Abstract

We present sharp upper and lower generalized logarithmic mean bounds for the geometric weighted mean of the geometric and harmonic means.

1. Introduction

For π‘βˆˆβ„ the generalized logarithmic mean 𝐿𝑝(π‘Ž,𝑏) of two positive numbers π‘Ž and 𝑏 is defined by πΏπ‘βŽ§βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽ©ξ‚Έπ‘Ž(π‘Ž,𝑏)=π‘Ž,π‘Ž=𝑏,𝑝+1βˆ’π‘π‘+1ξ‚Ή(𝑝+1)(π‘Žβˆ’π‘)1/𝑝1,𝑝≠0,π‘β‰ βˆ’1,π‘Žβ‰ π‘,π‘’ξ‚΅π‘π‘π‘Žπ‘Žξ‚Ά1/(π‘βˆ’π‘Ž),𝑝=0,π‘Žβ‰ π‘,π‘βˆ’π‘Žlogπ‘βˆ’logπ‘Ž,𝑝=βˆ’1,π‘Žβ‰ π‘.(1.1)

It is well-known that 𝐿𝑝(π‘Ž,𝑏) is continuous and strictly increasing with respect to π‘βˆˆβ„ for fixed π‘Ž and 𝑏 with π‘Žβ‰ π‘. In the recent past, the generalized logarithmic mean has been the subject of intensive research. In particular, many remarkable inequalities for 𝐿𝑝 can be found in the literature [1–23]. The generalized logarithmic mean has applications in convex function, economics, physics, and even in meteorology [24–27]. In [26] the authors study a variant of Jensen’s functional equation involving 𝐿𝑝, which appear in a heat conduction problem. Let 𝐴(π‘Ž,𝑏)=(π‘Ž+𝑏)/2,𝐼(π‘Ž,𝑏)=(1/𝑒)(𝑏𝑏/π‘Žπ‘Ž)1/(π‘βˆ’π‘Ž), 𝐿(π‘Ž,𝑏)=(π‘βˆ’π‘Ž)/(logπ‘βˆ’logπ‘Ž), √𝐺(π‘Ž,𝑏)=π‘Žπ‘, and 𝐻(π‘Ž,𝑏)=2π‘Žπ‘/(π‘Ž+𝑏) be the arithmetic, identric, logarithmic, geometric, and harmonic means of two positive numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘, respectively. Then it is well known thatmin{π‘Ž,𝑏}<𝐻(π‘Ž,𝑏)<𝐺(π‘Ž,𝑏)=πΏβˆ’2(π‘Ž,𝑏)<𝐿(π‘Ž,𝑏)=πΏβˆ’1(π‘Ž,𝑏)<𝐼(π‘Ž,𝑏)=𝐿0(π‘Ž,𝑏)<𝐴(π‘Ž,𝑏)=𝐿1(π‘Ž,𝑏)<max{π‘Ž,𝑏}.(1.2)

In [28–30], the authors present bounds for 𝐿 and 𝐼 in terms of 𝐺 and 𝐴.

Proposition 1.1. For all positive real numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘, one has 𝐴1/3(π‘Ž,𝑏)𝐺2/31(π‘Ž,𝑏)<𝐿(π‘Ž,𝑏)<32𝐴(π‘Ž,𝑏)+31𝐺(π‘Ž,𝑏),32𝐺(π‘Ž,𝑏)+3𝐴(π‘Ž,𝑏)<𝐼(π‘Ž,𝑏).(1.3)

The proof of the following Proposition 1.2 can be found in [31].

Proposition 1.2. For all positive real numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘, we have √√𝐺(π‘Ž,𝑏)𝐴(π‘Ž,𝑏)<1𝐿(π‘Ž,𝑏)𝐼(π‘Ž,𝑏)<21(𝐿(π‘Ž,𝑏)+𝐼(π‘Ž,𝑏))<2(𝐺(π‘Ž,𝑏)+𝐴(π‘Ž,𝑏)).(1.4)

For π‘Ÿβˆˆβ„ the π‘Ÿth power mean π‘€π‘Ÿ(π‘Ž,𝑏) of two positive numbers π‘Ž and 𝑏 is defined byπ‘€π‘ŸβŽ§βŽͺ⎨βŽͺβŽ©ξ‚΅π‘Ž(π‘Ž,𝑏)=π‘Ÿ+π‘π‘Ÿ2ξ‚Ά1/π‘Ÿβˆš,π‘Ÿβ‰ 0,π‘Žπ‘,π‘Ÿ=0.(1.5)

The main properties of these means are given in [32]. Several authors discussed the relationship of certain means to π‘€π‘Ÿ. The following sharp bounds for 𝐿, 𝐼, (𝐼𝐿)1/2, and (𝐼+𝐿)/2 in terms of power means are proved in [31, 33–37].

Proposition 1.3. For all positive real numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘ one has 𝑀0(π‘Ž,𝑏)<𝐿(π‘Ž,𝑏)<𝑀1/3(π‘Ž,𝑏),𝑀2/3(π‘Ž,𝑏)<𝐼(π‘Ž,𝑏)<𝑀log2𝑀(π‘Ž,𝑏),0(π‘Ž,𝑏)<𝐼1/2(π‘Ž,𝑏)𝐿1/2(π‘Ž,𝑏)<𝑀1/21(π‘Ž,𝑏),2[]𝐼(π‘Ž,𝑏)+𝐿(π‘Ž,𝑏)<𝑀1/2(π‘Ž,𝑏).(1.6)

The following three results were established by Alzer and Qiu in [38].

Proposition 1.4. The inequalities 𝛼𝐴(π‘Ž,𝑏)+(1βˆ’π›Ό)𝐺(π‘Ž,𝑏)<𝐼(π‘Ž,𝑏)<𝛽𝐴(π‘Ž,𝑏)+(1βˆ’π›½)𝐺(π‘Ž,𝑏)(1.7) hold for all positive real numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘ if and only if 2𝛼≀32,𝛽β‰₯𝑒=0.73575β‹…β‹…β‹….(1.8)

Proposition 1.5. Let π‘Ž and 𝑏 be real numbers with π‘Žβ‰ π‘. If 0<π‘Ž,𝑏≀𝑒, then []𝐺(π‘Ž,𝑏)𝐴(π‘Ž,𝑏)<[]𝐿(π‘Ž,𝑏)𝐼(π‘Ž,𝑏)<[]𝐴(π‘Ž,𝑏)𝐺(π‘Ž,𝑏).(1.9) And, if π‘Ž,𝑏β‰₯𝑒, then []𝐴(π‘Ž,𝑏)𝐺(π‘Ž,𝑏)<[]𝐼(π‘Ž,𝑏)𝐿(π‘Ž,𝑏)<[]𝐺(π‘Ž,𝑏)𝐴(π‘Ž,𝑏).(1.10)

Proposition 1.6. For all positive real numbers π‘Ž and 𝑏 with π‘Žβ‰ π‘, one has 𝑀𝑐1(π‘Ž,𝑏)<2(𝐿(π‘Ž,𝑏)+𝐼(π‘Ž,𝑏))(1.11) with the best possible parameter 𝑐=log2/(1+log2)=0.40938β‹―

In [39] the authors presented inequalities between the generalized logarithmic mean and the product 𝐴𝛼(π‘Ž,𝑏)𝐺𝛽(π‘Ž,b)𝐻𝛾(π‘Ž,𝑏) for all π‘Ž,𝑏>0 with π‘Žβ‰ π‘ and 𝛼,𝛽>0 with 𝛼+𝛽<1.

It is the aim of this paper to give a solution to the problem: for π›Όβˆˆ(0,1), what are the greatest value 𝑝 and the least value π‘ž, such that the inequality𝐿𝑝(π‘Ž,𝑏)≀𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)β‰€πΏπ‘ž(π‘Ž,𝑏)(1.12) holds for all π‘Ž,𝑏>0?

