Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 245315, 13 pages
http://dx.doi.org/10.1155/2012/245315
Research Article

Optimal Control of a Fed-Batch Fermentation Involving Multiple Feeds

1School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai 264005, Shandong, China
2School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
3School of Mathematical Science, Huaiyin Normal University, Huai'an 223300, Jiangsu, China

Received 19 May 2011; Accepted 14 November 2011

Academic Editor: Pablo González-Vera

Copyright © 2012 Chongyang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Menzel, A. P. Zeng, and W. D. Deckwer, “High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae,” Enzyme and Microbial Technology, vol. 20, no. 2, pp. 82–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. A. P. Zeng and H. Biebl, “Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends,” Advances in Biochemical Engineering/Biotechnology, vol. 74, pp. 239–259, 2002. View at Google Scholar · View at Scopus
  3. A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Gunzel, and W. D. Deckwer, “Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation,” Biotechnology and Bioengineering, vol. 44, no. 8, pp. 902–911, 1994. View at Publisher · View at Google Scholar
  4. C. Gao, E. Feng, Z. Wang, and Z. Xiu, “Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls,” Journal of Industrial and Management Optimization, vol. 1, no. 3, pp. 377–388, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. C.-X. Gao, K.-Z. Li, E.-M. Feng, and Z.-L. Xiu, “Nonlinear impulsive system of fed- batch culture in fermentative production and its properties,” Chaos Solitons Fractals, vol. 28, pp. 271–277, 2006. View at Google Scholar
  6. Z. Gong, “A multistage system of microbial fed-batch fermentation and its parameter identification,” Mathematics and Computers in Simulation, vol. 80, no. 9, pp. 1903–1910, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. H.-C. Lim and K.-S. Lee, “Control of bioreactor systems,” in Biotechnology, K. Schugerl, Ed., vol. 4 of Measuring, Modelling and Control, pp. 506–560, VCH, Weinhelm, Germany, 1991. View at Google Scholar
  8. C. Liu, “Optimal control for nonlinear dynamical system of microbial fed-batch culture,” Journal of Computational and Applied Mathematics, vol. 232, no. 2, pp. 252–261, 2009. View at Publisher · View at Google Scholar
  9. H. J. Oberle and B. Sothmann, “Numerical computation of optimal feed rates for a fed-batch fermentation model,” Journal of Optimization Theory and Applications, vol. 100, no. 1, pp. 1–13, 1999. View at Google Scholar
  10. D. Sarkar and J. M. Modak, “Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables,” Computers and Chemical Engineering, vol. 28, no. 5, pp. 789–798, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. S. Shin and H. C. Lim, “Maximization of metabolite in fed-batch cultures. Sufficient conditions for singular arc and optimal feed rate profiles,” Biochemical Engineering Journal, vol. 37, no. 1, pp. 62–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Wang, E. Feng, and Z. Xiu, “Modeling and parameter identification of microbial bioconversion in fed-batch cultures,” Journal of Process Control, vol. 18, no. 5, pp. 458–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wang, E. Feng, and Z. Xiu, “Optimality condition of the nonlinear impulsive system in fed-batch fermentation,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 1, pp. 12–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Liu, Z. Gong, and E. Feng, “Modeling and optimal control of a nonlinear dynamical system in microbial fed-batch fermentation,” Mathematical and Computer Modelling, vol. 53, no. 1-2, pp. 168–178, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. C. Liu and E. Feng, “Optimal control of switched autonomous systems in microbial fed-batch cultures,” International Journal of Computer Mathematics, vol. 88, no. 2, pp. 396–407, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. J. Ye, E. Feng, H. Yin, and Z. Xiu, “Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and pH logic control,” Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 364–376, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. Z. Gong, C. Liu, E. Feng, L. Wang, and Y. Yu, “Modelling and optimization for a switched system in microbial fed-batch culture,” Applied Mathematical Modelling, vol. 35, no. 7, pp. 3276–3284, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. D. Levišauskas, V. Galvanauskas, R. Simutis, A. Žilinskas, and J. Žilinskas, “Optimization of biomass production in fed-batch culture by feed and dilution control actions,” Information Technology and Control, vol. 35, no. 4, pp. 383–388, 2006. View at Google Scholar
  19. R. Luus and D. Hennessy, “Optimization of fed-batch reactors by the Luus-Jaakola optimization procedure,” Industrial and Engineering Chemistry Research, vol. 38, no. 5, pp. 1948–1955, 1999. View at Google Scholar
  20. Z.-L. Xiu, A.-P. Zeng, and L.-J. An, “Mathematical modelling of kinetics and research on multiplicity of glyceroll bioconversion to 1,3-propanediol,” Journal of Dalian University of Technology, vol. 4, pp. 428–433, 2000. View at Google Scholar
  21. D.-K. Arrowsmith and C.-M. Place, Ordinary Differential Equations, Chapman and Hall, London, UK, 1982.
  22. W.-H. Ray, Advanced Process Control, McGraw-Hill, New York, NY, USA, 1981.
  23. K.-L. Teo, C.-J. Goh, and K.-H. Wong, A Unified Computational Approach to Optimal Control Problems, Long Scientific Technical, Essex, UK, 1991.
  24. A. Bryson and Y.-C. Ho, Applied Optimal Control, Halsted Press, New York, NY, USA, 1975.
  25. J.-H. Holland, Adaptaion in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Mich, USA, 1975.
  26. H.-P. Schwefel, Numerical Optimization of Computer Models, John Willey & Sons, New York, NY, USA, 1981.
  27. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” American Association for the Advancement of Science. Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Google Scholar · View at Zentralblatt MATH
  28. K. Price and R. Storn, “Differential Evolution—a simple evolution strategy for fast optimization,” Dr Dobb's Journal, vol. 22, pp. 18–24, 1997. View at Google Scholar · View at Scopus
  29. J. P. Chiou and F. S. Wang, “Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process,” Computers and Chemical Engineering, vol. 23, no. 9, pp. 1277–1291, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. F. S. Wang and C. H. Shyu, “Optimal feed policy for fed-batch fermentation of ethanol production by Zymomous mobilis,” Bioprocess Engineering, vol. 17, no. 2, pp. 63–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. B. V. Babu and R. Angira, “Modified differential evolution (MDE) for optimization of non-linear chemical processes,” Computers and Chemical Engineering, vol. 30, no. 6-7, pp. 989–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus