Abstract

We study normal criterion of meromorphic functions shared values, we obtain the following. Let 𝐹 be a family of meromorphic functions in a domain 𝐷, such that function π‘“βˆˆπΉ has zeros of multiplicity at least 2, there exists nonzero complex numbers 𝑏𝑓,𝑐𝑓 depending on 𝑓 satisfying (i)𝑏𝑓/𝑐𝑓 is a constant;  (ii)min{𝜎(0,𝑏𝑓),𝜎(0,𝑐𝑓),𝜎(𝑏𝑓,𝑐𝑓)β‰₯π‘š} for some π‘š>0;  (iii)(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)β‰ π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1 or (1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1⇒𝑓(𝑧)=𝑏𝑓, then 𝐹 is normal. These results improve some earlier previous results.

1. Introduction and Main Results

We use 𝐢 to denote the open complex plane, 𝐢(=𝐢βˆͺ{∞}) to denote the extended complex plane and 𝐷 to denote a domain in 𝐢. A family 𝐹 of meromorphic functions defined in π·βŠ‚πΆ is said to be normal, if for any sequence {𝑓𝑛}βŠ‚πΉ contains a subsequence which converges spherically, and locally, uniformly in 𝐷 to a meromorphic function or ∞. Clearly 𝐹 is said to be normal in 𝐷 if and only if it is normal at every point of 𝐷 see [1].

Let 𝐷 be a domain in 𝐢. For 𝑓 meromorphic on 𝐢 and π‘ŽβˆˆπΆ, set 𝐸𝑓(π‘Ž)=π‘“βˆ’1({π‘Ž})∩𝐷={π‘§βˆˆπ·βˆΆπ‘“(𝑧)=π‘Ž}.(1.1)

Two meromorphic functions 𝑓 and 𝑔 on 𝐷 are said to share the value π‘Ž if 𝐸𝑓(π‘Ž)=𝐸𝑔(π‘Ž). Let π‘Ž and 𝑏 be complex numbers. If 𝑔(𝑧)=𝑏 whenever 𝑓(𝑧)=π‘Ž, we write 𝑓(𝑧)=π‘Žβ‡’π‘”(𝑧)=𝑏.(1.2) If 𝑓(𝑧)=π‘Žβ‡’π‘”(𝑧)=𝑏 and 𝑔(𝑧)=𝑏⇒𝑓(𝑧)=π‘Ž, we write 𝑓(𝑧)=π‘ŽβŸΊπ‘”(𝑧)=𝑏.(1.3)

According to Bloch’s principle [2], every condition which reduces a meromorphic function in the plane 𝐢 to π‘Ž constant forces a family of meromorphic functions in π‘Ž domain 𝐷 normal. Although the principle is false in general (see [3]), many authors proved normality criterion for families of meromorphic functions by starting from Liouville-Picard type theorem (see [4]). It is also more interesting to find normality criteria from the point of view of shared values. In this area, Schwick [5] first proved an interesting result that a family of meromorphic functions in a domain is normal if in which every function shares three distinct finite complex numbers with its first derivative. And later, more results about normality criteria concerning shared values have emerged [6–9]. In recent years, this subject has attracted the attention of many researchers worldwide.

In this paper, we use 𝜎(π‘₯,𝑦) to denote the spherical distance between π‘₯ and 𝑦 and the definition of the spherical distance can be found in [10].

In 2008, Fang and Zalcman [11] proved the following results.

Theorem 1.1 (see [11]). Let 𝑓 be a transcendental function. Let π‘Ž(β‰ 0) and 𝑏 be complex numbers, and let 𝑛(β‰₯2),π‘˜ be positive integers, then 𝑓+π‘Ž(π‘“ξ…ž)𝑛 assumes every value π‘βˆˆπΆ infinitely often.

Theorem 1.2 (see [11]). Let 𝐹 be a transcendental function. Let π‘Ž(β‰ 0) and 𝑏 be complex numbers, and let 𝑛(β‰₯2),π‘˜ be positive integers. If for every π‘“βˆˆπΉ has multiple zeros, and 𝑓+π‘Ž(π‘“ξ…ž)𝑛≠𝑏, then 𝐹 is normal in 𝐷.

In 2009, Xu et al. [12] proved the following results.

Theorem 1.3 (see [12]). Let 𝑓 be a transcendental function. Let π‘Ž(β‰ 0) and let 𝑏 be complex numbers, and 𝑛,π‘˜ be positive integers, which satisfy 𝑛β‰₯π‘˜+1, then 𝑓+π‘Ž(𝑓(π‘˜))𝑛 assumes each value π‘βˆˆπΆ infinitely often.

Theorem 1.4 (see [12]). Let 𝑓 be a transcendental function. Let π‘Ž(β‰ 0) and 𝑏 be complex numbers, and let 𝑛,π‘˜ be positive integers, which satisfy 𝑛β‰₯π‘˜+1. If for every π‘“βˆˆπΉ has only zeros of multiplicity at least π‘˜+1, and satisfies 𝑓+π‘Ž(𝑓(π‘˜))𝑛≠𝑏, then 𝐹 is normal in 𝐷.

In Theorems 1.2 and 1.4, the constants are the same for each π‘“βˆˆπΉ. Now we will prove the condition for the constants be the same can be relaxed to some extent.

Theorem A. Let 𝐹 be a family of meromorphic functions in the unit disc Ξ”, and π‘˜ be a positive integer and π‘˜β‰₯3. For every π‘“βˆˆπΉ, such that all zeros of 𝑓 have multiplicity at least 2, there exist finite nonzero complex numbers 𝑏𝑓,𝑐𝑓 depending on 𝑓 satisfying that(i)𝑏𝑓/𝑐𝑓 is a constant; (ii)min{𝜎(0,𝑏𝑓),𝜎(0,𝑐𝑓),𝜎(𝑏𝑓,𝑐𝑓)β‰₯π‘š} for some π‘š>0; (iii)(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)β‰ π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1.Then 𝐹 is normal in Ξ”.

Theorem B. Let 𝐹 be a family of meromorphic functions in the unit disc Ξ”, and π‘˜(β‰₯3) be a positive integer. For every π‘“βˆˆπΉ, such that all zeros of 𝑓 have multiplicity at least 2, there exist finite nonzero complex numbers 𝑏𝑓,𝑐𝑓 depending on 𝑓 satisfying that(i)𝑏𝑓/𝑐𝑓is a constant; (ii)min{𝜎(0,𝑏𝑓),𝜎(0,𝑐𝑓),𝜎(𝑏𝑓,𝑐𝑓)β‰₯π‘š} for some π‘š>0; (iii)(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1⇒𝑓(𝑧)=𝑏𝑓.Then 𝐹 is normal in Ξ”.

2. Some Lemmas

In order to prove our theorems, we require the following results.

Lemma 2.1 (see [7]). Let 𝐹 be a family of meromorphic functions in a domain 𝐷, and π‘˜ be a positive integer, such that each function π‘“βˆˆπΉ has only zeros of multiplicity at least π‘˜, and suppose that there exists 𝐴β‰₯1 such that |𝑓(π‘˜)(𝑧)|≀𝐴 whenever 𝑓(𝑧)=0,π‘“βˆˆπΉ. If 𝐹 is not normal at 𝑧0∈𝐷, then for each 0β‰€π›Όβ‰€π‘˜, there exist a sequence of points π‘§π‘›βˆˆπ·,𝑧𝑛→𝑧0, a sequence of positive numbers πœŒπ‘›β†’0+, and a subsequence of functions π‘“π‘›βˆˆπΉ such that 𝑔𝑛𝑓(𝜁)=𝑛𝑧𝑛+πœŒπ‘›πœξ€ΈπœŒπ›Όπ‘›β†’π‘”(𝜁)(2.1) locally uniformly with respect to the spherical metric in 𝐢, where 𝑔 is a nonconstant meromorphic function, all of whose zeros have multiplicity at least π‘˜, such that 𝑔#(𝜁)≀𝑔#(0)=π‘˜π΄+1. Morever,  𝑔 has order at most 2.
Here as usual, 𝑔#(𝜁)=|π‘”ξ…ž(𝜁)|/(1+|𝑔(𝜁)|2) is the spherical derivative.