2. Main Result

Theorem 2.1. For π›Όβˆˆ(0,1) and all π‘Ž,𝑏>0, one has the following:(1)𝐿3π›Όβˆ’5(π‘Ž,𝑏)=𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)=πΏβˆ’(2/𝛼)(π‘Ž,𝑏) for 𝛼=2/3,(2)𝐿3π›Όβˆ’5(π‘Ž,𝑏)β‰₯𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)β‰₯πΏβˆ’(2/𝛼)(π‘Ž,𝑏) for 0<𝛼<2/3, and 𝐿3π›Όβˆ’5(π‘Ž,𝑏)≀𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)β‰€πΏβˆ’(2/𝛼)(π‘Ž,𝑏) for 2/3<𝛼<1, with equality if and only if π‘Ž=𝑏, and the parameters 3π›Όβˆ’5 and βˆ’2/𝛼 in each inequality cannot be improved.

Proof. (1) If 𝛼=2/3 and π‘Ž=𝑏, then (1.1) implies that 𝐿3π›Όβˆ’5(π‘Ž,𝑏)=𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)=πΏβˆ’(2/𝛼)(π‘Ž,𝑏)=π‘Ž.
If 𝛼=2/3 and π‘Žβ‰ π‘, then (1.1) leads to 𝐿3π›Όβˆ’5(π‘Ž,𝑏)=πΏβˆ’2/𝛼(π‘Ž,𝑏)=πΏβˆ’3ξ‚Έπ‘Ž(π‘Ž,𝑏)=βˆ’2βˆ’π‘βˆ’2ξ‚Ή2(π‘βˆ’π‘Ž)βˆ’1/3=(π‘Žπ‘)1/3ξ‚€2π‘Žπ‘ξ‚π‘Ž+𝑏1/3=𝐺2/3(π‘Ž,𝑏)𝐻1/3(π‘Ž,𝑏)=𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏).(2.1)
(2) If π‘Ž=𝑏, then from (1.1) we clearly see that 𝐿3π›Όβˆ’5(π‘Ž,𝑏)=𝐺𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Ό(π‘Ž,𝑏)=πΏβˆ’(2/𝛼)(π‘Ž,𝑏)=π‘Ž for any π›Όβˆˆ(0,1).
If π‘Žβ‰ π‘, without loss of generality, we assume π‘Ž>𝑏. Let π‘Ž/𝑏=𝑑>1 and 𝑓(𝑑)=log𝐿3π›Όβˆ’5𝐺(π‘Ž,𝑏)βˆ’log𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Όξ€».(π‘Ž,𝑏)(2.2) Then (1.1) and simple computations yield 1𝑓(𝑑)=𝑑3π›Όβˆ’5log3π›Όβˆ’4βˆ’1βˆ’π›Ό(3π›Όβˆ’4)(π‘‘βˆ’1)2logπ‘‘βˆ’(1βˆ’π›Ό)log2𝑑,1+𝑑lim𝑑→1+𝑓𝑓(𝑑)=0,(2.3)ξ…žπ‘‘(𝑑)=βˆ’4βˆ’3𝛼𝑑𝑑2π‘‘βˆ’1ξ€Έξ€·4βˆ’3π›Όξ€Έβˆ’1𝑔(𝑑),(2.4) where 𝑔(𝑑)=(2βˆ’π›Ό/2)𝑑3π›Όβˆ’2βˆ’((2βˆ’π›Ό)(2βˆ’3𝛼)/5βˆ’3𝛼)𝑑3π›Όβˆ’3+((1βˆ’π›Ό)(2βˆ’3𝛼)/2(5βˆ’3𝛼))𝑑3π›Όβˆ’4βˆ’((1βˆ’π›Ό)(2βˆ’3𝛼)/2(5βˆ’3𝛼))𝑑2+((2βˆ’π›Ό)(2βˆ’3𝛼)/(5βˆ’3𝛼))π‘‘βˆ’(2βˆ’π›Ό)/2, 𝑔𝑔(1)=0,ξ…ž(𝑑)=(2βˆ’π›Ό)(3π›Όβˆ’2)2𝑑3π›Όβˆ’3βˆ’3(2βˆ’π›Ό)(2βˆ’3𝛼)(π›Όβˆ’1)𝑑5βˆ’3𝛼3π›Όβˆ’4+(1βˆ’π›Ό)(2βˆ’3𝛼)(3π›Όβˆ’4)𝑑2(5βˆ’3𝛼)3π›Όβˆ’5βˆ’(1βˆ’π›Ό)(2βˆ’3𝛼)𝑑+(5βˆ’3𝛼)(2βˆ’π›Ό)(2βˆ’3𝛼),𝑔(5βˆ’3𝛼)ξ…žπ‘”(1)=0,ξ…žξ…ž(𝑑)=3(2βˆ’π›Ό)(3π›Όβˆ’2)(π›Όβˆ’1)2𝑑3π›Όβˆ’4βˆ’3(2βˆ’π›Ό)(2βˆ’3𝛼)(π›Όβˆ’1)(3π›Όβˆ’4)𝑑5βˆ’3𝛼3π›Όβˆ’5βˆ’(1βˆ’π›Ό)(2βˆ’3𝛼)(3π›Όβˆ’4)2𝑑3π›Όβˆ’6βˆ’(1βˆ’π›Ό)(2βˆ’3𝛼),𝑔(5βˆ’3𝛼)(2.5)ξ…žξ…žπ‘”(1)=0,(2.6)ξ…žξ…žξ…ž3(𝑑)=2(1βˆ’π›Ό)(2βˆ’π›Ό)(4βˆ’3𝛼)(3π›Όβˆ’2)𝑑3π›Όβˆ’7(π‘‘βˆ’1)2.(2.7)
If 0<𝛼<2/3, then (2.7) implies π‘”ξ…žξ…žξ…ž(𝑑)<0(2.8) for 𝑑>1.
From (2.3)–(2.6) and (2.8) we know that 𝑓(𝑑)>0 for 𝑑>1.
If 2/3<𝛼<1, then (2.7) leads to π‘”ξ…žξ…žξ…ž(𝑑)>0(2.9) for 𝑑>1. Therefore 𝑓(𝑑)<0 for 𝑑>1 follows from (2.3)–(2.6) and (2.9).
Let β„Ž(𝑑)=logπΏβˆ’(2/𝛼)𝐺(π‘Ž,𝑏)βˆ’log𝛼(π‘Ž,𝑏)𝐻1βˆ’π›Όξ€»(π‘Ž,𝑏)(2.10) for 𝑑=π‘Ž/𝑏>1; then (1.1) and elementary calculations lead to π›Όβ„Ž(𝑑)=βˆ’2𝑑log(π›Όβˆ’2)/π›Όβˆ’1βˆ’π›Ό((π›Όβˆ’2)/𝛼)(π‘‘βˆ’1)2logπ‘‘βˆ’(1βˆ’π›Ό)log2𝑑,1+𝑑lim𝑑→1+β„Žβ„Ž(𝑑)=0,(2.11)ξ…žπ‘‘(𝑑)=βˆ’(2βˆ’π›Ό)/𝛼𝑑𝑑2π‘‘βˆ’1ξ€Έξ€·(2βˆ’π›Ό)/π›Όξ€Έβˆ’1𝑣(𝑑),(2.12) where 𝑣(𝑑)=((2βˆ’π›Ό)/2)𝑑(3π›Όβˆ’2)/𝛼+((3π›Όβˆ’2)/2)𝑑(2π›Όβˆ’2)/π›Όβˆ’((3π›Όβˆ’2)/2)π‘‘βˆ’(2βˆ’π›Ό)/2, 𝑣𝑣(1)=0,ξ…ž(𝑑)=(2βˆ’π›Ό)(3π›Όβˆ’2)𝑑2𝛼(2π›Όβˆ’2)/𝛼+(3π›Όβˆ’2)(π›Όβˆ’1)𝛼𝑑(π›Όβˆ’2)/π›Όβˆ’3π›Όβˆ’22,𝑣(2.13)ξ…žπ‘£(1)=0,(2.14)ξ…žξ…ž(𝑑)=(2βˆ’π›Ό)(1βˆ’π›Ό)(2βˆ’3𝛼)𝛼2π‘‘βˆ’2/𝛼(π‘‘βˆ’1).(2.15)
