπœ•π‘†π‘–ξ€Έ,π‘‘πœ•π‘žπœ‡.(2.2) The canonical Hamiltonian H0 is given by𝐻0=π‘π‘ŽΜ‡π‘žπ‘Ž+π‘πœ‡Μ‡π‘žπœ‡βˆ’πΏ.(2.3) The equations of motion are obtained as total differential equations in many variables as follows: π‘‘π‘žπ‘Ž=πœ•π»ξ…ž0πœ•π‘π‘Žπ‘‘π‘‘+πœ•π»ξ…žπœ‡πœ•π‘π‘Žπ‘‘π‘žπœ‡,𝑑𝑝𝑖=βˆ’πœ•π»ξ…ž0πœ•π‘žπ‘–π‘‘π‘‘βˆ’πœ•π»ξ…žπœ‡πœ•π‘žπ‘–π‘‘π‘žπœ‡,(2.4)𝑑𝑧=βˆ’π»0π‘‘π‘‘βˆ’π»πœ‡π‘‘π‘žπœ‡+π‘π‘Žπœ•π»ξ…ž0πœ•π‘π‘Žπ‘‘π‘‘+π‘π‘Žπœ•π»ξ…žπœ‡πœ•π‘π‘Žπ‘‘π‘žπœ‡,(2.5) where 𝑧=𝑆(𝑑,π‘žπ‘Ž,π‘žπœ‡). The set of equations (2.4) and (2.5) is integrable if and only ifπ‘‘π»ξ…ž0=0,πœ•π»ξ…žπœ‡=0(2.6) are identically satisfied. If they are not, one could consider them as new constraints and again should test the consistency conditions. Thus, in repeating this procedure one may obtain a new set of conditions. Equations (2.4) then can be solved to obtain the coordinates qa and momenta pi as functions of qΞΌ and t.

3. Ostrogradski's Formalism of Higher-Order Lagrangians

Consider a higher-order Lagrangian system of 𝑁 generalized coordinates π‘žπ‘›(𝑑):𝐿0ξ‚€π‘žπ‘›,Μ‡π‘žπ‘›,…,π‘žπ‘›(π‘š),π‘šβ‰₯1,(3.1) where π‘žπ‘›(𝑠)=π‘‘π‘ π‘žπ‘›/𝑑𝑑𝑠, 𝑠=0,1,…,π‘š and 𝑛=1,…,𝑁.

The Euler-Lagrange equations of motion are obtained as [12]π‘šξ“π‘ =0(βˆ’1)π‘ π‘‘π‘ π‘‘π‘‘π‘ ξƒ©πœ•πΏ0πœ•π‘žπ‘›(𝑠)ξƒͺ=0.(3.2)