Lemma 2.2 (see [10]). Let π‘š be any positive number. Then, MΓΆbius transformation 𝑔 satisfies 𝜎(𝑔(π‘Ž),𝑔(𝑏))β‰₯π‘š,𝜎(𝑔(𝑏),𝑔(𝑐))β‰₯π‘š,𝜎(𝑔(𝑐),𝑔(π‘Ž))β‰₯π‘š, for some constants π‘Ž,𝑏, and 𝑐 also satisfy the uniform Lipschitz condition 𝜎(𝑔(𝑧),𝑔(𝑀))β‰€π‘˜π‘šπœŽ(𝑧,𝑀),(2.2) where π‘˜π‘š is a constant depending on π‘š.

3. Proof of Theorems

Proof of Theorem A. Let 𝑀=𝑏𝑓/𝑐𝑓. We can find nonzero constants 𝑏 and 𝑐 satisfying 𝑀=𝑏/𝑐. For each π‘“βˆˆπΉ, define a MΓΆbius map 𝑔𝑓 by 𝑔𝑓=𝑐𝑓𝑧/𝑐, thus π‘”π‘“βˆ’1=𝑐𝑧/𝑐𝑓.
Next we will show 𝐺={(π‘”π‘“βˆ’1βˆ˜π‘“)βˆ£π‘“βˆˆπΉ} is normal in Ξ”. Suppose to the contrary, 𝐺 is not normal in Ξ”. Then by Lemma 2.1. We can find π‘”π‘›βˆˆπΊ,π‘§π‘›βˆˆΞ”, and πœŒπ‘›β†’0+, such that 𝑇𝑛(𝜁)=𝑔𝑛(𝑧𝑛+πœŒπ‘›πœ)/πœŒπ‘›1/(π‘˜+1) converges locally uniformly with respect to the spherical metric to a nonconstant meromorphic function 𝑇(𝜁) whose zeros of multiplicity at least 2 and spherical derivative is limited and 𝑇 has order at most 2.
We now consider three cases.
Case 1. If (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)β‰‘π‘π‘˜/π‘π‘˜βˆ’1, then 𝑇(𝜁) is a polynomial with degree at most 1, a contradiction.
Case 2. If there exists 𝜁0 such that (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁0)=π‘π‘˜/π‘π‘˜βˆ’1. Noting that πœŒπ‘›π‘‡π‘›(𝜁)+(1/π‘π‘˜βˆ’1)(π‘‡ξ…žπ‘›)π‘˜(𝜁)βˆ’(π‘π‘˜/π‘π‘˜βˆ’1)β†’(1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)βˆ’(π‘π‘˜/π‘π‘˜βˆ’1). By Hurwitz’s theorem, there exist a sequence of points πœπ‘›β†’πœ0 such that (for large enough 𝑛) 0=πœŒπ‘›π‘‡π‘›ξ€·πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1ξ€·π‘‡ξ…žπ‘›ξ€Έπ‘˜ξ€·πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1=𝑔𝑛𝑧𝑛+πœŒπ‘›πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1ξ€·π‘”ξ…žπ‘›ξ€Έπ‘˜ξ€·π‘§π‘›+πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1=𝑐𝑐𝑓𝑓𝑛𝑧𝑛+πœŒπ‘›πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1π‘π‘˜π‘π‘˜π‘“ξ€·π‘“ξ…žπ‘›ξ€Έπ‘˜ξ€·π‘§π‘›+πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1.(3.1) Hence 𝑓𝑛(𝑧𝑛+πœŒπ‘›πœπ‘›)+(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…žπ‘›)π‘˜(𝑧𝑛+πœπ‘›)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1. This contradicts with the suppose of Theorem A.
Case 3. If (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)β‰ π‘π‘˜/π‘π‘˜βˆ’1. Let 𝑐1,𝑐2,…,π‘π‘˜ be the solution of the equation π‘€π‘˜=π‘π‘˜, then π‘‡ξ…ž(𝜁)≠𝑐𝑖(𝑖=1,2,…,π‘˜). When 𝑇(𝜁) is a rational function, then π‘‡ξ…ž(𝜁) is also a rational function. By Picard Theorem we can deduce that π‘‡ξ…ž(𝜁) is a constant (π‘˜β‰₯3). Hence 𝑇(𝜁) is a polynomial with degree at most 1. This contradicts with 𝑇(𝜁) has zeros of multiplicity at least 2. When 𝑇(𝜁) is a transcendental function, combining with the second main theorem, we have π‘‡ξ€·π‘Ÿ,π‘‡ξ…žξ€Έβ‰€π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έ+π‘˜ξ“π‘–=1𝑁1π‘Ÿ,π‘‡ξ…žβˆ’π‘π‘–ξ‚ξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€12π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€12π‘‡ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έ.(3.2) Hence, 𝑇(π‘Ÿ,π‘‡ξ…ž)≀𝑠(π‘Ÿ,π‘‡ξ…ž), a contradiction.
Hence 𝐺={(π‘”π‘“βˆ’1βˆ˜π‘“)βˆ£π‘“βˆˆπΉ} is normal and equicontinuous in Ξ”. There given (πœ€/π‘˜π‘š>0), where π‘˜π‘š is the constant of Lemma 2.2, there exists 𝛿>0 such that for the spherical distance 𝜎(π‘₯,𝑦)<𝛿, πœŽπ‘”ξ‚€ξ‚€π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ’1<πœ€(𝑦)π‘˜π‘š(3.3) for each π‘“βˆˆπΉ. Hence by Lemma 2.2. π‘”πœŽ(𝑓(π‘₯),𝑓(𝑦))=πœŽξ‚€ξ‚€π‘“βˆ˜π‘”π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ˜π‘”π‘“βˆ’1ξ‚ξ‚βˆ˜π‘“(𝑦)=π‘˜π‘šπœŽπ‘”ξ‚€ξ‚€π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ’1ξ‚ξ‚βˆ˜π‘“(𝑦)<πœ€.(3.4) Therefore, the family is equicontinuous in Ξ”. This completes the proof of Theorem A.

