Abstract

The purpose of this paper is to study the existence and convergence analysis of the solutions of the system of mixed variational inequalities in Banach spaces by using the generalized f projection operator. The results presented in this paper improve and extend important recent results of Zhang et al. (2011) and Wu and Huang (2007) and some recent results.

1. Introduction

Let 𝐸 be a real Banach space with norm β€–β‹…β€–, let 𝐢 be a nonempty closed and convex subset of 𝐸, and let πΈβˆ— denote the dual of 𝐸. Let βŸ¨β‹…,β‹…βŸ© denote the duality pairing of πΈβˆ— and 𝐸. If 𝐸 is a Hilbert space, βŸ¨β‹…,β‹…βŸ© denotes an inner product on 𝐸. It is well known that the metric projection operator π‘ƒπΆβˆΆπΈβ†’πΆ plays an important role in nonlinear functional analysis, optimization theory, fixed point theory, nonlinear programming, game theory, variational inequality, and complementarity problems, and so forth (see, e.g., [1, 2] and the references therein). In 1993, Alber [3] introduced and studied the generalized projections πœ‹πΆβˆΆπΈβˆ—β†’πΆ and Ξ πΈβˆΆπΈβ†’πΆ from Hilbert spaces to uniformly convex and uniformly smooth Banach spaces. Moreover, Alber [1] presented some applications of the generalized projections to approximately solving variational inequalities and von Neumann intersection problem in Banach spaces. In 2005, Li [2] extended the generalized projection operator from uniformly convex and uniformly smooth Banach spaces to reflexive Banach spaces and studied some properties of the generalized projection operator with applications to solving the variational inequality in Banach spaces. Later, Wu and Huang [4] introduced a new generalized 𝑓-projection operator in Banach spaces which extended the definition of the generalized projection operators introduced by Abler [3] and proved some properties of the generalized 𝑓-projection operator. As an application, they studied the existence of solution for a class of variational inequalities in Banach spaces. In 2007, Wu and Huang [5] proved some properties of the generalized 𝑓-projection operator and proposed iterative method of approximating solutions for a class of generalized variational inequalities in Banach spaces. In 2009, Fan et al. [6] presented some basic results for the generalized 𝑓-projection operator and discussed the existence of solutions and approximation of the solutions for generalized variational inequalities in noncompact subsets of Banach spaces. In 2011, Zhang et al. [7] introduced and considered the system of mixed variational inequalities in Banach spaces. Using the generalized 𝑓-projection operator technique, they introduced some iterative methods for solving the system of mixed variational inequalities and proved the convergence of the proposed iterative methods under suitable conditions in Banach spaces. Recently, many authors studied methods for solving the system of generalized (mixed) variational inequalities and the system of nonlinear variational inequalities problems (see, e.g., [8–17] and references therein).

We first introduce and consider the system of mixed variational inequalities (SMVI) which is to find Μ‚π‘₯,̂𝑦,Μ‚π‘§βˆˆπΆ such thatβŸ¨π›Ώ1𝑇1̂𝑧+𝐽̂π‘₯βˆ’π½Μ‚π‘§,π‘¦βˆ’Μ‚π‘₯⟩+𝑓1(𝑦)βˆ’π‘“1(Μ‚π‘₯)β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ2𝑇2Μ‚π‘₯+π½Μ‚π‘¦βˆ’π½Μ‚π‘₯,π‘¦βˆ’Μ‚π‘¦βŸ©+𝑓2(𝑦)βˆ’π‘“2(̂𝑦)β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ3𝑇3̂𝑦+π½Μ‚π‘§βˆ’π½Μ‚π‘¦,π‘¦βˆ’Μ‚π‘§βŸ©+𝑓3(𝑦)βˆ’π‘“3(̂𝑧)β‰₯0,βˆ€π‘¦βˆˆπΆ,(1.1) where 𝛿𝑗>0,π‘‡π‘—βˆΆπΆβ†’πΈβˆ—,π‘“π‘—βˆΆπΆβ†’β„βˆͺ{+∞} for 𝑗=1,2,3 are mappings and 𝐽 is the normalized duality mapping from 𝐸 to πΈβˆ—.

As special case of the problem (1.1), we have the following.

If 𝑓𝑗(π‘₯)=0 for 𝑗=1,2,3, for all π‘₯∈𝐢, (1.1) is equivalent to find Μ‚π‘₯, ̂𝑦 and Μ‚π‘§βˆˆπΆ such thatβŸ¨π›Ώπ‘‡1̂𝑧+𝐽̂π‘₯βˆ’π½Μ‚z,π‘¦βˆ’Μ‚π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ2𝑇2Μ‚π‘₯+π½Μ‚π‘¦βˆ’π½Μ‚π‘₯,π‘¦βˆ’Μ‚π‘¦βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ3𝑇3̂𝑦+π½Μ‚π‘§βˆ’π½Μ‚π‘¦,π‘¦βˆ’Μ‚π‘§βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.2) The problem (1.2) is called the system of variational inequalities we denote by (SVI).

If 𝑇2=𝑇3,𝑓2(π‘₯)=𝑓3(π‘₯), for all π‘₯∈𝐢 and ̂𝑦=̂𝑧, then (1.1) is reduced to find Μ‚π‘₯,Μ‚π‘¦βˆˆπΆ such thatβŸ¨π›Ώ1𝑇1̂𝑦+𝐽̂π‘₯βˆ’π½Μ‚π‘¦,π‘¦βˆ’Μ‚π‘₯⟩+𝑓1(𝑦)βˆ’π‘“1(Μ‚π‘₯)β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ2𝑇2Μ‚π‘₯+π½Μ‚π‘¦βˆ’π½Μ‚π‘₯,π‘¦βˆ’Μ‚π‘¦βŸ©+𝑓2(𝑦)βˆ’π‘“2(̂𝑦)β‰₯0,βˆ€π‘¦βˆˆπΆ,(1.3) which is studied by Zhang et al. [7].

If 𝑇=𝑇1=𝑇2=𝑇3,𝑓1(π‘₯)=𝑓2(π‘₯)=𝑓3(π‘₯), for all π‘₯∈𝐢 and Μ‚π‘₯=̂𝑦=̂𝑧, (1.1) is reduced to find Μ‚π‘₯ such thatβŸ¨π‘‡Μ‚π‘₯,π‘¦βˆ’Μ‚π‘₯⟩+𝑓1(𝑦)βˆ’π‘“1(Μ‚π‘₯)β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.4) This iterative method is studied by Wu and Huang [5].

If 𝑓1(π‘₯)=0, for all π‘₯∈𝐢, (1.4) is reduced to find Μ‚π‘₯ such thatβŸ¨π‘‡Μ‚π‘₯,π‘¦βˆ’Μ‚π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ,(1.5) which is studied by Alber [1, 18], Li [2], and Fan [19]. If 𝐸=𝐻 is a Hilbert space, (1.5) holds which is known as the classical variational inequality introduced and studied by Stampacchia [20].

If 𝐸=𝐻 is a Hilbert space, then (1.1) is reduced to find Μ‚π‘₯,̂𝑦,Μ‚π‘§βˆˆπΆ such thatβŸ¨π›Ώ1𝑇1̂𝑧+Μ‚π‘₯βˆ’Μ‚π‘§,π‘¦βˆ’Μ‚π‘₯⟩+𝑓1(𝑦)βˆ’π‘“1(Μ‚π‘₯)β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ2𝑇2Μ‚π‘₯+Μ‚π‘¦βˆ’Μ‚π‘₯,π‘¦βˆ’Μ‚π‘¦βŸ©+𝑓2(𝑦)βˆ’π‘“2(̂𝑦)β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ3𝑇3̂𝑦+Μ‚π‘§βˆ’Μ‚π‘¦,π‘¦βˆ’Μ‚π‘§βŸ©+𝑓3(𝑦)βˆ’π‘“3(̂𝑧)β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.6) If 𝑓𝑗(π‘₯)=0 for 𝑗=1,2,3, for all π‘₯∈𝐢, (1.6) reduces to the following (SVI):βŸ¨π›Ώ1𝑇1̂𝑧+Μ‚π‘₯βˆ’Μ‚π‘§,π‘¦βˆ’Μ‚π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ2𝑇2Μ‚π‘₯+Μ‚π‘¦βˆ’Μ‚π‘₯,π‘¦βˆ’Μ‚π‘¦βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ,βŸ¨π›Ώ3𝑇3̂𝑦+Μ‚π‘§βˆ’Μ‚π‘¦,π‘¦βˆ’Μ‚π‘§βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.7) The purpose of this paper is to study the existence and convergence analysis of solutions of the system of mixed variational inequalities in Banach spaces by using the generalized 𝑓-projection operator. The results presented in this paper improve and extend important recent results in the literature.

2. Preliminaries

A Banach space 𝐸 is said to be strictly convex if β€–(π‘₯+𝑦)/2β€–<1 for all π‘₯,π‘¦βˆˆπΈ with β€–π‘₯β€–=‖𝑦‖=1 and π‘₯≠𝑦. Let π‘ˆ={π‘₯βˆˆπΈβˆΆβ€–π‘₯β€–=1} be the unit sphere of 𝐸. Then, a Banach space 𝐸 is said to be smooth if the limit lim𝑑→0(β€–π‘₯+π‘‘π‘¦β€–βˆ’β€–π‘₯β€–)/𝑑 exists for each π‘₯,π‘¦βˆˆπ‘ˆ. It is also said to be uniformly smooth if the limit exists uniformly in π‘₯,π‘¦βˆˆπ‘ˆ. Let 𝐸 be a Banach space. The modulus of smoothness of 𝐸 is the function 𝜌𝐸∢[0,∞)β†’[0,∞) defined by 𝜌𝐸(𝑑)=sup{((β€–π‘₯+𝑦‖+β€–π‘₯βˆ’π‘¦β€–)/2)βˆ’1βˆΆβ€–π‘₯β€–=1,‖𝑦‖≀𝑑}. The modulus of convexity of 𝐸 is the function πœ‚πΈβˆΆ[0,2]β†’[0,1] defined by πœ‚πΈ(πœ€)=inf{1βˆ’β€–(π‘₯+𝑦)/2β€–βˆΆπ‘₯,π‘¦βˆˆπΈ,β€–π‘₯β€–=‖𝑦‖=1,β€–π‘₯βˆ’π‘¦β€–β‰₯πœ€}. The normalized duality mapping π½βˆΆπΈβ†’2πΈβˆ— is defined by 𝐽(π‘₯)={π‘₯βˆ—βˆˆπΈβˆ—βˆΆβŸ¨π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–2,β€–π‘₯βˆ—β€–=β€–π‘₯β€–}. If 𝐸 is a Hilbert space, then 𝐽=𝐼, where 𝐼 is the identity mapping.

If 𝐸 is a reflexive smooth and strictly convex Banach space and π½βˆ—βˆΆπΈβˆ—β†’2𝐸 is the normalized duality mapping on πΈβˆ—, then π½βˆ’1=π½βˆ—, π½π½βˆ—=πΌπΈβˆ— and π½βˆ—π½=𝐼𝐸, where 𝐼𝐸 and πΌβˆ—πΈ are the identity mappings on 𝐸 and πΈβˆ—. If 𝐸 is a uniformly smooth and uniformly convex Banach space, then 𝐽 is uniformly norm-to-norm continuous on bounded subsets of 𝐸 and π½βˆ— is also uniformly norm-to-norm continuous on bounded subsets of πΈβˆ—.

Let 𝐸 and 𝐹 be Banach spaces, π‘‡βˆΆπ·(𝑇)βŠ‚πΈβ†’πΉ, the operator 𝑇 is said to be compact if it is continuous and maps the bounded subsets of 𝐷(𝑇) onto the relatively compact subsets of 𝐹; the operator 𝑇 is said to be weak to norm continuous if it is continuous from the weak topology of 𝐸 to the strong topology of 𝐹.

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Xu [21]). Let π‘ž>1 and π‘Ÿ>0 be two fixed real numbers. Let 𝐸 be a π‘ž-uniformly convex Banach space if and only if there exists a continuous strictly increasing and convex function π‘”βˆΆ[0,+∞)β†’[0,+∞), 𝑔(0)=0, such that β€–πœ†π‘₯+(1βˆ’πœ†)π‘¦β€–π‘žβ‰€πœ†β€–π‘₯β€–π‘ž+(1βˆ’πœ†)β€–π‘¦β€–π‘žβˆ’πœπ‘ž(πœ†)𝑔(β€–π‘₯βˆ’π‘¦β€–)(2.1) for all π‘₯,π‘¦βˆˆπ΅π‘Ÿ={π‘₯βˆˆπΈβˆΆβ€–π‘₯β€–β‰€π‘Ÿ} and πœ†βˆˆ[0,1], where πœπ‘ž(πœ†)=πœ†(1βˆ’πœ†)π‘ž+πœ†π‘ž(1βˆ’πœ†).

For case π‘ž=2, we haveβ€–β€–πœ†π‘₯+(1βˆ’πœ†)π‘¦π‘žβ‰€πœ†β€–π‘₯β€–2+(1βˆ’πœ†)‖𝑦‖2βˆ’πœ†(1βˆ’πœ†)𝑔(β€–π‘₯βˆ’π‘¦β€–).(2.2)

Lemma 2.2 (Chang [22]). Let 𝐸 be a uniformly convex and uniformly smooth Banach space. The following holds: β€–πœ™+Ξ¦β€–2β‰€β€–πœ™β€–2+2⟨Φ,π½βˆ—(πœ™+Ξ¦)⟩,βˆ€πœ™,Ξ¦βˆˆπΈβˆ—.(2.3)

Next we recall the concept of the generalized 𝑓-projection operator. Let πΊβˆΆπΈβˆ—Γ—πΆβ†’β„βˆͺ{+∞} be a functional defined as follows:𝐺(πœ‰,π‘₯)=β€–πœ‰β€–2βˆ’2βŸ¨πœ‰,π‘₯⟩+β€–π‘₯β€–2+2πœŒπ‘“(π‘₯),(2.4) where πœ‰βˆˆπΈβˆ—,𝜌 is positive number and π‘“βˆΆπΆβ†’β„βˆͺ{+∞} is proper, convex, and lower semicontinuous. From definitions of 𝐺 and 𝑓, it is easy to see the following properties:(1)(β€–πœ‰β€–βˆ’β€–π‘₯β€–)2+2πœŒπ‘“(π‘₯)≀𝐺(πœ‰,π‘₯)≀(β€–πœ‰β€–+β€–π‘₯β€–)2+2πœŒπ‘“(π‘₯);(2)𝐺(πœ‰,π‘₯) is convex and continuous with respect to π‘₯ when πœ‰ is fixed;(3)𝐺(πœ‰,π‘₯) is convex and lower semicontinuous with respect to πœ‰ when π‘₯ is fixed.

Definition 2.3. Let 𝐸 be a real Banach space with its dual πΈβˆ—. Let 𝐢 be a nonempty closed convex subset of 𝐸. It is said that Ξ π‘“πΆβˆΆπΈβˆ—β†’2𝐢 is the generalized 𝑓-projection operator if π‘“ξ‘πΆξ‚»πœ‰=π‘’βˆˆπΆβˆΆπΊ(πœ‰,𝑒)=infπ‘¦βˆˆπΆξ‚ΌπΊ(πœ‰,𝑦),βˆ€πœ‰βˆˆπΈβˆ—.(2.5)

In this paper, we fixed 𝜌=1, we have𝐺(πœ‰,π‘₯)=β€–πœ‰β€–2βˆ’2βŸ¨πœ‰,π‘₯⟩+β€–π‘₯β€–2+2𝑓(π‘₯).(2.6)

For the generalized 𝑓-projection operator, Wu and Hung [5] proved the following basic properties.

Lemma 2.4 (Wu and Hung [4]). Let 𝐸 be a reflexive Banach space with its dual πΈβˆ— and 𝐢 is a nonempty closed convex subset of 𝐸. The following statements hold:(1)Ξ π‘“πΆπœ‰ is nonempty closed convex subset of 𝐢 for all πœ‰βˆˆπΈβˆ—;(2)if 𝐸 is smooth, then for all πœ‰βˆˆπΈβˆ—, π‘₯βˆˆΞ π‘“πΆπœ‰ if and only if βŸ¨πœ‰βˆ’π½π‘₯,π‘₯βˆ’π‘¦βŸ©+πœŒπ‘“(𝑦)βˆ’πœŒπ‘“(π‘₯)β‰₯0,βˆ€π‘¦βˆˆπΆ;(2.7)(3)if 𝐸 is smooth, then for any πœ‰βˆˆπΈβˆ—, Ξ π‘“πΆπœ‰=(𝐽+πœŒπœ•π‘“)βˆ’1πœ‰, where πœ•π‘“ is the subdifferential of the proper convex and lower semicontinuous functional 𝑓.

Lemma 2.5 (Wu and Hung [4]). If 𝑓(π‘₯)β‰₯0 for all π‘₯∈𝐢, then for any 𝜌>0, 𝐺(𝐽π‘₯,𝑦)≀𝐺(πœ‰,𝑦)+2πœŒπ‘“(𝑦),βˆ€πœ‰βˆˆπΈβˆ—,π‘¦βˆˆπΆ,π‘₯βˆˆπ‘“ξ‘πΆπœ‰.(2.8)

Lemma 2.6 (Fan et al. [6]). Let 𝐸 be a reflexive strictly convex Banach space with its dual πΈβˆ— and 𝐢 is a nonempty closed convex subset of 𝐸. If π‘“βˆΆπΆβ†’β„βˆͺ{+∞} is proper, convex, and lower semicontinuous, then(1)Ξ π‘“πΆβˆΆπΈβˆ—β†’πΆ is single valued and norm to weak continuous;(2)if 𝐸 has the property (h), that is, for any sequence {π‘₯𝑛}βŠ‚πΈ,π‘₯𝑛⇀π‘₯∈𝐸 and β€–π‘₯𝑛‖→‖π‘₯β€–, imply that π‘₯𝑛→π‘₯, then Ξ π‘“πΆβˆΆπΈβˆ—β†’πΆ is continuous.

Defined the functional 𝐺2βˆΆπΈΓ—πΆβ†’β„βˆͺ{+∞} by𝐺2(π‘₯,𝑦)=𝐺(𝐽π‘₯,𝑦),βˆ€π‘₯∈𝐸,π‘¦βˆˆπΆ.(2.9)

3. Generalized Projection Algorithms

Proposition 3.1. Let 𝐢 be a nonempty closed and convex subset of a reflexive strictly convex and smooth Banach space 𝐸. If π‘“π‘—βˆΆπΆβ†’β„βˆͺ{+∞} for 𝑗=1,2,3 is proper, convex, and lower semicontinuous, then (Μ‚π‘₯,Μ‚y,̂𝑧) is a solution of (SMVI) equivalent to finding Μ‚π‘₯,̂𝑦,̂𝑧 such that Μ‚π‘₯=𝑓1ξ‘πΆξ€·π½Μ‚π‘§βˆ’π›Ώ1𝑇1ξ€Έ,̂𝑧̂𝑦=𝑓2𝐢𝐽̂π‘₯βˆ’π›Ώ2𝑇1ξ€Έ,Μ‚π‘₯̂𝑧=𝑓3ξ‘πΆξ€·π½Μ‚π‘¦βˆ’π›Ώ3𝑇1ξ€Έ.̂𝑦(3.1)

Proof. From Lemma 2.4 (2) and 𝐸 is a reflexive strictly convex and smooth Banach space, we known that 𝐽 is single valued and Π𝑓𝑗𝐢 for 𝑗=1,2,3 is well defined and single valued. So, we can conclude that Proposition 3.1 holds.

For solving the system of mixed variational inequality (1.1), we defined some projection algorithms as follow.

Algorithm 3.2. For an initial point π‘₯0,𝑧0∈𝐢, define the sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} as follows:π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛,𝑦𝑛+1=𝑓2𝐢𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1ξ€Έ,𝑧𝑛+1=𝑓3𝐢𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1ξ€Έ,(3.2) where 0<π‘Žβ‰€π›Όπ‘›β‰€π‘<1.

If 𝑓𝑗(π‘₯)=0,𝑗=1,2,3, for all π‘₯∈𝐢, then Algorithm 3.2 reduces to the following iterative method for solving the system of variational inequalities (1.2).

Algorithm 3.3. For an initial point π‘₯0,𝑧0∈𝐢, define the sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} as follows:π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+π›Όπ‘›ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛,𝑦𝑛+1=𝐢𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1ξ€Έ,𝑧𝑛+1=𝐢𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1ξ€Έ,(3.3) where 0<π‘Žβ‰€π›Όπ‘›β‰€π‘<1.

For solving the problem (1.6), we defined the algorithm as follows:

If 𝐸=𝐻 is a Hilbert space, then Algorithm 3.2 reduces to the following.

Algorithm 3.4. For an initial point π‘₯0,𝑧0∈𝐢, define the sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} as follows:π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛,𝑦𝑛+1=𝑓2𝐢𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1ξ€Έ,𝑧𝑛+1=𝑓3𝐢𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1ξ€Έ,(3.4) where 0<π‘Žβ‰€π›Όπ‘›β‰€π‘<1.

If 𝑓𝑗(π‘₯)=0,𝑗=1,2,3, for all π‘₯∈𝐢, then Algorithm 3.4 reduces to the following iterative method for solving the problem (1.7) as follows.

Algorithm 3.5. For an initial point π‘₯0,𝑧0∈𝐢, define the sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} as follows:π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+π›Όπ‘›π‘ƒπΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛,𝑦𝑛+1=𝑃𝐢𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1ξ€Έ,𝑧𝑛+1=𝑃𝐢𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1ξ€Έ,(3.5) where 0<π‘Žβ‰€π›Όπ‘›β‰€π‘<1.

4. Existence and Convergence Analysis

Theorem 4.1. Let 𝐢 be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space 𝐸 with dual space πΈβˆ—. If the mapping π‘‡π‘—βˆΆπΆβ†’πΈβˆ— and π‘“π‘—βˆΆπΆβ†’β„βˆͺ{+∞} which is convex lower semicontinuous mappings for 𝑗=1,2,3 satisfying the following conditions:(i)βŸ¨π‘‡π‘—π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώπ‘—π‘‡π‘—π‘₯)⟩β‰₯0, for all π‘₯∈𝐢 for 𝑗=1,2,3;(ii)(π½βˆ’π›Ώπ‘—π‘‡π‘—) are compact for 𝑗=1,2,3;(iii)𝑓𝑗(0)=0 and 𝑓𝑗(π‘₯)β‰₯0, for all π‘₯∈𝐢 and 𝑗=1,2,3; then the system of mixed variational inequality (1.1) has a solution (Μ‚π‘₯,̂𝑦,̂𝑧) and sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} defined by Algorithm 3.2 have convergent subsequences {π‘₯𝑛𝑖},{𝑦𝑛𝑖}, and {𝑧𝑛𝑖} such that π‘₯π‘›π‘–π‘¦βŸΆΜ‚π‘₯,π‘–βŸΆβˆž,π‘›π‘–π‘§βŸΆΜ‚π‘¦,π‘–βŸΆβˆž,π‘›π‘–βŸΆΜ‚π‘§,π‘–βŸΆβˆž.(4.1)

Proof. Since 𝐸 is a uniformly convex and uniform smooth Banach space, we known that 𝐽 is bijection from 𝐸 to πΈβˆ— and uniformly continuous on any bounded subsets of 𝐸. Hence, Π𝑓𝑗𝐢 for 𝑗=1,2,3 is well-defined and single-value implies that {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} are well defined. Let 𝐺2(π‘₯,𝑦)=𝐺(𝐽π‘₯,𝑦), for any π‘₯∈𝐢 and 𝑦=0, we have 𝐺2=(π‘₯,0)=𝐺(𝐽π‘₯,0)‖𝐽π‘₯β€–2βˆ’2⟨𝐽π‘₯,0⟩+2𝑓(0)=‖𝐽π‘₯β€–2=β€–π‘₯β€–2.(4.2) By (4.2) and Lemma 2.5, we have 𝐺2βŽ›βŽœβŽœβŽπ‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1π‘§π‘›ξ€ΈβŽžβŽŸβŽŸβŽ βŽ›βŽœβŽœβŽπ½βŽ›βŽœβŽœβŽ,0=𝐺𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1π‘§π‘›ξ€ΈβŽžβŽŸβŽŸβŽ βŽžβŽŸβŽŸβŽ ξ€·,0β‰€πΊπ½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛=β€–β€–,0π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖2.(4.3) From Lemma 2.2, and for all π‘₯∈𝐢, βŸ¨π‘‡1π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώ1𝑇1π‘₯)⟩β‰₯0, so for π‘§π‘›βˆˆπΆ, we obtain β€–β€–π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖2≀‖‖𝐽𝑧𝑛‖‖2ξ«π›Ώβˆ’21𝑇1𝑧𝑛,π½βˆ—ξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛≀‖‖𝐽𝑧𝑛‖‖2≀‖‖𝑧𝑛‖‖2.(4.4) Again by Lemma 2.2, for all π‘₯∈𝐢,βŸ¨π‘‡2π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώ2𝑇2π‘₯)⟩β‰₯0, and for π‘₯𝑛+1∈𝐢, we have ‖‖𝑦𝑛+1β€–β€–2=𝐺2𝑦𝑛+1ξ€Έξ€·,0=𝐺𝐽𝑦𝑛+1ξ€ΈβŽ›βŽœβŽœβŽπ½,0=𝐺𝑓2𝐢𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1ξ€ΈβŽžβŽŸβŽŸβŽ ξ€·,0≀𝐺𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1≀‖‖,0𝐽π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1β€–β€–2≀‖‖𝐽π‘₯𝑛+1β€–β€–2ξ«π›Ώβˆ’22𝑇2π‘₯𝑛+1,π½βˆ—ξ€·π½π‘₯𝑛+1βˆ’π›Ώ2𝑇2π‘₯𝑛+1≀‖‖𝐽π‘₯𝑛+1β€–β€–2≀‖‖π‘₯𝑛+1β€–β€–2.(4.5) In similar way, for all π‘₯∈𝐢, βŸ¨π‘‡3π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώ3𝑇3π‘₯)⟩β‰₯0, and 𝑧𝑛+1∈𝐢, we also have ‖‖𝑧𝑛+1β€–β€–2ξ€·=𝐺𝐽𝑧𝑛+1ξ€Έξ€·,0≀𝐺𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1ξ€Έ=β€–β€–,0𝐽𝑦𝑛+1βˆ’π›Ώ3𝑇3𝑦𝑛+1β€–β€–2≀‖‖𝐽𝑦𝑛+1β€–β€–2ξ«π›Ώβˆ’23𝑇3𝑦𝑛+1,π½βˆ—ξ€·π½π‘¦π‘›+1βˆ’π›Ώ3𝑇3𝑦𝑛+1≀‖‖𝑦𝑛+1β€–β€–2.(4.6) It follows from (4.5) and (4.6) that ‖‖𝑧𝑛+1β€–β€–2≀‖‖π‘₯𝑛+1β€–β€–2,βˆ€π‘›βˆˆβ„•.(4.7) From (4.5) and (4.6), we compute β€–β€–π‘₯𝑛+1β€–β€–2≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖+𝛼𝑛‖‖‖‖𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖+𝛼𝑛‖‖𝑧𝑛‖‖≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖+𝛼𝑛‖‖𝑦𝑛‖‖≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖+𝛼𝑛‖‖π‘₯𝑛‖‖=β€–β€–π‘₯𝑛‖‖.(4.8) This implies that the sequences {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛}, and {Π𝑓1𝐢(π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛)} are bounded. For a positive number π‘Ÿ such that {π‘₯𝑛},{𝑦𝑛},{𝑧𝑛},{Π𝑓1𝐢(π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛)}βˆˆπ΅π‘Ÿ, by Lemma 2.1, for π‘ž=2, there exists a continuous, strictly increasing, and convex function π‘”βˆΆ[0,∞)β†’[0,∞) with 𝑔(0)=0 such that for π›Όπ‘›βˆˆ[0,1], we have β€–β€–π‘₯𝑛+1β€–β€–2=β€–β€–β€–β€–ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖2≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖2+𝛼𝑛‖‖‖‖𝑓1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖2βˆ’π›Όπ‘›ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖=ξ€·1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖2+𝛼𝑛𝐺2βŽ›βŽœβŽœβŽπ‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1π‘§π‘›ξ€ΈβŽžβŽŸβŽŸβŽ ,0βˆ’π›Όπ‘›ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖.(4.9) Applying (4.3), (4.4), and (4.7), we have 𝛼𝑛1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖≀1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖2βˆ’β€–β€–π‘₯𝑛+1β€–β€–2+𝛼𝑛𝐺2βŽ›βŽœβŽœβŽπ‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1π‘§π‘›ξ€ΈβŽžβŽŸβŽŸβŽ β‰€ξ€·,01βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘₯𝑛‖‖2βˆ’β€–β€–π‘₯𝑛+1β€–β€–2+𝛼𝑛‖‖π‘₯𝑛‖‖2=β€–β€–π‘₯𝑛‖‖2βˆ’β€–β€–π‘₯𝑛+1β€–β€–2.(4.10) Summing (4.10), for 𝑛=0,1,2,3,…,π‘˜, we have π‘˜ξ“π‘›=0𝛼𝑛1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖≀‖‖π‘₯0β€–β€–2βˆ’β€–β€–π‘₯π‘˜+1β€–β€–2≀‖‖π‘₯0β€–β€–2,(4.11) taking π‘˜β†’βˆž, we get βˆžξ“π‘›=0𝛼𝑛1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖≀‖‖π‘₯0β€–β€–2.(4.12) This shows that series (4.12) is converge, we obtain that limπ‘›β†’βˆžπ›Όπ‘›ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖=0.(4.13) From 0<π‘Žβ‰€π›Όπ‘›β‰€π‘<1 for all 𝑛, thus βˆ‘βˆžπ‘›=0𝛼𝑛(1βˆ’π›Όπ‘›)>0 and (4.13), we have limπ‘›β†’βˆžπ‘”β€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖=0.(4.14) By property of functional 𝑔, we have limπ‘›β†’βˆžβ€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖=0.(4.15) Since {𝑧𝑛} is bounded sequence and (π½βˆ’π›Ώ1𝑇1) is compact on 𝐢, then sequence {π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛} has a convergence subsequence such that ξ€½π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1π‘§π‘›π‘–ξ€ΎβŸΆπ‘€0βˆˆπΈβˆ—asπ‘–βŸΆβˆž.(4.16) By the continuity of the Π𝑓1𝐢, we have limπ‘“π‘–β†’βˆž1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖=𝑓1𝐢𝑀0ξ€Έ.(4.17) Again since {π‘₯𝑛},{𝑦𝑛} are bounded and (π½βˆ’π›Ώ2𝑇2),(π½βˆ’π›Ώ3𝑇3) are compact on 𝐢, then sequences {𝐽π‘₯π‘›βˆ’π›Ώ2𝑇2π‘₯𝑛} and {π½π‘¦π‘›βˆ’π›Ώ3𝑇3𝑦𝑛} have convergence subsequences such that 𝐽π‘₯π‘›π‘–βˆ’π›Ώ2𝑇2π‘₯π‘›π‘–ξ€ΎβŸΆπ‘’0βˆˆπΈβˆ—ξ€½asπ‘–βŸΆβˆž,π½π‘¦π‘›π‘–βˆ’π›Ώ3𝑇3π‘¦π‘›π‘–ξ€ΎβŸΆπ‘£0βˆˆπΈβˆ—asπ‘–βŸΆβˆž.(4.18) By the continuity of Π𝑓2𝐢 and Π𝑓3𝐢, we have limπ‘“π‘–β†’βˆž2𝐢𝐽π‘₯π‘›π‘–βˆ’π›Ώ2𝑇2π‘₯𝑛𝑖=𝑓2𝐢𝑒0ξ€Έ,(4.19)limπ‘“π‘–β†’βˆž3ξ‘πΆξ€·π½π‘¦π‘›π‘–βˆ’π›Ώ3𝑇3𝑦𝑛𝑖=𝑓3𝐢𝑣0ξ€Έ.(4.20) Let 𝑓1𝐢𝑀0ξ€Έ=Μ‚π‘₯,(4.21)𝑓2𝐢𝑒0ξ€Έ=̂𝑦,(4.22)𝑓3𝐢𝑣0ξ€Έ=̂𝑧.(4.23) By using the triangle inequality, we have β€–β€–π‘₯𝑛𝑖‖‖≀‖‖‖‖π‘₯βˆ’Μ‚π‘₯π‘›π‘–βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖+‖‖‖‖𝑓1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖.βˆ’Μ‚π‘₯(4.24) From (4.15) and (4.17), we have limπ‘–β†’βˆžπ‘₯𝑛𝑖=Μ‚π‘₯.(4.25) By definition of 𝑧𝑛𝑖, we get β€–β€–π‘§π‘›π‘–β€–β€–β‰€β€–β€–β€–β€–βˆ’Μ‚π‘§π‘“3ξ‘πΆξ€·π½π‘¦π‘›π‘–βˆ’π›Ώ3𝑇3𝑦𝑛𝑖‖‖‖‖.βˆ’Μ‚π‘§(4.26) It follows by (4.20) and (4.23), we obtain limπ‘–β†’βˆžπ‘§π‘›i=̂𝑧.(4.27) In the same way, we also have limπ‘–β†’βˆžπ‘¦π‘›π‘–=̂𝑦.(4.28) By the continuity properties of (π½βˆ’π›Ώ1𝑇1),(π½βˆ’π›Ώ2𝑇2),(π½βˆ’π›Ώ3𝑇3), and Π𝑓𝑗𝐢 for 𝑗=1,2,3. We conclude that Μ‚π‘₯=𝑓1ξ‘πΆξ€·π½Μ‚π‘§βˆ’π›Ώ1𝑇1ξ€Έ,̂𝑧̂𝑦=𝑓2𝐢𝐽̂π‘₯βˆ’π›Ώπ‘‡2ξ€Έ,Μ‚π‘₯̂𝑧=𝑓3ξ‘πΆξ€·π½Μ‚π‘¦βˆ’π›Ώ3𝑇3ξ€Έ.̂𝑦(4.29) This completes of proof.