Theories with higher derivatives, which have been first developed by Ostrogradski [12], treat the derivatives π‘žπ‘›(𝑠)(𝑠=0,…,π‘šβˆ’1) as independent coordinates. Therefore, we will indicate this by writing them as π‘žπ‘›(𝑠)=π‘žπ‘›,𝑠. In Ostrogradski's formalism, the momenta conjugated, respectively, to π‘žπ‘›,π‘šβˆ’1 and π‘žπ‘›,π‘ βˆ’1, (𝑠=1,…,π‘šβˆ’1) read as𝑝𝑛,π‘šβˆ’1β‰‘πœ•πΏ0πœ•π‘žπ‘›(π‘š),𝑝𝑛,π‘ βˆ’1β‰‘πœ•πΏ0πœ•π‘žπ‘›(𝑠)βˆ’Μ‡π‘π‘›,𝑠,𝑠=1,…,π‘šβˆ’1.(3.3) Therefore, the canonical Hamiltonian is given by 𝐻0ξ€·π‘žπ‘›,0,…,π‘žπ‘›,π‘šβˆ’1;𝑝𝑛,0,…,𝑝𝑛,π‘šβˆ’1ξ€Έ=π‘šβˆ’2𝑠=0𝑝𝑛,π‘ π‘žπ‘›,𝑠+1+𝑝𝑛,π‘šβˆ’1Μ‡π‘žπ‘›,π‘šβˆ’1βˆ’πΏ0ξ€·π‘žπ‘›,0,…,π‘žπ‘›,π‘šβˆ’1,Μ‡π‘žπ‘›,π‘šβˆ’1ξ€Έ.(3.4) Hamilton's equations of motion are written using Poisson bracket as [5, 6]Μ‡π‘žπ‘›,𝑠=πœ•π»0πœ•π‘π‘›,𝑠=ξ€½π‘žπ‘›,𝑠,𝐻0ξ€Ύ,(3.5)̇𝑝𝑛,𝑠=πœ•π»0πœ•π‘žπ‘›,𝑠=𝑝𝑛,𝑠,𝐻0ξ€Ύ,(3.6) where {,} is the Poisson bracket defined as{𝐴,𝐡}=π‘šβˆ’1𝑠=0πœ•π΄πœ•π‘žπ‘›,π‘ πœ•π΅πœ•π‘π‘›,π‘ βˆ’πœ•π΅πœ•π‘žπ‘›,π‘ πœ•π΄πœ•π‘π‘›,𝑠.(3.7) The fundamental Poisson brackets areξ€½π‘žπ‘›,𝑠𝑝𝑛′,𝑠′=𝛿𝑛𝑛′𝛿𝑠𝑠′,ξ€½π‘žπ‘›,𝑠,π‘žπ‘›β€²,𝑠′=𝑝𝑛,𝑠,𝑝𝑛′,𝑠′=0,(3.8) where 𝑛,π‘›ξ…ž=1,…,𝑁,and𝑠,𝑠′=0,…,π‘šβˆ’1.

With this procedure, the phase space, described in terms of the canonical variables π‘žπ‘›,𝑠and𝑝𝑛,𝑠, is obeying the equations of motion that are given by (3.5) and (3.6), which are first-order differential equations.

4. Formulation of the Canonical Hamiltonian

Recall the higher-order Lagrangian given in (3.1), and let us introduce new independent variables (π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖,𝑖=0,1,…,π‘šβˆ’2) such that the following recursion relations would hold [13, 14]:Μ‡π‘žπ‘›,𝑖=π‘žπ‘›,𝑖+1.(4.1) Clearly, the variables (π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖), would then correspond to the time derivatives (π‘žπ‘›(π‘šβˆ’1),π‘žπ‘›(𝑖)) respectively, that is,π‘žπ‘›(0)=π‘žπ‘›,0,Μ‡π‘žπ‘›=π‘žπ‘›,1,…,π‘žπ‘›(π‘šβˆ’1)=π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›(π‘š)=Μ‡π‘žπ‘›,π‘šβˆ’1.(4.2) Equation (4.1) represents relations between the new variables. In order to enforce these relations for independent variables (π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖), additional Lagrange multipliers πœ†π‘›,𝑖(𝑑) are introduced [14]. The variables (π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖,πœ†π‘›,𝑖), thus, determine the set of independent degrees of freedom of the extended Lagrangian system. The extended Lagrangian of this auxiliary description of the system is given by πΏπ‘‡ξ€·π‘žπ‘›,𝑖,π‘žπ‘›,π‘šβˆ’1,Μ‡π‘žπ‘›,𝑖,Μ‡π‘žπ‘›,π‘šβˆ’1,πœ†π‘›,𝑖=𝐿0ξ€·π‘žπ‘›,𝑖,π‘žπ‘›,π‘šβˆ’1,Μ‡π‘žπ‘›,π‘šβˆ’1ξ€Έ+π‘šβˆ’2𝑖=0πœ†π‘›,π‘–ξ€·Μ‡π‘žπ‘›,π‘–βˆ’π‘žπ‘›,𝑖+1ξ€Έ.(4.3) The new Lagrangian in (4.3) is singular, and one can use the standard methods of singular systems like Dirac's method or the canonical approach to investigate this Lagrangian.

Upon introducing the canonical momenta:𝑝𝑛,π‘šβˆ’1=πœ•πΏπ‘‡πœ•Μ‡π‘žπ‘›,π‘šβˆ’1,𝑝(4.4)𝑛,𝑖=πœ•πΏπ‘‡πœ•Μ‡π‘žπ‘›,𝑖=πœ†π‘›,𝑖=βˆ’π»π‘›,π‘–πœ‹,(4.5)𝑛,𝑖=πœ•πΏπ‘‡πœ•Μ‡πœ†π‘›,𝑖=0=βˆ’Ξ¦π‘›,𝑖,(4.6) the canonical Hamiltonian can be obtained as𝐻0ξ€·π‘žπ‘›,𝑖,π‘žπ‘›,π‘šβˆ’1,𝑝𝑛,π‘šβˆ’1,πœ†π‘›,𝑖=𝑝𝑛,π‘šβˆ’1Μ‡π‘žπ‘›,π‘šβˆ’1+π‘šβˆ’2𝑖=0𝑝𝑛,π‘–Μ‡π‘žπ‘›,𝑖+π‘šβˆ’2𝑖=0πœ‹π‘›,π‘–Μ‡πœ†π‘›,π‘–βˆ’πΏπ‘‡ξ€·π‘žπ‘›,𝑖,π‘žπ‘›,π‘šβˆ’1,Μ‡π‘žπ‘›,𝑖,Μ‡π‘žπ‘›,π‘šβˆ’1,πœ†π‘›,𝑖,(4.7) Equations (4.5) and (4.6) represent primary constraints [1, 2]. Their Hamilton-Jacobi partial differential equations can be obtained asπ»ξ…ž0=𝑝0+𝐻0ξ€·π‘žπ‘›,𝑖,π‘žπ‘›,π‘šβˆ’1,𝑝𝑛,π‘šβˆ’1,πœ†π‘›,𝑖Φ=0,(4.8)ξ…žπ‘›,𝑖=πœ‹π‘›,𝑖𝐻=0,(4.9)ξ…žπ‘›,𝑖=𝑝𝑛,π‘–βˆ’πœ†π‘›,𝑖=0.(4.10) The equations of motion can be written as total differential equations in many variables as follows: π‘‘π‘žπ‘›,𝑗=π‘‘π‘žπ‘›,𝑗,(4.11)π‘‘π‘žπ‘›,π‘šβˆ’1=πœ•π»ξ…ž0πœ•π‘π‘›,π‘šβˆ’1𝑑𝑑,(4.12)𝑑𝑝𝑛,𝑗=βˆ’πœ•π»ξ…ž0πœ•π‘žπ‘›,𝑗𝑑𝑑,𝑑𝑝𝑛,π‘šβˆ’1=βˆ’πœ•π»ξ…ž0πœ•π‘žπ‘›,π‘šβˆ’1𝑑𝑑,π‘‘πœ†π‘›,𝑗=π‘‘πœ†π‘›,𝑗,π‘‘πœ‹π‘›,𝑗=βˆ’πœ•π»ξ…ž0πœ•πœ†π‘›,𝑗𝑑𝑑+π‘‘π‘žπ‘›,𝑗,𝑗=0,1,…,π‘šβˆ’2.(4.13) The total differential equations are integrable if and only ifπ‘‘π»ξ…ž0=𝑑𝑝0βˆ’π‘‘π»0=0,π‘‘π»ξ…žπ‘›,𝑗=𝑑𝑝𝑛,π‘—βˆ’π‘‘πœ†π‘›,𝑗=0,π‘‘Ξ¦ξ…žπ‘›,𝑗=π‘‘πœ‹π‘›,𝑗=0.(4.14)

5. The Canonical Path Integral Quantization

If the coordinates 𝑑,π‘žπ‘›,𝑖,πœ†π‘›,𝑖 are denoted by 𝑑𝛼, that is,𝑑𝛼=𝑑,π‘žπ‘›,𝑖,πœ†π‘›,𝑖,(5.1) then the set of primary constraints (4.8), (4.9), and (4.10) can be written in a compact form asπ»ξ…žπ›Ό=0,(5.2) where π»ξ…žπ›Ό=π»ξ…ž0,π»ξ…žπ‘›,𝑖,Ξ¦ξ…žπ‘›,𝑖.(5.3) Making use of [7], the canonical path integral for the extended Lagrangians can be obtained asπΎξ‚€π‘žξ…žπ‘›,π‘šβˆ’1,π‘žξ…žπ‘›,𝑖,πœ†ξ…žπ‘›,𝑖,π‘‘ξ…ž;π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖,πœ†π‘›,𝑖=ξ€œ,π‘‘π‘žβ€²π‘›,π‘šβˆ’1π‘žπ‘›,π‘šβˆ’1𝑁𝑛=1ξ€·π·π‘žπ‘›,π‘šβˆ’1𝐷𝑝𝑛,π‘šβˆ’1𝑖expβ„ξ€œπ‘‘β€²π›Όπ‘‘π›Όξƒ©βˆ’π»π›Ό+𝑝𝑛,π‘šβˆ’1πœ•π»ξ…žπ›Όπœ•π‘π‘›,π‘šβˆ’1ξƒͺ𝑑𝑑𝛼,𝑛=1,…,𝑁,𝑖=0,…,π‘šβˆ’2.(5.4) Note that (4.12) givesπœ•π»ξ…žπ›Όπœ•π‘π‘›,π‘šβˆ’1𝑑𝑑𝛼=πœ•π»ξ…ž0πœ•π‘π‘›,π‘šβˆ’1𝑑𝑑+πœ•Ξ¦ξ…žπ‘›,π‘–πœ•π‘π‘›,π‘šβˆ’1π‘‘πœ†π‘›,𝑖+πœ•π»ξ…žπ‘›,π‘–πœ•π‘π‘›,π‘šβˆ’1π‘‘π‘žπ‘›,𝑖=π‘‘π‘žπ‘›,π‘šβˆ’1.(5.5) Therefore, (5.4) can be written asπΎξ‚€π‘žξ…žπ‘›,π‘šβˆ’1,π‘žξ…žπ‘›,𝑖,πœ†ξ…žπ‘›,𝑖,π‘‘ξ…ž;π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖,πœ†π‘›,𝑖=ξ€œ,π‘‘π‘žβ€²π‘›,π‘šβˆ’1π‘žπ‘›,π‘šβˆ’1𝑁𝑛=1ξ€·π·π‘žπ‘›,π‘šβˆ’1𝐷𝑝𝑛,π‘šβˆ’1𝑖expβ„ξ€œπ‘‘β€²π›Όπ‘‘π›Όξ‚€βˆ’π»π›Όπ‘‘π‘‘π›Ό+𝑝𝑛,π‘šβˆ’1π‘‘π‘žπ‘›,π‘šβˆ’1.(5.6) However, according to (4.6) and (4.7), we get𝐻𝑛,𝑖=βˆ’πœ†π‘›,𝑖Φ𝑛,𝑖=0,(5.7) so, it can bee found that 𝐻𝛼𝑑𝑑𝛼=𝐻0𝑑𝑑+𝐻𝑛,π‘–π‘‘π‘žπ‘›,𝑖+Φ𝑛,π‘–π‘‘πœ†π‘›,𝑖=𝐻0π‘‘π‘‘βˆ’πœ†π‘›,π‘–π‘‘π‘žπ‘›,𝑖.(5.8) Then the transition amplitude can be written in the final form asπΎξ‚€π‘žξ…žπ‘›,π‘šβˆ’1,π‘žξ…žπ‘›,𝑖,πœ†ξ…žπ‘›,𝑖,𝑑′;π‘žπ‘›,π‘šβˆ’1,π‘žπ‘›,𝑖,πœ†π‘›,𝑖=ξ€œ,π‘‘π‘žβ€²π‘›,π‘šβˆ’1π‘žπ‘›,π‘šβˆ’1𝑁𝑛=1ξ€·π·π‘žπ‘›,π‘šβˆ’1𝐷𝑝𝑛,π‘šβˆ’1𝑖expβ„ξ€œπ‘‘ξ…žπ›Όπ‘‘π›Όξ‚€βˆ’π»0𝑑𝑑+πœ†π‘›,π‘–π‘‘π‘žπ‘›,𝑖+𝑝𝑛,π‘šβˆ’1π‘‘π‘žπ‘›,π‘šβˆ’1.(5.9) Equation (5.9) represents the canonical path integral quantization of higher-order regular Lagrangians as first-order singular Lagrangians.

6. Examples

In this section, the procedure described throughout this paper will be illustrated by the following two examples.

6.1. Example 1

As a first example, let us consider a one-dimensional second-order regular lagrangian of the form:𝐿0=12ξ€·Μˆπ‘ž21βˆ’Μ‡π‘ž21βˆ’π‘ž21ξ€Έ.(6.1) If (4.2) is used, we can writeπ‘ž1(0)=π‘ž10,Μ‡π‘ž1=π‘ž11,Μˆπ‘ž1=Μ‡π‘ž11,(6.2) Hence, the Lagrangian (6.1) becomes𝐿0=12ξ€·Μ‡π‘ž211βˆ’π‘ž211βˆ’π‘ž210ξ€Έ.(6.3) Upon using (4.1), the recursion relation is Μ‡π‘ž10=π‘ž11. And with the aid of (4.3), the extended Lagrangian is simply 𝐿𝑇=12ξ€·Μ‡π‘ž211βˆ’π‘ž211βˆ’π‘ž210ξ€Έ+πœ†10ξ€·Μ‡π‘ž10βˆ’π‘ž11ξ€Έ.(6.4) The conjugate momenta can be obtained as 𝑃11=πœ•πΏπ‘‡πœ•Μ‡π‘ž11=Μ‡π‘ž11,𝑃10=πœ•πΏπ‘‡πœ•Μ‡π‘ž10=πœ†10,πœ‹10=πœ•πΏπ‘‡πœ•Μ‡πœ†100.(6.5) It is obvious that the second and third equations are constraints. Therefore, the coordinates π‘ž10 and πœ†10 represent the restricted coordinates.

Using (4.4), the canonical Hamiltonian takes the form:𝐻0=12𝑃211+π‘ž210+π‘ž211ξ€Έ+πœ†10π‘ž11.(6.6) Accordingly, the set of HJPDE's can be written asπ»ξ…ž0=𝑃0+𝐻0𝐻=0,ξ…ž10=𝑃10βˆ’πœ†10Ξ¦=0,ξ…ž10=πœ‹10=0.(6.7) From (5.9), the canonical path integral quantization for this system is πΎξ€·π‘žξ…ž11,π‘žξ…ž10,πœ†ξ…ž10,𝑑′;π‘ž11,π‘ž10,πœ†10ξ€Έ=ξ€œ,π‘‘π·π‘ž11𝐷𝑝11𝑖expβ„ξ€œξ€·βˆ’π»0𝑑𝑑+𝑝11π‘‘π‘ž11+πœ†10π‘‘π‘ž10ξ€Έξ‚Ή,(6.8) where π·π‘ž11=limπ‘˜β†’βˆžβˆπ‘˜βˆ’1𝑗=1π‘‘π‘ž11𝑗;𝐷𝑝11=limπ‘˜β†’βˆžβˆπ‘˜βˆ’1𝑗=0(𝑑𝑝11/2πœ‹β„).ξ€œπΎ=π·π‘ž11𝐷𝑝11𝑖expβ„ξ€œβˆ’1ξ‚€ξ‚€2𝑃211+π‘ž210+π‘ž211ξ€Έβˆ’πœ†10π‘ž11𝑑𝑑+𝑝11π‘‘π‘ž11+πœ†10π‘‘π‘ž10.(6.9) Equation (6.9) can be written in a compact form asξ€œπΎ=π·π‘ž11𝐷𝑝11𝑖expβ„ξ€œξ‚€βˆ’12𝑃211+π‘ž210+π‘ž211ξ€Έβˆ’πœ†10π‘ž11+𝑝11Μ‡π‘ž11+πœ†10Μ‡π‘ž10𝑑𝑑.(6.10) Upon changing the integration over 𝑑𝑑 to summation, we haveξ€œπΎ=π·π‘ž11π‘˜βˆ’1𝑗=0𝑑𝑝11𝑗2πœ‹β„expπ‘–πœ€β„π‘˜βˆ’1𝑗=0ξƒ©βˆ’π‘211𝑗2βˆ’π‘ž210𝑗2βˆ’π‘ž211𝑗2+𝑝11π‘—Μ‡π‘ž11𝑗+πœ†10π‘—ξ€·Μ‡π‘ž10π‘—βˆ’π‘ž11𝑗.ξƒͺξƒ­(6.11) The 𝑝11𝑗-integration can be performed using the Gaussian integral:ξ€œπΎ=π·π‘ž111(2πœ‹β„)π‘˜ξ‚€2πœ‹β„ξ‚π‘–πœ€π‘˜/2expπ‘–πœ€β„π‘˜βˆ’1𝑗=0ξƒ©Μ‡π‘ž211𝑗2βˆ’π‘ž210𝑗2βˆ’π‘ž211𝑗2+πœ†10π‘—ξ€·Μ‡π‘ž10π‘—βˆ’π‘ž11𝑗=ξ‚€1ξƒͺ2πœ‹β„π‘–πœ€π‘˜/2ξ€œπ·π‘ž11𝑖expβ„ξ€œξƒ©Μ‡π‘ž2112βˆ’π‘ž2102βˆ’π‘ž2112+πœ†10ξ€·Μ‡π‘ž10βˆ’π‘ž11ξ€Έξƒͺξƒ­=ξ‚€1𝑑𝑑2πœ‹β„π‘–πœ€π‘˜/2ξ€œπ·π‘ž11𝑖expβ„ξ€œπΏπ‘‡ξ‚Ή.𝑑𝑑(6.12)

6.2. Example 2

As a second example, consider the three-dimensional second-order regular lagrangian:𝐿0=12ξ€·Μˆπ‘ž21+Μˆπ‘ž22+Μˆπ‘ž23ξ€Έβˆ’12ξ€·Μ‡π‘ž21+Μ‡π‘ž23ξ€Έ.(6.13) If we putπ‘ž1(0)=π‘ž10,π‘ž2(0)=π‘ž20,π‘ž3(0)=π‘ž30,Μ‡π‘ž1=π‘ž11,Μ‡π‘ž2=π‘ž21,Μ‡π‘ž3=π‘ž31,Μˆπ‘ž1=Μ‡π‘ž11,Μˆπ‘ž2=Μ‡π‘ž21,Μˆπ‘ž3=Μ‡π‘ž31.(6.14) then the above Lagrangian can be written as𝐿0=12ξ€·Μ‡π‘ž211+Μ‡π‘ž221+Μ‡π‘ž231ξ€Έβˆ’12ξ€·π‘ž211+π‘ž231ξ€Έ.(6.15) Here the recursion relations areΜ‡π‘ž10=π‘ž11;Μ‡π‘ž20=π‘ž21,Μ‡π‘ž30=π‘ž31.(6.16) Accordingly, the extended Lagrangian can be given as:𝐿𝑇=12ξ€·Μ‡π‘ž211+Μ‡π‘ž221+Μ‡π‘ž231ξ€Έβˆ’12ξ€·π‘ž211+π‘ž231ξ€Έ+πœ†10ξ€·Μ‡π‘ž10βˆ’π‘ž11ξ€Έ+πœ†20ξ€·Μ‡π‘ž20βˆ’π‘ž21ξ€Έ+πœ†30ξ€·Μ‡π‘ž30βˆ’π‘ž31ξ€Έ.(6.17) The corresponding momenta are calculated as𝑝11=Μ‡π‘ž11,𝑝10=πœ†10,πœ‹10𝑝=0,21=Μ‡π‘ž21,𝑝20=πœ†20,πœ‹20𝑝=0,31=Μ‡π‘ž31,𝑝30=πœ†30,πœ‹30=0(6.18) Therefore, the canonical Hamiltonian reads𝐻0=𝑝2112+𝑝2212+𝑝2312+12ξ€·π‘ž211+π‘ž231ξ€Έ+πœ†10π‘ž11+πœ†20π‘ž21+πœ†30π‘ž31.(6.19) Thus, the set of HJPDE's can be written asπ»ξ…ž0=𝑃0+𝐻0Ξ¦=0,ξ…ž10=πœ‹10Ξ¦=0,ξ…ž20=πœ‹20Ξ¦=0,ξ…ž30=πœ‹30𝐻=0,ξ…ž10=𝑝10βˆ’πœ†10𝐻=0,ξ…ž20=𝑝20βˆ’πœ†20𝐻=0,ξ…ž30=𝑝30βˆ’πœ†30=0.(6.20) Then, the canonical path integral quantization for this system is constructed asπΎξ€·π‘žξ…žπ‘›1,π‘žξ…žπ‘›0,πœ†ξ…žπ‘›0,𝑑′;π‘žπ‘›1,π‘žπ‘›0,πœ†π‘›0ξ€Έ=ξ€œ,𝑑3𝑛=1ξ€·π·π‘žπ‘›1𝐷𝑝𝑛1𝑖expβ„ξ€œξ€·βˆ’π»0𝑑𝑑+πœ†π‘›0π‘‘π‘žπ‘›0+𝑝𝑛1π‘‘π‘žπ‘›1ξ€Έξ‚Ή,(6.21) where 𝑛=1,2,3.ξ€œπΎ=3𝑛=1ξ€·π·π‘žπ‘›1𝐷𝑝𝑛1𝑖expβ„ξ€œξƒ©βˆ’π‘2𝑛12βˆ’π‘ž2112βˆ’π‘ž2312+πœ†π‘›0ξ€·Μ‡π‘žπ‘›0βˆ’π‘žπ‘›1ξ€Έ+𝑝𝑛1Μ‡π‘žπ‘›1ξƒͺξƒ­.𝑑𝑑(6.22) Changing the integration over 𝑑𝑑 to summation and integrating over 𝑝11,𝑝21 and 𝑝31k times we get ξ‚€1𝐾=2πœ‹β„π‘–πœ€3π‘˜/2ξ€œ3𝑛=1π·π‘žπ‘›1𝑖expβ„ξ€œξƒ©Μ‡π‘ž2𝑛12βˆ’π‘ž2112βˆ’π‘ž2312+πœ†π‘›0ξ€·Μ‡π‘žπ‘›0βˆ’π‘žπ‘›1ξ€Έξƒͺξƒ­=ξ‚€1𝑑𝑑2πœ‹β„π‘–πœ€3π‘˜/2ξ€œπ·π‘ž11π·π‘ž21π·π‘ž31𝑖expβ„ξ€œπΏπ‘‡ξ‚Ή.𝑑𝑑(6.23)

7. Conclusion

In this work, we have investigated the canonical path integral quantization of higher-order regular Lagrangians. Where the higher-order regular Lagrangians are first treated as first-order singular Lagrangians, this means that each velocity term Μ‡π‘žπ‘›,𝑖 is replaced by a new function π‘žπ‘›,𝑖+1, which is led to a constraint equation, π‘žπ‘›,𝑖+1βˆ’Μ‡π‘žπ‘›,𝑖=0, that is added to the original Lagrangian. The same procedure is repeated for the second and other higher order terms of velocities. Every time, a new constraint is obtained and added to the original Lagrangian. As a result to this procedure, the new constructed Lagrangian is the extended first-order Lagrangian.

Once the extended Lagrangian is obtained, it is treated using the well-known Hamilton-Jacobi method which enables us to obtain the equations of motion. Besides, the action integral can be derived and the quantization of the system may be investigated using the canonical path integral approximation.

In this treatment, we believe that the local structure of phase space and its local simplistic geometry is more transparent than in Ostrogradski's approach. In Ostrogradski's approach, the structure of phase space leads to confusion when considering canonical path integral quantization.