Proof of Theorem B. Let 𝑀=𝑏𝑓/𝑐𝑓. We can find nonzero constants 𝑏 and 𝑐 satisfying 𝑀=𝑏/𝑐. For each π‘“βˆˆπΉ, define a MΓΆbius map 𝑔𝑓 by 𝑔𝑓=𝑐𝑓𝑧/𝑐, thus π‘”π‘“βˆ’1=𝑐𝑧/𝑐𝑓.
Next we will show 𝐺={(π‘”π‘“βˆ’1βˆ˜π‘“)βˆ£π‘“βˆˆπΉ} is normal in Ξ”. Suppose to the contrary, 𝐺 is not normal in Ξ”. Then by Lemma 2.1. We can find π‘”π‘›βˆˆπΊ,π‘§π‘›βˆˆΞ”, and πœŒπ‘›β†’0+, such that 𝑇𝑛(𝜁)=𝑔𝑛(𝑧𝑛+πœŒπ‘›πœ)/πœŒπ‘›1/(π‘˜+1) converges locally uniformly with respect to the spherical metric to a nonconstant meromorphic function 𝑇(𝜁) whose spherical derivate is limited and 𝑇 has order at most 2.
We will also consider three cases.
Case 1. If (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)β‰‘π‘π‘˜/π‘π‘˜βˆ’1, then 𝑇(𝜁) is a polynomial with degree at most 1, a contradiction.
Case 2. If there exists 𝜁0 such that (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁0)=π‘π‘˜/π‘π‘˜βˆ’1. Noting that πœŒπ‘›π‘‡π‘›(𝜁)+(1/π‘π‘˜βˆ’1)(π‘‡ξ…žπ‘›)π‘˜(𝜁)βˆ’(π‘π‘˜/π‘π‘˜βˆ’1)β†’(1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)βˆ’(π‘π‘˜/π‘π‘˜βˆ’1). By Hurwitz’s theorem, there exist a sequence of points πœπ‘›β†’πœ0 such that (for large enough 𝑛) 0=πœŒπ‘›π‘‡π‘›ξ€·πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1ξ€·π‘‡ξ…žπ‘›ξ€Έπ‘˜ξ€·πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1=𝑔𝑛𝑧𝑛+πœŒπ‘›πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1ξ€·π‘”ξ…žπ‘›ξ€Έπ‘˜ξ€·π‘§π‘›+πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1=𝑐𝑐𝑓𝑓𝑛𝑧𝑛+πœŒπ‘›πœπ‘›ξ€Έ+1π‘π‘˜βˆ’1π‘π‘˜π‘π‘˜π‘“ξ€·π‘“ξ…žπ‘›ξ€Έπ‘˜ξ€·π‘§π‘›+πœπ‘›ξ€Έβˆ’π‘π‘˜π‘π‘˜βˆ’1.(3.5) Hence 𝑓𝑛(𝑧𝑛+πœŒπ‘›πœπ‘›)+(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…žπ‘›)π‘˜(𝑧𝑛+πœπ‘›)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1, then we have 𝑓𝑛(𝑧𝑛+πœŒπ‘›πœπ‘›)=𝑏𝑓 by the condition (iii)(1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1⇒𝑓(𝑧)=𝑏𝑓.
Thus π‘‡ξ€·πœ0ξ€Έ=limπ‘›β†’βˆžπ‘”π‘›ξ€·π‘§π‘›+πœŒπ‘›πœπ‘›ξ€ΈπœŒπ‘›=limπ‘›β†’βˆžξ€·π‘§π‘π‘“π‘›+πœŒπ‘›πœπ‘›ξ€Έπ‘π‘“πœŒπ‘›=limπ‘›β†’βˆžπ‘πœŒπ‘›=∞.(3.6) This is a contradiction.