Theorem 4.2. Let 𝐢 be a nonempty compact and convex subset of a uniformly convex and uniformly smooth Banach space 𝐸 with dual space πΈβˆ—. If the mapping π‘‡π‘—βˆΆπΆβ†’πΈβˆ— and π‘“π‘—βˆΆπΆβ†’β„βˆͺ{+∞} which is convex lower semicontinuous mappings for 𝑗=1,2,3 satisfy the following conditions:(i)βŸ¨π‘‡π‘—π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώπ‘—π‘‡π‘—π‘₯)⟩β‰₯0, for all π‘₯∈𝐢 for 𝑗=1,2,3;(ii)𝑓𝑗(0)=0 and 𝑓𝑗(π‘₯)β‰₯0, for all π‘₯∈𝐢 for 𝑗=1,2,3; then the system of mixed variational inequality (1.1) has a solution (Μ‚π‘₯,̂𝑦,̂𝑧) and sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} defined by Algorithm 3.2 have a convergent subsequences {π‘₯𝑛𝑖},{𝑦𝑛𝑖}, and {𝑧𝑛𝑖} such that π‘₯π‘›π‘–π‘¦βŸΆΜ‚π‘₯,π‘–βŸΆβˆž,π‘›π‘–π‘§βŸΆΜ‚π‘¦,π‘–βŸΆβˆž,π‘›π‘–βŸΆΜ‚π‘§,π‘–βŸΆβˆž.(4.30)

Proof. In the same way to the proof in Theorem 4.1, we have limπ‘›β†’βˆžβ€–β€–β€–β€–π‘₯π‘›βˆ’π‘“1βˆπΆξ€·π½π‘§π‘›βˆ’π›Ώ1𝑇1𝑧𝑛‖‖‖‖=0.(4.31) Hence, there exist subsequences {π‘₯𝑛𝑖}βŠ‚{π‘₯𝑛} and {𝑧𝑛𝑖}βŠ‚{𝑧𝑛} such that limπ‘–β†’βˆžβ€–β€–β€–β€–π‘₯π‘›π‘–βˆ’π‘“1βˆπΆξ€·π½π‘§nπ‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖=0.(4.32) From the compactness of 𝐢, we have that ξ€½π‘₯π‘›π‘–ξ€Ύξ€½π‘§βŸΆΜ‚π‘₯asπ‘–βŸΆβˆž,π‘›π‘–ξ€ΎβŸΆΜ‚π‘§asπ‘–βŸΆβˆž,(4.33) where Μ‚π‘₯,̂𝑧 are points in 𝐢. Also, for a sequence {𝑦𝑛}βŠƒ{𝑦𝑛𝑖}→̂𝑦asπ‘–β†’βˆž, where ̂𝑦 is a points in 𝐢. By the continuity properties of 𝐽,𝑇2,𝑇3Π𝑓2𝐢, and Π𝑓3𝐢, we obtain that ̂𝑦=𝑓2𝐢𝐽̂π‘₯βˆ’π›Ώ2𝑇2ξ€Έ,Μ‚π‘₯̂𝑧=𝑓3ξ‘πΆξ€·π½Μ‚π‘¦βˆ’π›Ώ3𝑇3ξ€Έ.̂𝑦(4.34) From definition of π‘₯𝑛+1, we get ‖‖‖‖𝑓1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖=β€–β€–β€–β€–βˆ’Μ‚π‘₯𝑓1𝐢𝐽𝑧𝑛iβˆ’π›Ώ1𝑇1π‘§π‘›π‘–ξ€Έβˆ’Μ‚π‘₯+π‘₯𝑛𝑖+1βˆ’ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯π‘›π‘–βˆ’π›Όπ‘›π‘“1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖=β€–β€–β€–β€–π‘₯𝑛𝑖+1ξ€·βˆ’Μ‚π‘₯+1βˆ’π›Όπ‘›ξ€Έπ‘“1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1π‘§π‘›π‘–ξ€Έβˆ’π‘₯𝑛𝑖‖‖‖‖≀‖‖π‘₯𝑛𝑖+1β€–β€–+ξ€·βˆ’Μ‚π‘₯1βˆ’π›Όπ‘›ξ€Έβ€–β€–β€–β€–π‘₯π‘›π‘–βˆ’π‘“1ξ‘πΆξ€·π½π‘§π‘›π‘–βˆ’π›Ώ1𝑇1𝑧𝑛𝑖‖‖‖‖.(4.35) By (4.25) and (4.31), we have Μ‚π‘₯=𝑓1ξ‘πΆξ€·π½Μ‚π‘§βˆ’π›Ώ1𝑇1ξ€Έ.̂𝑧(4.36) This completes of proof.

