`Journal of Applied MathematicsVolume 2012, Article ID 352081, 15 pageshttp://dx.doi.org/10.1155/2012/352081`
Research Article

## Applications of Symmetric and Nonsymmetric MSSOR Preconditioners to Large-Scale Biot's Consolidation Problems with Nonassociated Plasticity

1Department of Geotechnical Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2Department of Civil and Environmental Engineering, National University of Singapore, E1A-07-14, Blk E1A, 07-03, 1 Engineering Drive 2, Singapore 117576

Received 12 October 2011; Revised 14 December 2011; Accepted 15 December 2011

Copyright © 2012 Xi Chen and Kok Kwang Phoon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. B. A. Cipra, “The best of the 20th century: Editors name Top 10 Algorithms,” SIAM News, vol. 33, no. 4, pp. 1–2, 2000.
2. E. Chow and Y. Saad, “Experimental study of ILU preconditioners for indefinite matrices,” Journal of Computational and Applied Mathematics, vol. 86, no. 2, pp. 387–414, 1997.
3. K. K. Phoon, K. C. Toh, S. H. Chan, and F. H. Lee, “An efficient diagonal preconditioner for finite element solution of Biot's consolidation equations,” International Journal for Numerical Methods in Engineering, vol. 55, no. 4, pp. 377–400, 2002.
4. X. Chen, K. C. Toh, and K. K. Phoon, “A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations,” International Journal for Numerical Methods in Engineering, vol. 65, no. 6, pp. 785–807, 2006.
5. I. Perugia and V. Simoncini, “Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations,” Numerical Linear Algebra with Applications, vol. 7, no. 7-8, pp. 585–616, 2000.
6. V. Simoncini, “Block triangular preconditioners for symmetric saddle-point problems,” Applied Numerical Mathematics, vol. 49, no. 1, pp. 63–80, 2004.
7. R. W. Freund and N. M. Nachtigal, “A new Krylov-subspace method for symmetric indefinite linear systems,” in Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, W. F. Ames, Ed., pp. 1253–1256, Atlanta, Ga, USA, 1994.
8. C. Keller, N. I. M. Gould, and A. J. Wathen, “Constraint preconditioning for indefinite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1300–1317, 2000.
9. Z.-Z. Bai, M. K. Ng, and Z.-Q. Wang, “Constraint preconditioners for symmetric indefinite matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 2, pp. 410–433, 2009.
10. K.-C. Toh, K.-K. Phoon, and S.-H. Chan, “Block preconditioners for symmetric indefinite linear systems,” International Journal for Numerical Methods in Engineering, vol. 60, no. 8, pp. 1361–1381, 2004.
11. L. Bergamaschi, M. Ferronato, and G. Gambolati, “Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations,” Journal of Computational Physics, vol. 227, no. 23, pp. 9885–9897, 2008.
12. M. Ferronato, L. Bergamaschi, and G. Gambolati, “Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems,” International Journal for Numerical Methods in Engineering, vol. 81, no. 3, pp. 381–402, 2010.
13. J. B. Haga, H. Osnes, and H. P. Langtangen, “Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 35, no. 13, pp. 1466–1482, 2011.
14. C. Janna, M. Ferronato, and G. Gambolati, “A block Fsai-Ilu parallel preconditioner for symmetric positive definite linear systems,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2468–2484, 2010.
15. K. B. Chaudhary, Preconditioners for soil-structure interaction problems with significant material stiffness contrast, Ph.D. thesis, National University of Singapore, 2010.
16. R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton methods,” SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp. 400–408, 1982.
17. P. N. Brown and Y. Saad, “Convergence theory of nonlinear Newton-Krylov algorithms,” SIAM Journal on Optimization, vol. 4, no. 2, pp. 297–330, 1994.
18. M. A. Biot, “General theory of three-dimensional consolidation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164, 1941.
19. I. M. Smith and D. V. Griffiths, Programming the Finite Element Method, John Wiley & Sons, Chichester, UK, 2nd edition, 1988.
20. S. C. Eisenstat, “Efficient implementation of a class of preconditioned conjugate gradient methods,” SIAM Journal on Scientific and Statistical Computing, vol. 2, no. 1, pp. 1–4, 1981.
21. P. A. Vermeer and R. de Borst, “Non-associated plasticity for soils, concrete and rock,” Heron, vol. 29, no. 3, pp. 1–62, 1984.
22. O. C. Zienkiewicz, C. Humpheson, and R. W. Lewis, “Associated and non-associated visco-plasticity and plasticity in soil mechanics,” Geotechnique, vol. 25, no. 4, pp. 671–689, 1975.
23. R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numerische Mathematik, vol. 60, no. 3, pp. 315–339, 1991.
24. X. Chen and Y.-G. Cheng, “On accelerated symmetric stiffness techniques for non-associated plasticity with application to soil problems,” Engineering Computations, vol. 28, no. 8, pp. 1044–1063, 2011.
25. O. C. Zienkiewicz, S. Valliappan, and I. P. King, “Elasto-plastic solutions of engineering problems “initial stress”, finite element approach,” International Journal for Numerical Methods in Engineering, vol. 1, no. 1, pp. 75–100, 1969.
26. C. N. Chen, “Efficient and reliable accelerated constant stiffness algorithms for the solution of non-linear problems,” International Journal for Numerical Methods in Engineering, vol. 35, no. 3, pp. 481–490, 1992.
27. J. N. Thomas, “An improved accelerated initial stress procedure for elasto-plastic finite element analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 8, no. 4, pp. 359–379, 1984.
28. A. J. Abbo, Finite element algorithms for elastoplasticity and consolidation, Ph.D. thesis, University of Newcastle, 1997.