Case 3. If (1/π‘π‘˜βˆ’1)(π‘‡ξ…ž)π‘˜(𝜁)β‰ π‘π‘˜/π‘π‘˜βˆ’1. Let 𝑐1,𝑐2,…,π‘π‘˜ be the solution of the equation π‘€π‘˜=π‘π‘˜, then π‘‡ξ…ž(𝜁)≠𝑐𝑖(𝑖=1,2,…,π‘˜). When 𝑇(𝜁) is a rational function, then π‘‡ξ…ž(𝜁) is also a rational function. By Picard theorem we can deduce that π‘‡ξ…ž(𝜁) is a constant (π‘˜β‰₯3). Hence 𝑇(𝜁) is a polynomial with degree at most 1. This contradicts with 𝑇(𝜁) has zeros of multiplicity at least 2. When 𝑇(𝜁) is a transcendental function, combining with the second main theorem, we have π‘‡ξ€·π‘Ÿ,π‘‡ξ…žξ€Έβ‰€π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έ+π‘˜ξ“π‘–=1𝑁1π‘Ÿ,π‘‡ξ…žβˆ’π‘π‘–ξ‚ξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€12π‘ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έβ‰€12π‘‡ξ€·π‘Ÿ,π‘‡ξ…žξ€Έξ€·+π‘ π‘Ÿ,π‘‡ξ…žξ€Έ.(3.7) Hence, 𝑇(π‘Ÿ,π‘‡ξ…ž)≀𝑠(π‘Ÿ,π‘‡ξ…ž), a contradiction.
Hence 𝐺={(π‘”π‘“βˆ’1βˆ˜π‘“)βˆ£π‘“βˆˆπΉ} is normal and equicontinuous in Ξ”. There given (πœ€/π‘˜π‘š>0), where π‘˜π‘š is the constant of Lemma 2.2, there exists 𝛿>0 such that for the spherical distance 𝜎(π‘₯,𝑦)<𝛿, πœŽπ‘”ξ‚€ξ‚€π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ’1<πœ€(𝑦)π‘˜π‘š(3.8) for each π‘“βˆˆπΉ. Hence by Lemma 2.2. π‘”πœŽ(𝑓(π‘₯),𝑓(𝑦))=πœŽξ‚€ξ‚€π‘“βˆ˜π‘”π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ˜π‘”π‘“βˆ’1ξ‚ξ‚βˆ˜π‘“(𝑦)=π‘˜π‘šπœŽπ‘”ξ‚€ξ‚€π‘“βˆ’1ξ‚ξ‚€π‘”βˆ˜π‘“(π‘₯),π‘“βˆ’1ξ‚ξ‚βˆ˜π‘“(𝑦)<πœ€.(3.9) Therefore, the family is equicontinuous in Ξ”. This completes the proof of Theorem B.

Remark 3.1. Using the similar argument, if the condition (iii)𝑓(𝑧)=𝑏𝑓 when (1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1 is replaced by (iii)|𝑓(𝑧)|β‰₯|𝑏𝑓| when (1/π‘π‘“π‘˜βˆ’1)(π‘“ξ…ž)π‘˜(𝑧)+𝑓(𝑧)=π‘π‘˜π‘“/π‘π‘“π‘˜βˆ’1, then 𝐹 is normal too.

Authors’ Contribution

W. Chen performed the proof and drafted the paper. All authors read and approved the final paper.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgment

This paper is supported by Nature Science Foundation of Fujian Province (2012J01022). The authors wish to thank the referee for some valuable corrections.