If π›Όβˆˆ(0,2/3), then (2.15) implies π‘£ξ…žξ…ž(𝑑)>0(2.16) for 𝑑>1.
From (2.11)–(2.14) and (2.16) we know that β„Ž(𝑑)<0 for 𝑑>1.
If π›Όβˆˆ(2/3,1), then (2.15) leads to π‘£ξ…žξ…ž(𝑑)<0(2.17) for 𝑑>1. Therefore, β„Ž(𝑑)>0 for 𝑑>1 follows from (2.11)–(2.14) and (2.17).
Next, we prove that the parameters βˆ’(2/𝛼) and 3π›Όβˆ’5 in either case cannot be improved. The proof is divided into two cases.
Case 1 (π›Όβˆˆ(0,2/3)). For any πœ–>0 and π‘₯∈(0,1), from (1.1) one has 𝐺𝛼(1,1+π‘₯)𝐻1βˆ’π›Όξ€»(1,1+π‘₯)5βˆ’3𝛼+πœ–βˆ’ξ€ΊπΏ3π›Όβˆ’5βˆ’πœ–ξ€»(1,1+π‘₯)5βˆ’3𝛼+πœ–=𝑓1(π‘₯)(1+π‘₯/2)(1βˆ’π›Ό)(5βˆ’3𝛼+πœ–)ξ€Ί(1+π‘₯)4βˆ’3𝛼+πœ–ξ€»,βˆ’1(2.18) where 𝑓1(π‘₯)=(1+π‘₯)(1βˆ’π›Ό/2)(5βˆ’3𝛼+πœ–)[(1+π‘₯)4βˆ’3𝛼+πœ–βˆ’1]βˆ’(4βˆ’3𝛼+πœ–)π‘₯(1+π‘₯)4βˆ’3𝛼+πœ–(1+π‘₯/2)(1βˆ’π›Ό)(5βˆ’3𝛼+πœ–).
Let π‘₯β†’0; making use of the Taylor expansion, we get 𝑓1(π‘₯)=πœ–(4βˆ’3𝛼+πœ–)(5βˆ’3𝛼+πœ–)π‘₯243ξ€·π‘₯+π‘œ3ξ€Έ.(2.19)
Equations (2.18) and (2.19) imply that for any π›Όβˆˆ(0,2/3) and πœ–>0 there exists 𝛿=𝛿(πœ–,𝛼)∈(0,1), such that 𝐿3π›Όβˆ’5βˆ’πœ–(1,1+π‘₯)<𝐺𝛼(1,1+π‘₯)𝐻1βˆ’π›Ό(1,1+π‘₯) for π‘₯∈(0,𝛿).
On the other hand, for any πœ–βˆˆ(0,(2/𝛼)βˆ’1) we have πΏβˆ’(2/𝛼)+πœ–(1,𝑑)βˆ’πΊπ›Ό(1,𝑑)𝐻1βˆ’π›Ό(1,𝑑)=𝑑𝛼/(2βˆ’πœ–π›Ό)ξƒ―ξ‚Έ1βˆ’π‘‘βˆ’2/𝛼+πœ–+1(ξ‚Ή2/π›Όβˆ’πœ–βˆ’1)(1βˆ’1/𝑑)βˆ’π›Ό/(2βˆ’πœ–π›Ό)βˆ’π‘‘βˆ’πœ–π›Ό2/2(2βˆ’πœ–π›Ό)ξ‚€2𝑑1+𝑑1βˆ’π›Όξƒ°,lim𝑑→+βˆžξƒ―ξ‚Έ1βˆ’π‘‘βˆ’2/𝛼+πœ–+1ξ‚Ή(2/π›Όβˆ’πœ–βˆ’1)(1βˆ’1/𝑑)βˆ’π›Ό/(2βˆ’πœ–π›Ό)βˆ’π‘‘βˆ’πœ–π›Ό2/2(2βˆ’πœ–π›Ό)ξ‚€2𝑑1+𝑑1βˆ’π›Όξƒ°=ξ‚€2π›Όξ‚βˆ’πœ–βˆ’1𝛼/(2βˆ’πœ–π›Ό)>0.(2.20)
