Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 158983, 16 pages
http://dx.doi.org/10.1155/2012/158983
Research Article

Vibration of an Offshore Structure Having the Form of a Hollow Column Partially Filled with Multiple Fluids and Immersed in Water

Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung 83347, Taiwan

Received 20 February 2012; Accepted 29 June 2012

Academic Editor: Carl M. Larsen

Copyright © 2012 Hsien-Yuan Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nagaya, “Transient response in flexure to general uni-directional loads of variable cross-section beam with concentrated tip inertias immersed in a fluid,” Journal of Sound and Vibration, vol. 99, no. 3, pp. 361–378, 1985. View at Google Scholar · View at Scopus
  2. K. Nagaya and Y. Hai, “Seismic response of underwater members of variable cross section,” Journal of Sound and Vibration, vol. 103, no. 1, pp. 119–138, 1985. View at Google Scholar · View at Scopus
  3. J. Y. Chang and W. H. Liu, “Some studies on the natural frequencies of immersed restrained column,” Journal of Sound and Vibration, vol. 130, no. 3, pp. 516–524, 1989. View at Google Scholar · View at Scopus
  4. A. Uściłowska and J. A. Kołodziej, “Free vibration of immersed column carrying a tip mass,” Journal of Sound and Vibration, vol. 216, no. 1, pp. 147–157, 1998. View at Google Scholar · View at Scopus
  5. H. R. Öz, “Natural frequencies of an immersed beam carrying a tip mass with rotatory inertia,” Journal of Sound and Vibration, vol. 266, no. 5, pp. 1099–1108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. T. Chan and J. Z. Zhang, “Free vibration of a cantilever tube partially filled with liquid,” Journal of Sound and Vibration, vol. 182, no. 2, pp. 185–190, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Amabili, “Vibrations of circular tubes and shells filled and partially immersed in dense fluids,” Journal of Sound and Vibration, vol. 221, no. 4, pp. 567–585, 1999. View at Google Scholar · View at Scopus
  8. J. S. Wu and C. T. Chen, “An exact solution for the natural frequencies and mode shapes of an immersed elastically restrained wedge beam carrying an eccentric tip mass with mass moment of inertia,” Journal of Sound and Vibration, vol. 286, no. 3, pp. 549–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Wu and S. H. Hsu, “A unified approach for the free vibration analysis of an elastically supported immersed uniform beam carrying an eccentric tip mass with rotary inertia,” Journal of Sound and Vibration, vol. 291, no. 3–5, pp. 1122–1147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Wu and S. H. Hsu, “The discrete methods for free vibration analyses of an immersed beam carrying an eccentric tip mass with rotary inertia,” Ocean Engineering, vol. 34, no. 1, pp. 54–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Y. Lin, “Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements,” Journal of Sound and Vibration, vol. 309, no. 1-2, pp. 262–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Y. Lin, “On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements,” Structural Engineering and Mechanics, vol. 29, no. 5, pp. 531–550, 2008. View at Google Scholar · View at Scopus
  13. H. Y. Lin, “On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements,” Journal of Sound and Vibration, vol. 319, no. 1-2, pp. 593–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Chakrabarti and R. E. Frampton, “Review of riser analysis techniques,” Applied Ocean Research, vol. 4, no. 2, pp. 73–90, 1982. View at Google Scholar · View at Scopus