Journal of Applied Mathematics

Journal of Applied Mathematics / 2012 / Article

Research Article | Open Access

Volume 2012 |Article ID 347570 |

Shuguo Wang, Chunyuan He, Hongxing Yao, "Cluster Anti-Synchronization of Complex Networks with Nonidentical Dynamical Nodes", Journal of Applied Mathematics, vol. 2012, Article ID 347570, 12 pages, 2012.

Cluster Anti-Synchronization of Complex Networks with Nonidentical Dynamical Nodes

Academic Editor: Chong Lin
Received05 Jun 2012
Accepted19 Jun 2012
Published28 Aug 2012


This paper investigates a new cluster antisynchronization scheme in the time-varying delays coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently between the nodes in one community that have direct connections to the nodes in other communities and the nodes without direct connections with the nodes in other communities strategy; some sufficient criteria are derived to ensure cluster anti-synchronization of the network model. Particularly, the weight configuration matrix is not assumed to be irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.

1. Introduction

During the past decade, the research on synchronization and dynamical behavior analysis of complex network systems has become a new and important direction in this field [1ā€“6]; many control approaches and many different synchronization phenomena have been developed, such as impulsive control, pinning control and complete synchronization, phase synchronization, cluster synchronization, mixed synchronization, and generalized synchronization, which have been investigated since ten years ago in [7, 8] and references therein.

Cluster synchronization means that nodes in the same group synchronize with each other, but there is no synchronization between nodes in different groups [9, 10]. Wang et al. [11] investigated the cluster synchronization of the dynamical networks with community structure and nonidentical nodes and with identical local dynamics for all individual nodes in each community, which were considered by using some feedback control schemes. Wu and Lu [12] investigated cluster synchronization in the adaptive complex dynamical networks with nonidentical nodes by a local control method and a novel adaptive strategy for the coupling strengths of the networks. Qin and Chen [13] investigated the stability of selected cluster synchronization in coupled Josephson equations. Ma et al. [14] showed that the arbitrarily selected cluster synchronization manifolds could be stabilized by constructing a special coupled matrix for connected chaotic networks. Wu et al. [15] investigated the anti-synchronization (AS) problem of two general complex dynamical networks with nondelayed and delayed coupling using pinning adaptive control method. Based on Lyapunov stability theory and Barbalat lemma, a sufficient condition is derived to guarantee the AS between two networks with nondelayed and delayed coupling. However, there is few theoretical result on the cluster anti-synchronization of linearly coupled complex networks with time-varying delays coupling.

Motivated by the aforementioned discussions, this paper aims to analyze the cluster anti-synchronization problem for the time-varying delays coupled complex dynamical networks. The main contributions of this paper are threefold: (1) the local dynamics in each community are identical, but those of different communities are nonidentical. (2) For achieving the synchronization, based on the community structure of the networks, the controllers are designed differently between the nodes in one community which have direct connections to the nodes in other communities and the nodes without direct connections with the nodes in other communities strategy; some sufficient criteria are derived to ensure cluster anti-synchronization of the network model. (3) According to Lyapunov stability theory, the sufficient conditions for achieving cluster anti-synchronization are obtained analytically. Compared with some similar designs, our controllers are very simple.

The paper is organized as follows: the network model is introduced followed by some definitions, lemmas, and hypotheses in Section 2. The cluster anti-synchronization of the complex coupled networks is discussed in Section 3. Simulations are obtained in Section 4. Finally, in Section 5 the various conclusions are discussed.

