Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 307939, 12 pages
http://dx.doi.org/10.1155/2012/307939
Research Article

An Alternative HSS Preconditioner for the Unsteady Incompressible Navier-Stokes Equations in Rotation Form

Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA

Received 2 November 2011; Accepted 27 January 2012

Academic Editor: Kok Kwang Phoon

Copyright © 2012 Jia Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA, 2005.
  2. M. A. Olshanskii, “An iterative solver for the Oseen problem and numerical solution of incompressible Navier-Stokes equations,” Numerical Linear Algebra with Applications, vol. 6, no. 5, pp. 353–378, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. M. A. Olshanskii, “A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 47-48, pp. 5515–5536, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  4. M. A. Olshanskii, “Preconditioned iterations for the linearized Navier-Stokes system in the rotation form,” in Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, K. J. Bathe, Ed., pp. 1074–1077, 2003.
  5. M. A. Olshanskii and A. Reusken, “Navier-Stokes equations in rotation form: a robust multigrid solver for the velocity problem,” SIAM Journal on Scientific Computing, vol. 23, no. 5, pp. 1683–1706, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Physics of Fluids, vol. 8, no. 12, pp. 2182–2189, 1965. View at Google Scholar
  7. H. C. Elman, D. J. Silvester, and A. J. Wathen, “Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations,” Numerische Mathematik, vol. 90, no. 4, pp. 665–688, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. M. Benzi, M. J. Gander, and G. H. Golub, “Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems,” BIT. Numerical Mathematics, vol. 43, pp. 881–900, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. M. Benzi and G. H. Golub, “A preconditioner for generalized saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 20–41, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. Benzi and V. Simoncini, “On the eigenvalues of a class of saddle point matrices,” Numerische Mathematik, vol. 103, no. 2, pp. 173–196, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. J. Liu, Preconditioned Krylov subspace methods for incompressible flow problems, Ph.D. thesis, Emory University, Ann Arbor, Mich, USA, 2006.
  13. Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, Pa, USA, 2nd edition, 2003.
  14. Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 3, pp. 856–869, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. Z.-Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 3, pp. 603–626, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. V. Simoncini and M. Benzi, “Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 2, pp. 377–389, 2004/05. View at Publisher · View at Google Scholar · View at MathSciNet
  17. O. A. Karakashian, “On a Galerkin-Lagrange multiplier method for the stationary Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 19, no. 5, pp. 909–923, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. J. Peters, V. Reichelt, and A. Reusken, “Fast iterative solvers for discrete Stokes equations,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp. 646–666, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. G. M. Kobelkov and M. A. Olshanskii, “Effective preconditioning of Uzawa type schemes for a generalized Stokes problem,” Numerische Mathematik, vol. 86, no. 3, pp. 443–470, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet