Abstract

We introduce an iterative process which converges strongly to a common point of solution of variational inequality problem for a monotone mapping and fixed point of uniformly Lipschitzian relatively asymptotically nonexpansive mapping in Banach spaces. As a consequence, we provide a scheme that converges strongly to a common zero of finite family of monotone mappings under suitable conditions. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.

1. Introduction

Let 𝐸 be a smooth Banach space. Throughout this paper, we denote by πœ™βˆΆπΈΓ—πΈβ†’β„ the function defined by πœ™(𝑦,π‘₯)=‖𝑦‖2βˆ’2βŸ¨π‘¦,𝐽π‘₯⟩+β€–π‘₯β€–2,forπ‘₯,π‘¦βˆˆπΈ,(1.1) which was studied by Alber [1], Kamimura and Takahashi [2], and Reich [3], where 𝐽 is the normalized duality mapping from 𝐸 to 2πΈβˆ— defined by 𝑓𝐽π‘₯∢=βˆ—βˆˆπΈβˆ—βˆΆβŸ¨π‘₯,π‘“βˆ—βŸ©=β€–π‘₯β€–2=β€–π‘“βˆ—β€–2,(1.2) where βŸ¨β‹…,β‹…βŸ© denotes the duality pairing. It is well known that if 𝐸 is smooth, then 𝐽 is single-valued, and, if 𝐸 has uniformly GΓ’teaux differentiable norm, then 𝐽 is uniformly continuous on bounded subsets of 𝐸. Moreover, if 𝐸 is a reflexive and strictly convex Banach space with a strictly convex dual, then π½βˆ’1 is single valued, one-to-one, surjective, and it is the duality mapping from πΈβˆ— into 𝐸, and thus π½π½βˆ’1=πΌπΈβˆ— and π½βˆ’1𝐽=𝐼𝐸 (see [4]).

It is obvious from the definition of the function πœ™ that ()β€–π‘₯β€–βˆ’β€–π‘¦β€–2)β‰€πœ™(π‘₯,𝑦)≀(β€–π‘₯β€–+‖𝑦‖2forπ‘₯,π‘¦βˆˆπΈ,(1.3) and, in a Hilbert space 𝐻, (1.1) reduces to πœ™(π‘₯,𝑦)=β€–π‘₯βˆ’π‘¦β€–2, for π‘₯,π‘¦βˆˆπ».

Let 𝐸 be a reflexive, strictly convex, and smooth Banach space, and let 𝐢 be a nonempty closed and convex subset of 𝐸. The generalized projection mapping, introduced by Alber [1], is a mapping Ξ πΆβˆΆπΈβ†’πΆ that assigns an arbitrary point π‘₯∈𝐸 to the minimizer, π‘₯, of πœ™(β‹…,π‘₯) over 𝐢, that is, Π𝐢π‘₯=π‘₯, where π‘₯ is the solution to the minimization problem πœ™ξ€·ξ€Έπ‘₯,π‘₯=min{πœ™(𝑦,π‘₯),π‘¦βˆˆπΆ}.(1.4) Let 𝐸 be a real Banach space with dual πΈβˆ—. A mapping 𝐴∢𝐷(𝐴)βŠ‚πΈβ†’πΈβˆ— is said to be monotone if, for each π‘₯,π‘¦βˆˆπ·(𝐴), the following inequality holds: ⟨π‘₯βˆ’π‘¦,𝐴π‘₯βˆ’π΄π‘¦βŸ©β‰₯0.(1.5)𝐴 is said to be 𝛾-inverse strongly monotone if there exists positive real number 𝛾 such that ⟨π‘₯βˆ’π‘¦,𝐴π‘₯βˆ’π΄π‘¦βŸ©β‰₯𝛾‖𝐴π‘₯βˆ’π΄π‘¦β€–2,βˆ€π‘₯,π‘¦βˆˆπΎ.(1.6) If 𝐴 is 𝛾-inverse strongly monotone, then it is Lipschitz continuous with constant 1/𝛾, that is, ‖𝐴π‘₯βˆ’π΄π‘¦β€–β‰€(1/𝛾)β€–π‘₯βˆ’π‘¦β€–, for all π‘₯,π‘¦βˆˆπ·(𝐴), and it is called strongly monotone if there exists π‘˜>0 such that, for all π‘₯,π‘¦βˆˆπ·(𝐴), ⟨π‘₯βˆ’π‘¦,𝐴π‘₯βˆ’π΄π‘¦βŸ©β‰₯π‘˜β€–π‘₯βˆ’π‘¦β€–2.(1.7) Clearly, the class of monotone mappings include the class of strongly monotone and 𝛾-inverse strongly monotone mappings.

Suppose that 𝐴 is monotone mapping from 𝐢 into πΈβˆ—. The variational inequality problem is formulated as finding a point π‘’βˆˆπΆ such that βŸ¨π‘£βˆ’π‘’,π΄π‘’βŸ©β‰₯0, for all π‘£βˆˆπΆ. The set of solutions of the variational inequality problems is denoted by VI(𝐢,𝐴).

The notion of monotone mappings was introduced by Zarantonello [5], Minty [6], and Kacurovskii [7] in Hilbert spaces. Monotonicity conditions in the context of variational methods for nonlinear operator equations were also used by Vainberg and Kachurovisky [8]. Variational inequalities were initially studied by Stampacchia [9, 10] and ever since have been widely studied in general Banach spaces (see, e.g., [2, 11–13]). Such a problem is connected with the convex minimization problem, the complementarity problem, the problem of finding point π‘’βˆˆπΆ satisfying 0βˆˆπ΄π‘’.