2. Model and Preliminaries

The network with time-varying delays coupling can be described by Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”),š‘–=1,2,ā€¦,š‘,(2.1) where š‘„š‘–(š‘”)=(š‘„š‘–1(š‘”),š‘„š‘–2(š‘”),ā€¦,š‘„š‘–š‘›(š‘”))š‘‡āˆˆš‘…š‘›is the state vector of node š‘–, š‘>0 is the coupling strength, andš‘“šœ™š‘–āˆ¶š‘…š‘›ā†’š‘…š‘› describes the local dynamics of nodes in the šœ™š‘–th community. For any pair of nodes š‘– and š‘—, if šœ™š‘–ā‰ šœ™š‘—, that is, nodes š‘– and š‘— belong to different communities, thenš‘“šœ™š‘–ā‰ š‘“šœ™š‘—, šœ‚šœ™š‘–(š‘”) is time-varying delay. Ī“1āˆˆš‘…š‘›Ć—š‘› and Ī“2āˆˆš‘…š‘›Ć—š‘› are inner-coupling matrices, for simplicity; we assume that Ī“1, Ī“2 are diagonal matrices with positive diagonal elements, Ī“1=diag(šœŒ1,šœŒ2,ā€¦,šœŒš‘›) with šœŒš‘–ā‰„0, Ī“2=diag(šœƒ1,šœƒ2,ā€¦,šœƒš‘›) with šœƒš‘–ā‰„0. ā€‰š“=(š‘Žš‘–š‘—)š‘Ć—š‘, šµ=(š‘š‘–š‘—)š‘Ć—š‘ are the weight configuration matrices. If there is a connection from node š‘– to node š‘— (š‘—ā‰ š‘–), then š‘Žš‘–š‘—=š‘Žš‘—š‘–>0, š‘š‘–š‘—=š‘š‘—š‘–>0; otherwise š‘Žš‘–š‘—=š‘Žš‘—š‘–=0, š‘š‘–š‘—=š‘š‘—š‘–=0, and the diagonal elements of matrix š“, šµ are defined as š‘Žš‘–š‘–=āˆ’š‘ī“š‘—=1,š‘—ā‰ š‘–š‘Žš‘—š‘–,š‘š‘–š‘–=āˆ’š‘ī“š‘—=1,š‘—ā‰ š‘–š‘š‘—š‘–,š‘–=1,2,ā€¦,š‘.(2.2) Particularly, the weight configuration matrices are not assumed to be irreducible.

When the control inputs š‘£š‘–(š‘”), š‘¢š‘–(š‘”)āˆˆš‘…š‘› (š‘–=1,2,ā€¦,š‘) are introduced, the controlled dynamical network with respect to network (2.1) can be written as Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘¢š‘–(š‘”),šœ™š‘–(š‘”)āˆˆāˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘£š‘–(š‘”),šœ™š‘–(š‘”)āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,(2.3) where š½šœ™š‘– denotes all the nodes in the šœ™š‘– th community and āˆ’š½šœ™š‘– represents the nodes in the šœ™š‘– th community, which have direct links with the nodes in other communities.

In this paper, let {š¶1,š¶2,ā€¦,š¶š‘š} denote š‘šā€‰ā€‰(2ā‰¤š‘šā‰¤š‘) communities of the networks and ā‹ƒš‘šš‘–=1š¶š‘–={1,2,ā€¦š‘}. If node š‘– belongs to the š‘—th community, then we denote šœ™š‘–=š‘—. We employ š‘“š‘–(ā‹…) to represent the local dynamics of all nodes in the š‘–th community. The local dynamics of individual nodes in different communities are assumed to be nonidentical, that is, if šœ™š‘–ā‰ šœ™š‘—, then š‘“šœ™š‘–ā‰ š‘“šœ™š‘—. Let š‘ šœ™š‘–(š‘”) be a solution of an isolated node in the šœ™š‘– th community, that is, Ģ‡š‘ š‘–(š‘”)=š‘“šœ™š‘–(š‘”,š‘ š‘–(š‘”)), where limš‘”ā†’āˆžā€–š‘ š‘–(š‘”)āˆ’š‘ š‘—(š‘”)ā€–ā‰ 0 (š‘–ā‰ š‘—) and the set š‘†={š‘ 1(š‘”),š‘ 2(š‘”),ā€¦,š‘ š‘š(š‘”)} is used as the cluster anti-synchronization manifold for network (2.3). Cluster anti-synchronization can be realized if and only if the manifold S is stable, where š‘ š‘˜(š‘”) may be an equilibrium point, a periodic orbit, or even a chaotic orbit.

Definition 2.1 (see [15]). The dynamical network (2.1) is said to achieve cluster anti-synchronization (CAS) if limš‘”ā†’āˆžā€–ā€–š‘’š‘–ā€–ā€–(š‘”)=limš‘”ā†’āˆžā€–ā€–š‘„š‘–(š‘”)+š‘ šœ™š‘–ā€–ā€–(š‘”)=0,š‘–=1,2,ā€¦,š‘.(2.4)

Lemma 2.2. For any two vectors x and y, a matrix Q>0 with compatible dimensions, one has 2š‘„š‘‡š‘¦ā‰¤š‘„š‘‡š‘„š‘„+š‘¦š‘‡š‘„āˆ’1š‘¦.(2.5)

Assumption 2.3 (see [15]). For any š‘„=(š‘„1,š‘„2,ā€¦,š‘„š‘›)š‘‡āˆˆš‘…š‘›, š‘¦=(š‘¦1,š‘¦2,ā€¦,š‘¦š‘›)š‘‡āˆˆš‘…š‘›, there exists a positive constant šæ such that, (š‘¦āˆ’š‘„)š‘‡(š‘“(š‘”,š‘¦)āˆ’š‘“(š‘”,š‘„))ā‰¤šæ(š‘¦āˆ’š‘„)š‘‡Ī“(š‘¦āˆ’š‘„), where Ī“ is a positive definite matrix. Here š‘„ and š‘¦ are time-varying vectors.

Assumption 2.4. š‘“(š‘„,š‘”) is an odd function of š‘„, that is, š‘“(āˆ’š‘„,š‘”)=āˆ’š‘“(š‘„,š‘”) for arbitrary š‘„āˆˆš‘…š‘›.

Assumption 2.5. šœ‚šœ™š‘–(š‘”) is a differential function with 0ā‰¤Ģ‡šœ‚šœ™š‘–(š‘”)ā‰¤šœ€ā‰¤1. Clearly, this assumption is certainly ensured if the delay šœ‚šœ™š‘–(š‘”) is constant.

3. Main Results

In this section, a control scheme is developed to synchronize a delayed complex network with nonidentical nodes to any smooth dynamics š‘ šœ™š‘–(š‘”). Let synchronization errors š‘’š‘–(š‘”)=š‘„š‘–(š‘”)+š‘ šœ™š‘–(š‘”) for š‘–=1,2,ā€¦,š‘, according to system (2.1); the error dynamical system can be derived as Ģ‡š‘’š‘–ī‚š‘“(š‘”)=šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘’š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘’š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘š‘ī“š‘–=1š‘Žš‘–š‘—Ī“1š‘ šœ™š‘–(š‘”)āˆ’š‘š‘ī“š‘–=1š‘š‘–š‘—Ī“2š‘ šœ™š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘¢š‘–(š‘”),šœ™š‘–(š‘”)āˆˆāˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,Ģ‡š‘’š‘–ī‚š‘“(š‘”)=šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘’š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘’š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘£š‘–(š‘”),šœ™š‘–(š‘”)āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,(3.1) where ī‚š‘“šœ™š‘–(š‘”,š‘’š‘–(š‘”))=š‘“šœ™š‘–(š‘”,š‘„š‘–(š‘”))+š‘“šœ™š‘–(š‘”,š‘ šœ™š‘–(š‘”)), for š‘–=1,2,ā€¦,š‘.

According to the diffusive coupling condition (2.2) of the matrix A, B, we have š‘š‘ī“š‘–=1š‘Žš‘–š‘—Ī“1š‘ šœ™š‘–(š‘”)+š‘š‘ī“š‘–=1š‘š‘–š‘—Ī“2š‘ šœ™š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)=0,š‘–āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–.(3.2) On the basis of this property, for achieving cluster anti-synchronization, we design the controllers as follows: š‘¢š‘–(š‘”)=š‘š‘ī“š‘–=1š‘Žš‘–š‘—Ī“1š‘ šœ™š‘–(š‘”)+š‘š‘ī“š‘–=1š‘š‘–š‘—Ī“2š‘ šœ™š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆāˆ’š½šœ™š‘–,š‘£š‘–(š‘”)=āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–,(3.3) where Ģ‡š‘‘š‘–=š‘˜š‘–š‘’š‘‡š‘–(š‘”)š‘’š‘–(š‘”), š‘‘š‘– are the feedback strength and š‘˜š‘– are arbitrary positive constants.

It is easy to see that the synchronization of the controlled complex network (2.1) is achieved if the zero solution of the error system (3.1) is globally asymptotically stable, which is ensured by the following theorem.

Let Ģƒš‘’š‘—(š‘”)=(š‘’1š‘—(š‘”),š‘’2š‘—(š‘”),ā€¦,š‘’š‘š‘—(š‘”))š‘‡, š·=diag(š‘‘1,ā€¦,š‘‘š‘)š‘‡; then we have the following result.

Theorem 3.1. Suppose Assumptions 2.3ā€“2.5 hold. Consider the network (2.1) via control law (3.3). If the following conditions hold: šœ†max(Ī“)šæ+š‘šœ†max1(š‘„)+2š‘šœ†maxī€·š‘ƒš‘ƒš‘‡ī€ø+š‘2(1āˆ’šœ€)<š‘‘,(3.4) then the system (2.3) is cluster anti-synchronization, where š‘‘ is sufficiently large positive constant to be determined.

Proof. From Assumptions 2.3 and 2.4, we get (š‘¦+š‘„)š‘‡(š‘“(š‘”,š‘¦)+š‘“(š‘”,š‘„))=(š‘¦āˆ’(āˆ’š‘„))š‘‡(š‘“(š‘”,š‘¦)āˆ’š‘“(š‘”,āˆ’š‘„))ā‰¤šæ(š‘¦+š‘„)š‘‡Ī“(š‘¦+š‘„)(3.5) for š‘„,š‘¦āˆˆš‘…š‘›.
Construct the following Lyapunov functional: 1š‘‰(š‘”)=2š‘ī“š‘–=1š‘’š‘‡š‘–(š‘”)š‘’š‘–š‘(š‘”)+2(1āˆ’šœ€)š‘ī“š‘–=1ī€œš‘”š‘”āˆ’šœ‚šœ™š‘–(š‘”)š‘’š‘‡š‘–(šœ‰)š‘’š‘–1(šœ‰)š‘‘šœ‰+2š‘ī“š‘–=1(š‘‘š‘–āˆ’š‘‘)2š‘˜š‘–.(3.6) Calculating the derivative of š‘‰(š‘”), we have Ģ‡š‘‰(š‘”)=š‘ī“š‘–=1š‘’š‘‡š‘–īƒ¬ī‚š‘“(š‘”)šœ™š‘–ī€·š‘”,š‘’š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘’š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘’š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘‘š‘–š‘’š‘–īƒ­+š‘(š‘”)2(1āˆ’šœ€)š‘ī“š‘–=1š‘’š‘‡š‘–(š‘”)š‘’š‘–ī‚µ(š‘”)āˆ’š‘1āˆ’Ģ‡šœ‚šœ™š‘–(š‘”)2ī‚¶(1āˆ’šœ€)š‘ī“š‘–=1š‘’š‘‡š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€øš‘’(š‘”)š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø+(š‘”)š‘ī“š‘–=1ī€·š‘‘š‘–ī€øš‘’āˆ’š‘‘š‘‡š‘–(š‘”)š‘’š‘–(š‘”).(3.7)
By the Assumptions 2.3ā€“2.5, we have Ģ‡š‘‰(š‘”)ā‰¤š‘ī“š‘–=1šæš‘’š‘‡š‘–(š‘”)Ī“š‘’š‘–(š‘”)+š‘š‘ī“š‘š‘–=1ī“š‘—=1š‘Žš‘–š‘—š‘’š‘‡š‘–(š‘”)Ī“1š‘’š‘—(š‘”)+š‘š‘ī“š‘š‘–=1ī“š‘—=1š‘š‘–š‘—š‘’š‘‡š‘–(š‘”)Ī“2š‘’š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø+š‘(š‘”)2(1āˆ’šœ€)š‘ī“š‘–=1š‘’š‘‡š‘–(š‘”)š‘’š‘–š‘(š‘”)āˆ’2š‘ī“š‘–=1š‘’š‘‡š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€øš‘’(š‘”)š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€øāˆ’(š‘”)š‘ī“š‘–=1š‘‘š‘’š‘‡š‘–(š‘”)š‘’š‘–ā‰¤(š‘”)š‘ī“š‘–=1šæš‘’š‘‡š‘–(š‘”)Ī“š‘’š‘–(š‘”)+š‘š‘’š‘‡ī€·š“āŠ—Ī“1ī€øš‘’+š‘š‘’š‘‡ī€·šµāŠ—Ī“2ī€øš‘’ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø+š‘(š‘”)2(1āˆ’šœ€)š‘ī“š‘–=1š‘’š‘‡š‘–(š‘”)š‘’š‘–āˆ’š‘(š‘”)2š‘’š‘‡ī€·š‘”āˆ’šœ‚šœ™š‘–ī€øš‘’ī€·(š‘”)š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘‘š‘’š‘‡(š‘”)š‘’(š‘”).(3.8)