From (2.20) we know that for any π›Όβˆˆ(0,2/3) and πœ–βˆˆ(0,2/π›Όβˆ’1) there exists 𝑇=𝑇(πœ–,𝛼)>1, such that πΏβˆ’2/𝛼+πœ–(1,𝑑)>𝐺𝛼(1,𝑑)𝐻1βˆ’π›Ό(1,𝑑) for π‘‘βˆˆ(𝑇,∞).
Case 2 (π›Όβˆˆ(2/3,1)). For any πœ–βˆˆ(0,4βˆ’3𝛼) and π‘₯∈(0,1), from (1.1) one has 𝐿3π›Όβˆ’5+πœ–ξ€»(1,1+π‘₯)5βˆ’3π›Όβˆ’πœ–βˆ’ξ€ΊπΊπ›Ό(1,1+π‘₯)𝐻1βˆ’π›Όξ€»(1,1+π‘₯)5βˆ’3π›Όβˆ’πœ–=𝑓2(π‘₯)(1+π‘₯/2)(1βˆ’π›Ό)(5βˆ’3π›Όβˆ’πœ–)ξ€Ί(1+π‘₯)4βˆ’3π›Όβˆ’πœ–ξ€»,βˆ’1(2.21) where 𝑓2(π‘₯)=(4βˆ’3π›Όβˆ’πœ–)π‘₯(1+π‘₯)4βˆ’3π›Όβˆ’πœ–(1+π‘₯/2)(1βˆ’π›Ό)(5βˆ’3π›Όβˆ’πœ–)βˆ’(1+π‘₯)(1βˆ’π›Ό/2)(5βˆ’3π›Όβˆ’πœ–)[(1+π‘₯)4βˆ’3π›Όβˆ’πœ–βˆ’1].
Let π‘₯β†’0; making use of the Taylor expansion, we have 𝑓2πœ–(π‘₯)=24(4βˆ’3π›Όβˆ’πœ–)(5βˆ’3π›Όβˆ’πœ–)π‘₯3ξ€·π‘₯+π‘œ3ξ€Έ.(2.22)
Equations (2.21) and (2.22) imply that for any π›Όβˆˆ(2/3,1) and πœ–βˆˆ(0,4βˆ’3𝛼) there exists 𝛿=𝛿(πœ–,𝛼)∈(0,1), such that 𝐿3π›Όβˆ’5+πœ–(1,1+π‘₯)>𝐺𝛼(1,1+π‘₯)𝐻1βˆ’π›Ό(1,1+π‘₯) for π‘₯∈(0,𝛿).
On the other hand, for any πœ–>0, we have 𝐺𝛼(1,𝑑)𝐻1βˆ’π›Ό(1,𝑑)βˆ’πΏβˆ’(2/𝛼)βˆ’πœ–(1,𝑑)=𝑑𝛼/2ξƒ―ξ‚€2𝑑1+𝑑1βˆ’π›Όβˆ’π‘‘βˆ’πœ–π›Ό2/2(2+πœ–π›Ό)ξ‚Έ1βˆ’π‘‘βˆ’(2/𝛼+πœ–βˆ’1)(ξ‚Ή2/𝛼+πœ–βˆ’1)(1βˆ’1/𝑑)βˆ’π›Ό/(2+πœ–π›Ό)ξƒ°,lim𝑑→+βˆžξƒ―ξ‚€2𝑑1+𝑑1βˆ’π›Όβˆ’π‘‘βˆ’πœ–π›Ό2/2(2+πœ–π›Ό)ξ‚Έ1βˆ’π‘‘βˆ’(2/𝛼+πœ–βˆ’1)ξ‚Ή(2/𝛼+πœ–βˆ’1)(1βˆ’1/𝑑)βˆ’π›Ό/(2+πœ–π›Ό)ξƒ°=21βˆ’π›Ό>0.(2.23)
From (2.23) we know that for any π›Όβˆˆ(2/3,1) and πœ–>0 there exists 𝑇=𝑇(πœ–,𝛼)>1, such that πΏβˆ’(2/𝛼)βˆ’πœ–(1,𝑑)<𝐺𝛼(1,𝑑)𝐻1βˆ’π›Ό(1,𝑑) for π‘‘βˆˆ(𝑇,∞).

Acknowledgment

This work was supported by the Natural Science Foundation of Zhejiang Broad-cast and TV University under Grant XKT-09G21.