If 𝐸=𝐻, a Hilbert space, one method of solving a point π‘’βˆˆVI(𝐢,𝐴) is the projection algorithm which starts with any point π‘₯1=π‘₯∈𝐢 and updates iteratively as π‘₯𝑛+1 according to the formula π‘₯𝑛+1=𝑃𝐢π‘₯π‘›βˆ’π›Όπ‘›π΄π‘₯𝑛,forany𝑛β‰₯1,(1.8) where 𝑃𝐢 is the metric projection from 𝐻 onto 𝐢 and {𝛼𝑛} is a sequence of positive real numbers. In the case that 𝐴 is 𝛾-inverse strongly monotone, Iiduka et al. [14] proved that the sequence {π‘₯𝑛} generated by (3.35) converges weakly to some element of VI(𝐢,𝐴).

In the case that 𝐸 is a 2-uniformly convex and uniformly smooth Banach space, Iiduka and Takahashi [15] introduced the following iteration scheme for finding a solution of the variational inequality problem for an inverse strongly monotone operator 𝐴: π‘₯𝑛+1=Ξ πΆπ½βˆ’1𝐽π‘₯π‘›βˆ’π›Όπ‘›π΄π‘₯𝑛,forany𝑛β‰₯1,(1.9) where Π𝐢 is the generalized projection from 𝐸 onto 𝐢, 𝐽 is the normalized duality mapping from 𝐸 into πΈβˆ—, and {𝛼𝑛} is a sequence of positive real numbers. They proved that the sequence {π‘₯𝑛} generated by (1.9) converges weakly to some element of VI(𝐢,𝐴) provided that 𝐴 satisfies ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–, for π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴).

It is worth to mention that the convergence is weak convergence.

To obtain strong convergence, when 𝐸=𝐻, a Hilbert space and 𝐴 is 𝛾-inverse strongly monotone; Iiduka et al. [14] studied the following iterative scheme: π‘₯0π‘¦βˆˆπΆ,chosenarbitrary,𝑛=𝑃𝐢π‘₯π‘›βˆ’π›Όπ‘›π΄π‘₯𝑛,𝐢𝑛=ξ€½β€–β€–π‘¦π‘§βˆˆπΆβˆΆπ‘›β€–β€–β‰€β€–β€–π‘₯βˆ’π‘§π‘›β€–β€–ξ€Ύ,π‘„βˆ’π‘§π‘›=ξ€½π‘§βˆˆπΆβˆΆβŸ¨π‘₯π‘›βˆ’π‘§,π‘₯0βˆ’π‘₯𝑛,π‘₯⟩β‰₯0𝑛+1=π‘ƒπΆπ‘›βˆ©π‘„π‘›ξ€·π‘₯0ξ€Έ,𝑛β‰₯1,for𝑛β‰₯1,(1.10) where {𝛼𝑛} is a sequence in [0,2𝛾]. They proved that the sequence {π‘₯𝑛} generated by (1.10) converges strongly to 𝑃VI(𝐢,𝐴)(π‘₯0), where 𝑃VI(𝐢,𝐴) is the metric projection from 𝐻 onto VI(𝐢,𝐴) provided that 𝐴 satisfies ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–, for π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴).

In the case that 𝐸 is 2-uniformly convex and uniformly smooth Banach space, Iiduka and Takahashi [11] studied the following iterative scheme for a variational inequality problem for 𝛾-inverse strongly monotone mapping: π‘₯0π‘¦βˆˆπΎ,chosenarbitrary,𝑛=Ξ πΆπ½βˆ’1𝐽π‘₯π‘›βˆ’π›Όπ‘›π΄π‘₯𝑛,𝐢𝑛=ξ€½ξ€·π‘§βˆˆπΈβˆΆπœ™π‘§,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛,𝑄𝑛=ξ€½π‘§βˆˆπΈβˆΆβŸ¨π‘₯π‘›βˆ’π‘§,𝐽π‘₯0βˆ’π½π‘₯𝑛,π‘₯⟩β‰₯0𝑛+1=Ξ πΆπ‘›βˆ©π‘„π‘›ξ€·π‘₯0ξ€Έ,𝑛β‰₯1,for𝑛β‰₯1,(1.11) where Ξ πΆπ‘›βˆ©π‘„π‘› is the generalized projection from 𝐸 onto πΆπ‘›βˆ©π‘„π‘›,𝐽 is the normalized duality mapping from 𝐸 into πΈβˆ—, and {𝛼𝑛} is a positive real sequence satisfying certain condition. Then, they proved that the sequence {π‘₯𝑛} converges strongly to an element of VI(𝐢,𝐴) provided that VI(𝐢,𝐴)β‰ βˆ… and 𝐴 satisfies ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€– for all π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴).

Remark 1.1. We remark that the computation of π‘₯𝑛+1 in Algorithms (1.10) and (1.11) is not simple because of the involvement of computation of 𝐢𝑛+1 from 𝐢𝑛 and 𝑄𝑛 for each 𝑛β‰₯1.