Corollary 4.3. Let 𝐢 be a nonempty closed and convex subset of a uniformly convex and uniformly smooth Banach space 𝐸 with dual space πΈβˆ—. If the mapping π‘‡π‘—βˆΆπΆβ†’πΈβˆ— for 𝑗=1,2,3 satisfy the following conditions:(i)βŸ¨π‘‡π‘—π‘₯,π½βˆ—(𝐽π‘₯βˆ’π›Ώπ‘—π‘‡π‘—π‘₯)⟩β‰₯0, for all π‘₯∈𝐢 for 𝑗=1,2,3;(ii)(π½βˆ’π›Ώπ‘—π‘‡π‘—) are compact for 𝑗=1,2,3; then the system of mixed variational inequality (1.2) has a solution (Μ‚π‘₯,̂𝑦,̂𝑧) and sequences {π‘₯𝑛},{𝑦𝑛}, and {z𝑛} defined by Algorithm 3.3 have convergent subsequences {π‘₯𝑛𝑖},{𝑦𝑛𝑖}, and {𝑧𝑛𝑖} such that π‘₯𝑛𝑖→̂π‘₯,π‘–β†’βˆž,𝑦𝑛𝑖→̂𝑦,π‘–β†’βˆž, and 𝑧𝑛𝑖→̂𝑧,π‘–β†’βˆž.

If 𝐸=𝐻 is a Hilbert space, then π»βˆ—=𝐻,π½βˆ—=𝐽=𝐼, so one obtains the following corollary.

Corollary 4.4. Let 𝐢 be a nonempty closed and convex subset of a Hilbert space 𝐻. If the mapping π‘‡π‘—βˆΆπΆβ†’π» and π‘“π‘—βˆΆπΆβ†’β„βˆͺ{+∞} which is convex lower semicontinuous mappings for 𝑗=1,2,3 satisfy the following conditions:(i)βŸ¨π‘‡π‘—π‘₯,π‘₯βˆ’π›Ώπ‘—π‘‡π‘—π‘₯⟩β‰₯0 for 𝑗=1,2,3;(ii)𝑓𝑗(0)=0 and 𝑓𝑗(π‘₯)β‰₯0 for all π‘₯∈𝐢 for 𝑗=1,2,3; then the system of mixed variational inequality (1.6) has a solution (Μ‚π‘₯,̂𝑦,̂𝑧) and sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} defined by Algorithm 3.4 have a convergent subsequences {π‘₯𝑛𝑖},{𝑦𝑛𝑖}, and {𝑧𝑛𝑖} such that π‘₯𝑛𝑖→̂π‘₯,π‘–β†’βˆž,𝑦𝑛𝑖→̂𝑦,π‘–β†’βˆž, and 𝑧𝑛𝑖→̂𝑧,π‘–β†’βˆž.

Corollary 4.5. Let 𝐢 be a nonempty closed and convex subset of a Hilbert space 𝐻. If the mapping π‘‡π‘—βˆΆπΆβ†’π» for 𝑗=1,2,3 satisfy the conditions: βŸ¨π‘‡π‘—π‘₯,π‘₯βˆ’π›Ώπ‘—π‘‡π‘—π‘₯⟩β‰₯0 for 𝑗=1,2,3; then the system of mixed variational inequality (1.7) has a solution (Μ‚π‘₯,̂𝑦,̂𝑧) and sequences {π‘₯𝑛},{𝑦𝑛}, and {𝑧𝑛} defined by Algorithm 3.5 have a convergent subsequences {π‘₯𝑛𝑖},{𝑦𝑛𝑖}, and {𝑧𝑛𝑖} such that π‘₯𝑛𝑖→̂π‘₯,π‘–β†’βˆž,𝑦𝑛𝑖→̂𝑦,π‘–β†’βˆž, and 𝑧𝑛𝑖→̂𝑧,π‘–β†’βˆž.

Remark 4.6. Theorems 4.1 and 4.2 and Corollary 4.3 extend and improve the results of Zhang et al. [7] and Wu and Huang [5].

Acknowledgments

This research was supported by grant from under the Program Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral degree from the Office of the Higher Education Commission, Thailand. Furthermore, we would like to thank the King Mongkuts Diamond Scholarship for Ph.D. Program at King Mongkuts University of Technology Thonburi (KMUTT) and the National Research University Project of Thailand’s Office of the Higher Education Commission (under CSEC project no.54000267) for their financial support during the preparation of this paper. P. Kumam was supported by the Commission on Higher Education and the Thailand Research Fund (Grant no. MRG5380044).