Let š‘’(š‘”)=(š‘’š‘‡1(š‘”),š‘’š‘‡2(š‘”),ā€¦,š‘’š‘‡š‘(š‘”))š‘‡āˆˆš‘…š‘›š‘, š‘„=(š“āŠ—Ī“1), š‘ƒ=(šµāŠ—Ī“2), where āŠ— represents the Kronecker product. Then Ģ‡š‘‰(š‘”)ā‰¤šœ†max(Ī“)šæš‘’š‘‡(š‘”)š‘’(š‘”)+š‘š‘’š‘‡(š‘”)š‘„š‘’(š‘”)+š‘š‘’š‘‡ī€·(š‘”)š‘ƒš‘’š‘”āˆ’šœ‚šœ™š‘–ī€ø+š‘(š‘”)š‘’2(1āˆ’šœ€)š‘‡āˆ’š‘(š‘”)š‘’(š‘”)2š‘’š‘‡ī€·š‘”āˆ’šœ‚šœ™š‘–ī€øš‘’ī€·(š‘”)š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘‘š‘’š‘‡(š‘”)š‘’(š‘”).(3.9) By Lemma 2.2, we have Ģ‡š‘‰(š‘”)ā‰¤šœ†max(Ī“)šæš‘’š‘‡(š‘”)š‘’(š‘”)+š‘š‘’š‘‡š‘(š‘”)š‘„š‘’(š‘”)+2š‘’š‘‡(š‘”)š‘ƒš‘ƒš‘‡š‘’š‘(š‘”)+š‘’2(1āˆ’šœ€)š‘‡(š‘”)š‘’(š‘”)āˆ’š‘‘š‘’š‘‡ā‰¤ī‚µšœ†(š‘”)š‘’(š‘”)max(Ī“)šæ+š‘šœ†max1(š‘„)+2š‘šœ†maxī€·š‘ƒš‘ƒš‘‡ī€ø+š‘ī‚¶š‘’2(1āˆ’šœ€)āˆ’š‘‘š‘‡(š‘”)š‘’(š‘”).(3.10) Therefore, if we have šœ†max(Ī“)šæ+š‘šœ†max(š‘„)+(1/2)š‘šœ†max(š‘ƒš‘ƒš‘‡)+š‘/2(1āˆ’šœ€)<š‘‘, then Ģ‡š‘‰(š‘”)ā‰¤āˆ’š‘’š‘‡(š‘”)š‘’(š‘”).(3.11)
Choose šœ†max(Ī“)šæ+š‘šœ†max(š‘„)+(1/2)š‘šœ†max(š‘ƒš‘ƒš‘‡)+š‘/2(1āˆ’šœ€)+1<š‘‘. Thus, one obtains Ģ‡š‘‰(š‘”)ā‰¤āˆ’š‘’š‘‡(š‘”)š‘’(š‘”)ā‰¤0. It is obvious that the largest invariant set contained in set Ģ‡šø={š‘‰(š‘”)=0}={š‘’š‘–(š‘”)=0,š‘–=1,2,ā€¦,š‘} is ī‚š‘„={š‘’š‘–(š‘”)=0,š‘‘š‘–(š‘”)=š‘‘,š‘–=1,2,ā€¦,š‘}. Based on LaSalle invariance principle, starting with any initial values of the error dynamical system, the trajectory asymptotically converges to the largest invariant ī‚š‘„ which implies that limš‘”ā†’āˆžā€–š‘’š‘–(š‘”)ā€–=0 for š‘–=1,2,ā€¦,š‘. Therefore, cluster anti-synchronization in the network (2.3) is achieved under the controllers (3.3). This completes the proof.