Let 𝑇 be a mapping from 𝐢 into itself. We denote by 𝐹(𝑇) the fixed points set of 𝑇. A point 𝑝 in 𝐢 is said to be an asymptotic fixed point of 𝑇 (see [3]) if 𝐢 contains a sequence {π‘₯𝑛} which converges weakly to 𝑝 such that limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π‘‡π‘₯𝑛‖=0. The set of asymptotic fixed points of 𝑇 will be denoted by 𝐹(𝑇). A mapping 𝑇 from 𝐢 into itself is said to be nonexpansive if ‖𝑇π‘₯βˆ’π‘‡π‘¦β€–β‰€β€–π‘₯βˆ’π‘¦β€– for each π‘₯,π‘¦βˆˆπΆ and is called relatively nonexpansive if (R1) 𝐹(𝑇)β‰ βˆ…; (R2) πœ™(𝑝,𝑇π‘₯)β‰€πœ™(𝑝,π‘₯) for π‘₯∈𝐢 and (R3) 𝐹(𝑇)=𝐹(𝑇). 𝑇 is called relatively quasi-nonexpansive if 𝐹(𝑇)β‰ βˆ… and πœ™(𝑝,𝑇π‘₯)β‰€πœ™(𝑝,π‘₯) for all π‘₯∈𝐢, and π‘βˆˆπΉ(𝑇).

A mapping 𝑇 from 𝐢 into itself is said to be asymptotically nonexpansive if there exists {π‘˜π‘›}βŠ‚[1,∞) such that π‘˜π‘›β†’1 and ‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€– for each π‘₯,π‘¦βˆˆπΆ and is called relatively asymptotically nonexpansive if there exists {π‘˜π‘›}βŠ‚[1,∞) such that (N1) 𝐹(𝑇)β‰ βˆ…; (N2) πœ™(𝑝,𝑇𝑛π‘₯)β‰€π‘˜π‘›πœ™(𝑝,π‘₯) for π‘₯∈𝐢 and π‘βˆˆπΉ(𝑇), and (N3) 𝐹(𝑇)=𝐹(𝑇), where π‘˜π‘›β†’1 as π‘›β†’βˆž. A-self mapping on 𝐢 is called uniformly 𝐿-Lipschitzian if there exists 𝐿>0 such that ‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–β‰€πΏβ€–π‘₯βˆ’π‘¦β€– for all π‘₯,π‘¦βˆˆπΆ. 𝑇 is called closed if π‘₯𝑛→π‘₯ and 𝑇π‘₯𝑛→𝑦, then 𝑇π‘₯=𝑦.

Clearly, we note that the class of relatively nonexpansive mappings is contained in a class of relatively asymptotically nonexpansive mappings but the converse is not true. Now, we give an example of relatively asymptotically nonexpansive mapping which is not relatively nonexpansive.

Example 1.2 (see [16]). Let 𝑋=𝑙𝑝, where 1<𝑝<∞, and 𝐢={π‘₯=(π‘₯1,π‘₯2,…)βˆˆπ‘‹;π‘₯𝑛β‰₯0}. Then 𝐢 is closed and convex subset of 𝑋. Note that 𝐢 is not bounded. Obviously, 𝑋 is uniformly convex and uniformly smooth. Let {πœ†π‘›} and{πœ†π‘›} be sequences of real numbers satisfying the following properties:(i)0<πœ†π‘›<1, πœ†π‘›>1, πœ†π‘›β†‘1, and πœ†π‘›β†“1,(ii)πœ†π‘›+1πœ†π‘›=1 and πœ†π‘—+1πœ†π‘›+𝑗<1 for all 𝑛 and 𝑗 (e.g., πœ†π‘›=1βˆ’1/(𝑛+1), πœ†π‘›=1+1/(𝑛+1)). Then, the map π‘‡βˆΆπΆβ†’πΆ defined by 𝑇π‘₯∢=0,πœ†1||sinπ‘₯1||,πœ†2π‘₯2,πœ†2π‘₯3,πœ†3π‘₯4,πœ†3π‘₯5,…,(1.12)for all π‘₯=(π‘₯1,π‘₯2,…)∈𝐢, is uniformly Lipschitzian which is relatively asymptotically nonexpansive but not relatively nonexpansive (see [16] for the details). Note also that 𝐹(𝑇)={0}.

In 2005, Matsushita and Takahashi [17] proposed the following hybrid iteration method with generalized projection for relatively nonexpansive mapping 𝑇 in a Banach space 𝐸: π‘₯0π‘¦βˆˆπΆ,chosenarbitrary,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘‡π‘₯𝑛,𝐢𝑛=ξ€½ξ€·π‘§βˆˆπΆβˆΆπœ™π‘§,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛,𝑄𝑛=ξ€½π‘§βˆˆπΆ;⟨π‘₯π‘›βˆ’π‘§,𝐽π‘₯0βˆ’π½π‘₯𝑛,π‘₯⟩β‰₯0𝑛+1=Ξ πΆπ‘›βˆ©π‘„π‘›ξ€·π‘₯0ξ€Έ,𝑛β‰₯1.(1.13) They proved that, if the sequence {𝛼𝑛} is bounded above from one, then the sequence {π‘₯𝑛} generated by (1.13) converges strongly to Π𝐹(𝑇)π‘₯0.

Recently, many authors have considered the problem of finding a common element of the fixed-point set of relatively nonexpansive mapping and the solution set of variational inequality problem for 𝛾-inverse monotone mapping (see, e.g., [12, 13, 18–20]).

In [21], Iiduka and Takahashi studied the following iterative scheme for a common point of solution of a variational inequality problem for 𝛾-inverse strongly monotone mapping 𝐴 and fixed point of nonexpansive mapping 𝑇 in a Hilbert space 𝐻: π‘₯1π‘₯=π‘₯∈𝐢,𝑛+1=𝛼𝑛π‘₯+1βˆ’π›Όπ‘›ξ€Έπ‘†π‘ƒπΆξ€·π‘₯π‘›βˆ’πœ†π‘›π΄π‘₯𝑛,𝑛β‰₯1,(1.14) where {𝛼𝑛} is sequences satisfying certain condition. They proved that the sequence {π‘₯𝑛} converges strongly to an element of 𝐹∢=𝐹(𝑆)∩VI(𝐢,𝐴) provided that πΉβ‰ βˆ….

In the case that 𝐸 is a Banach space more general than Hilbert spaces, Zegeye et al. [12] studied the following iterative scheme for a common point of solution of a variational inequality problem for 𝛾-inverse strongly monotone mapping 𝐴 and fixed point of a closed relatively quasi-nonexpansive mapping 𝑇 in a 2-uniformly convex and uniformly smooth Banach space 𝐸: 𝐢1𝑧=𝐢,chosenarbitrary,𝑛=Π𝐢π‘₯π‘›βˆ’πœ†π‘›π΄π‘₯𝑛,𝑦𝑛=π½βˆ’1𝛽𝐽π‘₯𝑛+(1βˆ’π›½)𝐽𝑇𝑧𝑛,𝐢𝑛+1=ξ€½π‘§βˆˆπΆπ‘›ξ€·βˆΆπœ™π‘§,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛,π‘₯𝑛+1=Π𝐢𝑛+1ξ€·π‘₯0ξ€Έ,𝑛β‰₯1,(1.15) where {πœ†π‘›} is sequences satisfying certain condition. They proved that the sequence {π‘₯𝑛} converges strongly to an element of 𝐹∢=𝐹(𝑆)∩VI(𝐢,𝐴)β‰ βˆ… provided that πΉβ‰ βˆ… and 𝐴 satisfies ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€– for all π‘₯∈𝐢 and π‘βˆˆπΉ.

Furthermore, Zegeye and Shahzad [22] studied the following iterative scheme for common point of solution of a variational inequality problem for 𝛾-inverse strongly monotone mapping 𝐴 and fixed point of a relatively asymptotically nonexpansive mapping on a closed convex and bounded set 𝐢 which is a subset of a real Hilbert space 𝐻: 𝐢1𝑧=𝐢,chosenarbitrary,𝑛=𝑃𝐢π‘₯π‘›βˆ’πœ†π‘›π΄π‘₯𝑛,𝑦𝑛=𝛼𝑛π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘†π‘›π‘§π‘›,𝐢𝑛+1=ξ‚†π‘§βˆˆπΆπ‘›βˆΆβ€–β€–π‘§βˆ’π‘’π‘›β€–β€–2β‰€β€–β€–π‘§βˆ’π‘₯𝑛‖‖2+πœƒπ‘›ξ‚‡,π‘₯𝑛+1=𝑃𝐢𝑛+1ξ€·π‘₯0ξ€Έ,𝑛β‰₯1,(1.16) where 𝑃𝐢𝑛 is the metric projection from 𝐻 into 𝐢𝑛 and πœƒπ‘›=(1βˆ’π›Όπ‘›)(π‘˜2π‘›βˆ’1)(diam(𝐢))2 and {𝛼𝑛},{πœ†π‘›} are sequences satisfying certain condition. Then, they proved that the sequence {π‘₯𝑛} converges strongly to an element of 𝐹∢=𝐹(𝑆)∩VI(𝐢,𝐴)β‰ βˆ… provided that πΉβ‰ βˆ… and 𝐴 satisfies ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€– for all π‘₯∈𝐢 and π‘βˆˆπΉ.

Remark 1.3. We again remark that the computation of π‘₯𝑛+1 in Algorithms (1.13), (1.15), and (1.16) is not simple because of the involvement of computation of 𝐢𝑛+1 from 𝐢𝑛 for each 𝑛β‰₯1.
It is our purpose in this paper to introduce an iterative scheme {π‘₯𝑛} which converges strongly to a common point of solution of variational inequality problem for a monotone operator π΄βˆΆπΆβ†’πΈβˆ— satisfying appropriate conditions, for some nonempty closed convex subset 𝐢 of a Banach space 𝐸 and fixed points of uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping in Banach spaces. As a consequence, we provide a scheme which converges strongly to a common zero of finite family of monotone mappings. Our scheme does not involve computation of 𝐢𝑛+1 from 𝐢𝑛 or 𝑄𝑛, for each 𝑛β‰₯1. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.

2. Preliminaries

Let 𝐸 be a normed linear space with dim𝐸β‰₯2. The modulus of smoothness of 𝐸 is the function 𝜌𝐸∢[0,∞)β†’[0,∞) defined by πœŒπΈξ‚»(𝜏)∢=supβ€–π‘₯+𝑦‖+β€–π‘₯βˆ’π‘¦β€–2ξ‚Όβˆ’1βˆΆβ€–π‘₯β€–=1;‖𝑦‖=𝜏.(2.1) The space 𝐸 is said to be smooth if 𝜌𝐸(𝜏)>0, for all 𝜏>0, and 𝐸 is called uniformly smooth if and only if lim𝑑→0+(𝜌𝐸(𝑑)/𝑑)=0.

The modulus of convexity of 𝐸 is the function π›ΏπΈβˆΆ(0,2]β†’[0,1] defined by 𝛿𝐸(ξ‚†β€–β€–β€–πœ–)∢=inf1βˆ’π‘₯+𝑦2β€–β€–β€–ξ‚‡βˆΆβ€–π‘₯β€–=‖𝑦‖=1;πœ–=β€–π‘₯βˆ’π‘¦β€–.(2.2)𝐸 is called uniformly convex if and only if 𝛿𝐸(πœ–)>0, for every πœ–βˆˆ(0,2].

In the sequel, we will need the following results.

Lemma 2.1 (see [23]). Let 𝐢 be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space 𝐸. If π΄βˆΆπΆβ†’πΈβˆ— is continuous monotone mapping, then VI(𝐢,𝐴) is closed and convex.

Lemma 2.2. Let 𝐢 be a closed convex subset of a uniformly convex and smooth Banach space 𝐸, and let 𝑆 be continuous relatively asymptotically nonexpansive mapping from 𝐢 into itself. Then, 𝐹(𝑆) is closed and convex.

Lemma 2.3 (see [1]). Let 𝐾 be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space 𝐸, and let π‘₯∈𝐸. Then, for all π‘¦βˆˆπΎ, πœ™ξ€·π‘¦,Π𝐾π‘₯ξ€Έξ€·Ξ +πœ™πΎξ€Έπ‘₯,π‘₯β‰€πœ™(𝑦,π‘₯).(2.3)

Lemma 2.4 (see [2]). Let 𝐸 be a real smooth and uniformly convex Banach space, and let {π‘₯𝑛} and {𝑦𝑛} be two sequences of 𝐸. If either {π‘₯𝑛} or {𝑦𝑛} is bounded and πœ™(π‘₯𝑛,𝑦𝑛)β†’0 as π‘›β†’βˆž, then π‘₯π‘›βˆ’π‘¦π‘›β†’0, as π‘›β†’βˆž.

We make use of the function π‘‰βˆΆπΈΓ—πΈβˆ—β†’β„ defined by 𝑉π‘₯,π‘₯βˆ—ξ€Έ=β€–π‘₯β€–2βˆ’2⟨π‘₯,π‘₯βˆ—βŸ©+β€–π‘₯β€–2,βˆ€π‘₯∈𝐸,π‘₯βˆ—βˆˆπΈ,(2.4) studied by Alber [1]. That is, 𝑉(π‘₯,𝑦)=πœ™(π‘₯,π½βˆ’1π‘₯βˆ—) for all π‘₯∈𝐸 and π‘₯βˆ—βˆˆπΈβˆ—. We know the following lemma.

Lemma 2.5 (see [1]). Let 𝐸 be reflexive strictly convex and smooth Banach space with πΈβˆ— as its dual. Then, 𝑉π‘₯,π‘₯βˆ—ξ€Έξ«π½+2βˆ’1π‘₯βˆ—βˆ’π‘₯,π‘¦βˆ—ξ¬ξ€·β‰€π‘‰π‘₯,π‘₯βˆ—+π‘¦βˆ—ξ€Έ,(2.5) for all π‘₯∈𝐸 and π‘₯βˆ—,π‘¦βˆ—βˆˆπΈβˆ—.

Lemma 2.6 (see [1]). Let 𝐢 be a convex subset of a real smooth Banach space 𝐸. Let π‘₯∈𝐸. Then π‘₯0=Π𝐢π‘₯ if and only if βŸ¨π‘§βˆ’π‘₯0,𝐽π‘₯βˆ’π½π‘₯0βŸ©β‰€0,βˆ€π‘§βˆˆπΆ.(2.6)

Lemma 2.7 (see [12]). Let 𝐸 be a uniformly convex Banach space and 𝐡𝑅(0) a closed ball of 𝐸. Then, there exists a continuous strictly increasing convex function π‘”βˆΆ[0,∞)β†’[0,∞) with 𝑔(0)=0 such that ‖‖𝛼1π‘₯1+𝛼2π‘₯2+𝛼3π‘₯3β€–β€–2≀𝛼𝑖‖‖π‘₯1β€–β€–2+𝛼2β€–β€–π‘₯2β€–β€–2+𝛼3β€–β€–π‘₯3β€–β€–2βˆ’π›Όπ‘–π›Όπ‘—π‘”ξ€·β€–β€–π‘₯π‘–βˆ’π‘₯𝑗‖‖,(2.7) for π›Όπ‘–βˆˆ(0,1) such that 𝛼1+𝛼2+𝛼3=1 and π‘₯π‘–βˆˆπ΅π‘…(0)∢={π‘₯βˆˆπΈβˆΆβ€–π‘₯‖≀𝑅}, for 𝑖=1,2,3.

Let 𝐸 be a smooth and strictly convex Banach space, 𝐢 a nonempty closed convex subset of 𝐸, and π΄βˆΆπΆβ†’πΈβˆ— a monotone operator satisfying 𝐷(𝐴)βŠ†πΆβŠ†π½βˆ’1ξ€·βˆ©π‘Ÿ>0𝑅(𝐽+π‘Ÿπ΄),(2.8) for π‘Ÿ>0. Then, we can define the resolvent π‘„π‘ŸβˆΆπΆβ†’π·(𝐴) of 𝐴 by π‘„π‘Ÿπ‘₯∢={π‘§βˆˆπ·(𝐴)∢𝐽π‘₯βˆˆπ½π‘§+π‘Ÿπ΄π‘§},βˆ€π‘₯∈𝐢.(2.9) In other words, π‘„π‘Ÿπ‘₯=(𝐽+π‘Ÿπ΄)βˆ’1𝐽π‘₯ for π‘₯∈𝐢. We know that π‘„π‘Ÿπ‘₯ is single-valued mapping from 𝐢 into 𝐷(𝐴), for all π‘₯∈𝐢 and π‘Ÿ>0 and 𝐹(π‘„π‘Ÿ)=π΄βˆ’1(0), where 𝐹(π‘„π‘Ÿ) is the set of fixed points of π‘„π‘Ÿ (see, [4]).

Lemma 2.8 (see [24]). Let 𝐸 be a smooth and strictly convex Banach space, 𝐢 a nonempty closed convex subset of 𝐸, and π΄βŠ‚πΈΓ—πΈβˆ— a monotone operator satisfying (2.8) and π΄βˆ’1(0) is nonempty. Let π‘„π‘Ÿ be the resolvent of 𝐴. Then, for each π‘Ÿ>0, πœ™ξ€·π‘’,π‘„π‘Ÿπ‘₯𝑄+πœ™π‘Ÿξ€Έπ‘₯,π‘₯β‰€πœ™(𝑒,π‘₯)(2.10) for all π‘’βˆˆπ΄βˆ’1(0) and π‘₯∈𝐢, that is, π‘„π‘Ÿ is relatively nonexpansive.

Lemma 2.9 (see [25]). Let {π‘Žπ‘›} be a sequence of nonnegative real numbers satisfying the following relation: π‘Žπ‘›+1≀1βˆ’π›½π‘›ξ€Έπ‘Žπ‘›+𝛽𝑛𝛿𝑛,𝑛β‰₯𝑛0,(2.11) where {𝛽𝑛}βŠ‚(0,1) and {𝛿𝑛}βŠ‚π‘… satisfying the following conditions: limπ‘›β†’βˆžπ›½π‘›βˆ‘=0,βˆžπ‘›=1𝛽𝑛=∞, and limsupπ‘›β†’βˆžπ›Ώπ‘›β‰€0. Then, limπ‘›β†’βˆžπ‘Žπ‘›=0.

Lemma 2.10 (see [26]). Let {π‘Žπ‘›} be sequences of real numbers such that there exists a subsequence {𝑛𝑖} of {𝑛} such that π‘Žπ‘›π‘–<π‘Žπ‘›π‘–+1 for all π‘–βˆˆπ‘. Then, there exists a nondecreasing sequence {π‘šπ‘˜}βŠ‚π‘ such that π‘šπ‘˜β†’βˆž, and the following properties are satisfied by all (sufficiently large) numbers π‘˜βˆˆπ‘: π‘Žπ‘šπ‘˜β‰€π‘Žπ‘šπ‘˜+1,π‘Žπ‘˜β‰€π‘Žπ‘šπ‘˜+1.(2.12) In fact, π‘šπ‘˜=max{π‘—β‰€π‘˜βˆΆπ‘Žπ‘—<π‘Žπ‘—+1}.

3. Main Result

We note that, as it is mentioned in [27], if 𝐢 is a subset of a real Banach space 𝐸 and π΄βˆΆπΆβ†’πΈβˆ— is a mapping satisfying ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–,for all π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴), then VI(𝐢,𝐴)=π΄βˆ’1(0)={π‘βˆˆπΆβˆΆπ΄π‘=0}.(3.1)

In fact, clearly, π΄βˆ’1(0)βŠ†VI(𝐢,𝐴). Now, we show that VI(𝐢,𝐴)βŠ†π΄βˆ’1(0). Let π‘βˆˆVI(𝐢,𝐴), then we have by hypothesis that β€–π΄π‘β€–β‰€β€–π΄π‘βˆ’π΄π‘β€–=0 which implies that π‘βˆˆπ΄βˆ’1(0). Hence, VI(𝐢,𝐴)βŠ†π΄βˆ’1(0). Therefore, VI(𝐢,𝐴)=π΄βˆ’1(0). Now we prove the main theorem of our paper.

Theorem 3.1. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a monotone mapping satisfying (2.8) and ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–,for all π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴). Let π‘‡βˆΆπΆβ†’πΆ be a uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {π‘˜π‘›}. Assume that 𝐹∢=VI(𝐢,𝐴)∩𝐹(𝑆) is nonempty. Let π‘„π‘Ÿ be the resolvent of 𝐴 and {π‘₯𝑛} a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.2) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆž((π‘˜π‘›βˆ’1)/π›Όπ‘›βˆ‘)=0,βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Proof. Let π‘βˆΆ=Π𝐹𝑀. Then, from (3.2), Lemma 2.3, and property of πœ™, we get that πœ™ξ€·π‘,𝑦𝑛=πœ™π‘,Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯π‘›ξ€·ξ€Έξ€Έβ‰€πœ™π‘,π½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛=‖𝑝‖2ξ«βˆ’2𝑝,𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛+‖‖𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛‖‖2≀‖𝑝‖2βˆ’2π›Όπ‘›ξ€·βŸ¨π‘,π½π‘€βŸ©βˆ’21βˆ’π›Όπ‘›ξ€ΈβŸ¨π‘,𝐽π‘₯π‘›βŸ©+𝛼𝑛‖𝐽𝑀‖2+ξ€·1βˆ’π›Όπ‘›ξ€Έβ€–β€–π½π‘₯𝑛‖‖2=π›Όπ‘›ξ€·πœ™(𝑝,𝑀)+1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛.(3.3) Now, from (3.2) and relatively asymptotically nonexpansiveness of 𝑇, relatively nonexpansiveness of π‘„π‘Ÿ, property of πœ™, and (3.3), we get that πœ™ξ€·π‘,π‘₯𝑛+1ξ€Έξ€·=πœ™π‘,π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+π›Ύπ‘›πœ™ξ€·π‘,𝑇𝑛𝑦𝑛+πœƒπ‘›πœ™ξ€·π‘,π‘„π‘Ÿπ‘¦π‘›ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+π›Ύπ‘›π‘˜π‘›πœ™ξ€·π‘,𝑦𝑛+πœƒπ‘›πœ™ξ€·π‘,π‘¦π‘›ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+ξ€·π›Ύπ‘›π‘˜π‘›+πœƒπ‘›ξ€Έπœ™ξ€·π‘,π‘¦π‘›ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+ξ€·π›Ύπ‘›π‘˜π‘›+πœƒπ‘›π›Όξ€Έξ€Ίπ‘›ξ€·πœ™(𝑝,𝑀)+1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,π‘₯π‘›β‰€ξ€·π›Ύξ€Έξ€»π‘›π‘˜π‘›+πœƒπ‘›ξ€Έπ›Όπ‘›ξ€Ίπ›½πœ™(𝑝,𝑀)+𝑛+ξ€·π›Ύπ‘›π‘˜π‘›+πœƒπ‘›ξ€Έξ€·1βˆ’π›Όπ‘›πœ™ξ€·ξ€Έξ€»π‘,π‘₯π‘›ξ€Έβ‰€ξ€·π›Ύπ‘›π‘˜π‘›+πœƒπ‘›ξ€Έπ›Όπ‘›πœ™(𝑝,𝑀)+ξ€Ίξ€·1βˆ’π›Όπ‘›ξ€·π›Ύπ‘›π‘˜π‘›+πœƒπ‘›ξ€Έξ€Έ+π›Ύπ‘›ξ€·π‘˜π‘›ξ€·βˆ’1ξ€Έξ€»Γ—πœ™π‘,π‘₯π‘›ξ€Έβ‰€π‘π‘›ξ€Ίπœ™(𝑝,𝑀)+1βˆ’(1βˆ’πœ–)π‘π‘›ξ€»πœ™ξ€·π‘,π‘₯𝑛,(3.4) where 𝑐𝑛=𝛼𝑛(π›Ύπ‘›π‘˜π‘›+πœƒπ‘›), since there exists 𝑁0>0 such that 𝛾𝑛(π‘˜π‘›βˆ’1)/π›Όπ‘›β‰€πœ–(π›Ύπ‘›π‘˜π‘›+πœƒπ‘›) for all 𝑛β‰₯𝑁0 and for some πœ–>0 satisfying (1βˆ’πœ–)𝑐𝑛≀1. Thus, by induction, πœ™ξ€·π‘,π‘₯𝑛+1ξ€Έξ€½πœ™ξ€·β‰€max𝑝,π‘₯0ξ€Έ,(1βˆ’πœ–)βˆ’1ξ€Ύπœ™(𝑝,𝑀),βˆ€π‘›β‰₯𝑁0(3.5) which implies that {π‘₯𝑛}, and hence {𝑦𝑛} is bounded. Now, let 𝑧𝑛=π½βˆ’1(𝛼𝑛𝐽𝑀+(1βˆ’π›Όπ‘›)𝐽π‘₯𝑛). Then we have that 𝑦𝑛=Π𝐢𝑧𝑛. Using Lemmas 2.3, 2.5, and property of πœ™, we obtain that πœ™ξ€·π‘,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘,𝑧𝑛=𝑉𝑝,𝐽𝑧𝑛≀𝑉𝑝,π½π‘§π‘›βˆ’π›Όπ‘›(ξ€Έπ½π‘€βˆ’π½π‘)βˆ’2βŸ¨π‘§π‘›βˆ’π‘,βˆ’π›Όπ‘›(ξ€·π½π‘€βˆ’π½π‘)⟩=πœ™π‘,π½βˆ’1𝛼𝑛𝐽𝑝+1βˆ’π›Όπ‘›ξ€Έπ½π‘€π‘›ξ€Έξ€Έ+2π›Όπ‘›βŸ¨π‘§π‘›βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©β‰€π›Όπ‘›ξ€·πœ™(𝑝,𝑝)+1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,𝑀𝑛+2π›Όπ‘›βŸ¨π‘§π‘›=ξ€·βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,𝑀𝑛+2π›Όπ‘›βŸ¨π‘§π‘›β‰€ξ€·βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›Όπ‘›βŸ¨π‘§π‘›βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©.