Corollary 3.2. When A = 0, network (2.1) is translated into Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”),š‘–=1,2,ā€¦,š‘.(3.12)
We design the controllers, as follows, then the complex networks can also achieve synchronization, where š‘¢š‘–(š‘”)=š‘š‘ī“š‘–=1š‘š‘–š‘—Ī“2š‘ šœ™š‘–ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆāˆ’š½šœ™š‘–,š‘£š‘–(š‘”)=āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–.(3.13)

Corollary 3.3. When šµ=0, network (2.1) is translated into Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”),š‘–=1,2,ā€¦,š‘.(3.14)
We design the controllers, as follows, then the complex networks can also achieve synchronization, where š‘¢š‘–(š‘”)=š‘š‘ī“š‘–=1š‘Žš‘–š‘—Ī“1š‘ šœ™š‘–(š‘”)āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆāˆ’š½šœ™š‘–,š‘£š‘–(š‘”)=āˆ’š‘‘š‘–š‘’š‘–(š‘”),š‘–āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–.(3.15)

4. Illustrative Examples

In this section, several numerical examples are provided to illustrate the proposed synchronization methods. The nodes dynamics are the following well-known modified Chuaā€™s circuit [16] with different system parameters. Considering the following network: Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘¢š‘–(š‘”),šœ™š‘–(š‘”)āˆˆāˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,Ģ‡š‘„š‘–(š‘”)=š‘“šœ™š‘–ī€·š‘”,š‘„š‘–ī€ø(š‘”)+š‘š‘ī“š‘—=1š‘Žš‘–š‘—Ī“1š‘„š‘—(š‘”)+š‘š‘ī“š‘—=1š‘š‘–š‘—Ī“2š‘„š‘—ī€·š‘”āˆ’šœ‚šœ™š‘–ī€ø(š‘”)+š‘£š‘–(š‘”),šœ™š‘–(š‘”)āˆˆš½šœ™š‘–āˆ’āˆ’š½šœ™š‘–,š‘–=1,2,ā€¦,š‘,(4.1) where š‘„š‘–(š‘”)=(š‘„1š‘–(š‘”),š‘„2š‘–(š‘”),š‘„3š‘–(š‘”))š‘‡, š‘“1(š‘”,š‘„š‘–(š‘”))=š·1š‘„š‘–(š‘”)+ā„Ž1(š‘„š‘–(š‘”)), š‘“2(š‘”,š‘„š‘–(š‘”))=š·2š‘„š‘–(š‘”)+ā„Ž2(š‘„š‘–(š‘”)), š‘“3(š‘”,š‘„š‘–(š‘”))=š·3š‘„š‘–(š‘”)+ā„Ž3(š‘„š‘–(š‘”)), ā„Ž1(š‘„š‘–)=ā„Ž2(š‘„š‘–)=ā„Ž3(š‘„š‘–)=((āˆ’20/7)š‘„3š‘–1,0,0)š‘‡, Ī“1=Ī“2=Diag{1,1,1}, šœ‚1(š‘”)=0.1š‘’š‘”1+š‘’š‘”,šœ‚2(š‘”)=2š‘’š‘”1+š‘’š‘”,šœ‚3(š‘”)=0.8š‘’š‘”1+š‘’š‘”,š·1=āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āˆ’107āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦1001āˆ’110āˆ’120,š·2=āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āˆ’107āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦1001āˆ’110āˆ’130,š·3=āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āˆ’107āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ¦,āŽ”āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ¢āŽ£āŽ¤āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ„āŽ¦.1001āˆ’110āˆ’140š‘=0.01,š‘‘=10,š“=šµ=āˆ’211āˆ’211āˆ’1āˆ’3012110āˆ’3110111āˆ’4101110āˆ’4111000āˆ’2(4.2) Simulation results are given in Figures 1, 2, and 3. Cluster anti-synchronization is achieved by the controller (3.3).

The following quantities are utilized to measure the process of cluster anti-synchronization šø(š‘”)=š‘ī“š‘–=1ā€–ā€–š‘„š‘–(š‘”)+š‘ šœ™š‘–ā€–ā€–,šø(š‘”)12ā€–ā€–š‘„(š‘”)=š‘¢(š‘”)āˆ’š‘„š‘£ā€–ā€–(š‘”),š‘¢āˆˆš¶1,š‘£āˆˆš¶2,šø13ā€–ā€–š‘„(š‘”)=š‘¢(š‘”)āˆ’š‘„š‘£ā€–ā€–(š‘”),š‘¢āˆˆš¶1,š‘£āˆˆš¶3,šø23(ā€–ā€–š‘„š‘”)=š‘¢(š‘”)āˆ’š‘„š‘£(ā€–ā€–š‘”),š‘¢āˆˆš¶2,š‘£āˆˆš¶3,(4.3) where šø(š‘”) is the error of cluster synchronization for this controlled network (2.2); šø12(š‘”), šø13(š‘”), and šø23(š‘”) are the errors between two communities; cluster anti-synchronization is achieved if the synchronization error šø(š‘”) converges to zero and šø12(š‘”), šø13(š‘”), and šø23(š‘”) do not as tā†’āˆž. Simulation results are given in Figures 4, 5, 6, and 7.

5. Conclusions

The cluster anti-synchronization in community networks has been studied in this paper, based on the community structure of the networks. Particularly, weight configuration matrix is not assumed to be irreducible. Some simple and useful criteria are derived by constructing an effective control scheme. The synchronization criteria are independent of time delay. Finally, the developed techniques are applied in three complex community networks. The numerical simulations are performed to verify the effectiveness of the theoretical results.


Research is partially supported by the National Nature Science Foundation of China (no. 70871056) and by the Six Talents Peak Foundation of Jiangsu Province.


  1. L. M. Pecora and T. L. Carroll, ā€œMaster stability functions for synchronized coupled systems,ā€ Physical Review Letters, vol. 80, no. 10, pp. 2109ā€“2112, 1998. View at: Google Scholar
  2. K. S. Fink, G. Johnson, T. Carroll, D. Mar, and L. Pecora, ā€œThree coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays,ā€ Physical Review E, vol. 61, no. 5, pp. 5080ā€“5090, 2000. View at: Google Scholar
  3. C. Y. Yin, W. X. Wang, G. Chen, and B. H. Wang, ā€œDecoupling process for better synchronizability on scale-free networks,ā€ Physical Review E, vol. 74, no. 4, Article ID 047102, 4 pages, 2006. View at: Publisher Site | Google Scholar
  4. H. Hong, B. J. Kim, M. Y. Choi, and H. Park, ā€œFactors that predict better synchronizability on complex networks,ā€ Physical Review E, vol. 69, no. 6, Article ID 067105, 4 pages, 2004. View at: Publisher Site | Google Scholar
  5. D. U. Hwang, M. Chavez, A. Amann, and S. Boccaletti, ā€œSynchronization in complex networks with age ordering,ā€ Physical Review Letters, vol. 94, no. 13, Article ID 138701, 4 pages, 2005. View at: Publisher Site | Google Scholar
  6. V. Colizza, J. R. Banavar, A. Maritan, and A. Rinaldo, ā€œNetwork structures from selection principles,ā€ Physical Review Letters, vol. 92, no. 19, Article ID 198701, 4 pages, 2004. View at: Publisher Site | Google Scholar
  7. T. Ichinomiya, ā€œFrequency synchronization in a random oscillator network,ā€ Physical Review E, vol. 70, no. 2, Article ID 026116, 5 pages, 2004. View at: Publisher Site | Google Scholar
  8. V. Afraimovich, A. Cordonet, and N. F. Rulkov, ā€œGeneralized synchronization of chaos in noninvertible maps,ā€ Physical Review E, vol. 66, no. 1, Article ID 016208, 6 pages, 2002. View at: Publisher Site | Google Scholar
  9. M. I. Rabinovich, J. J. Torres, P. Varona, R. Huerta, and P. Weidman, ā€œOrigin of coherent structures in a discrete chaotic medium,ā€ Physical Review E, vol. 60, no. 2, pp. R1130ā€“R1133, 1999. View at: Google Scholar
  10. D. H. Zanette and A. S. Mikhailov, ā€œMutual synchronization in ensembles of globally coupled neural networks,ā€ Physical Review E, vol. 58, no. 1, pp. 872ā€“875, 1998. View at: Google Scholar
  11. K. Wang, X. Fu, and K. Li, ā€œCluster synchronization in community networks with nonidentical nodes,ā€ Chaos, vol. 19, no. 2, Article ID 023106, 10 pages, 2009. View at: Publisher Site | Google Scholar
  12. X. J. Wu and H. T. Lu, ā€œCluster synchronization in the adaptive complex dynamical networks via a novel approach,ā€ Physics Letters A, vol. 375, no. 14, pp. 1559ā€“1565, 2011. View at: Publisher Site | Google Scholar
  13. W. X. Qin and G. Chen, ā€œCoupling schemes for cluster synchronization in coupled Josephson equations,ā€ Physica D, vol. 197, no. 3-4, pp. 375ā€“391, 2004. View at: Publisher Site | Google Scholar
  14. Z. Ma, Z. Liu, and G. Zhang, ā€œA new method to realize cluster synchronization in connected chaotic networks,ā€ Chaos, vol. 16, no. 2, Article ID 023103, 9 pages, 2006. View at: Publisher Site | Google Scholar
  15. Y. Q. Wu, C. P. Li, A. L. Yang, L. J. Song, and Y. J. Wu, ā€œPinning adaptive anti-synchronization between two general complex dynamical networks with non-delayed and delayed coupling,ā€ Applied Mathematics and Computation, vol. 218, no. 14, pp. 7445ā€“7452, 2012. View at: Publisher Site | Google Scholar
  16. J. W. Wang, Q. Ma, L. Zeng, and M. S. Abd-Elouahab, ā€œMixed outer synchronization of coupled complex networks with time-varying coupling delay,ā€ Chaos, vol. 21, no. 1, Article ID 013121, 8 pages, 2011. View at: Publisher Site | Google Scholar

Copyright © 2012 Shuguo Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.