(3.6) Furthermore, from (3.2), Lemma 2.7, relatively asymptotically nonexpansiveness of 𝑇, relatively nonexpansiveness of π‘„π‘Ÿ, and (3.6), we have that πœ™ξ€·π‘,π‘₯𝑛+1ξ€Έξ€·=πœ™π‘,π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έξ€Έ=‖𝑝‖2βˆ’βŸ¨π‘,𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›β€–β€–π›½βŸ©+𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›β€–β€–2(3.7)≀‖𝑝‖2βˆ’2π›½π‘›βŸ¨π‘,𝐽π‘₯π‘›βŸ©βˆ’2π›Ύπ‘›βŸ¨π‘,π½π‘‡π‘›π‘¦π‘›βŸ©βˆ’2πœƒπ‘›βŸ¨π‘,π½π‘„π‘Ÿπ‘¦π‘›βŸ©+𝛽𝑛‖‖𝐽π‘₯𝑛‖‖2+𝛾𝑛‖‖𝐽𝑇𝑛𝑦𝑛‖‖2+πœƒπ‘›β€–β€–π½π‘„π‘Ÿπ‘¦π‘›β€–β€–2βˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+π›Ύπ‘›πœ™ξ€·π‘,𝑇𝑛𝑦𝑛+πœƒπ‘›πœ™ξ€·π‘,π‘„π‘Ÿπ‘¦π‘›ξ€Έβˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+𝛾𝑛+πœƒπ‘›ξ€Έπœ™ξ€·π‘,𝑦𝑛+π›Ύπ‘›ξ€·π‘˜π‘›ξ€Έπœ™ξ€·βˆ’1𝑝,π‘¦π‘›ξ€Έβˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€π›½π‘›πœ™ξ€·π‘,π‘₯𝑛+𝛾𝑛+πœƒπ‘›ξ€Έξ€Ίξ€·1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›Όπ‘›βŸ¨π‘§π‘›ξ€»βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π›Ύπ‘›ξ€·π‘˜π‘›ξ€Έπœ™ξ€·βˆ’1𝑝,π‘¦π‘›ξ€Έβˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€ξ€Ίπ›½π‘›+𝛾𝑛+πœƒπ‘›ξ€Έξ€·1βˆ’π›Όπ‘›πœ™ξ€·ξ€Έξ€»π‘,π‘₯𝑛+2𝛼𝑛𝛾𝑛+πœƒπ‘›ξ€ΈβŸ¨π‘§π‘›βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π›Ύπ‘›ξ€·π‘˜π‘›ξ€Έπœ™ξ€·βˆ’1𝑝,π‘¦π‘›ξ€Έβˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€ξ€·1βˆ’π›Ώπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›Ώπ‘›βŸ¨π‘§π‘›ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π‘›ξ€Έβˆ’1π‘€βˆ’π›Ύπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€Έβ‰€ξ€·(3.8)1βˆ’π›Ώπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›Ώπ‘›βŸ¨π‘§π‘›ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π‘›ξ€Έβˆ’1𝑀,(3.9) for some 𝑀>0, where 𝛿𝑛=(𝛾𝑛+πœƒπ‘›)𝛼𝑛.
Similarly, from (3.7), we obtain that πœ™ξ€·π‘,π‘₯𝑛+1ξ€Έξ€·=πœ™π‘,π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›β‰€ξ€·ξ€Έξ€Έ1βˆ’π›Ώπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›ΏβŸ¨π‘§π‘›ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π‘›ξ€Έβˆ’1π‘€βˆ’πœƒπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘„π‘Ÿπ‘¦π‘›β€–β€–ξ€Έβ‰€ξ€·1βˆ’π›Ώπ‘›ξ€Έπœ™ξ€·π‘,π‘₯𝑛+2π›Ώπ‘›βŸ¨π‘§π‘›ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©+π‘›ξ€Έβˆ’1𝑀,(βˆ—) for some 𝑀>0. Note that {𝛿𝑛} satisfies that limπ‘›β†’βˆžπ›Ώπ‘›=0 and βˆ‘π›Ώπ‘›=∞.
Now, the rest of the proof is divided into two parts.
Case 1. Suppose that there exists 𝑛0βˆˆπ‘>𝑁0 such that {πœ™(𝑝,π‘₯𝑛)} is nonincreasing for all 𝑛β‰₯𝑛0. In this situation, {πœ™(𝑝,π‘₯𝑛)} is then convergent. Then, from (3.8) and (*), we have that 𝛾𝑛𝛽𝑛𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›β€–β€–ξ€ΈβŸΆ0,πœƒπ‘›π›½π‘›π‘”ξ€·β€–β€–π½π‘₯π‘›βˆ’π½π‘„π‘Ÿπ‘¦π‘›β€–β€–ξ€ΈβŸΆ0,(3.10) which implies, by the property of 𝑔, that 𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘¦π‘›βŸΆ0,𝐽π‘₯π‘›βˆ’π½π‘„π‘Ÿπ‘¦π‘›βŸΆ0,asπ‘›βŸΆβˆž,(3.11) and, hence, since π½βˆ’1 is uniformly continuous on bounded sets, we obtain that π‘₯π‘›βˆ’π‘‡π‘›π‘¦π‘›βŸΆ0,π‘₯π‘›βˆ’π‘„π‘Ÿπ‘¦π‘›βŸΆ0,asπ‘›βŸΆβˆž.(3.12) Furthermore, Lemma 2.3, property of πœ™, and the fact that 𝛼𝑛→0 as π‘›β†’βˆž imply that πœ™ξ€·π‘₯𝑛,𝑦𝑛π‘₯=πœ™π‘›,Π𝐢𝑧𝑛π‘₯β‰€πœ™π‘›,𝑧𝑛=πœ™(π‘₯𝑛,π½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯π‘›ξ€Έβ‰€π›Όπ‘›πœ™ξ€·π‘₯𝑛+ξ€·,𝑀1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘₯𝑛,π‘₯π‘›ξ€Έβ‰€π›Όπ‘›πœ™ξ€·π‘₯𝑛+ξ€·,𝑀1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘₯𝑛,π‘₯π‘›ξ€ΈβŸΆ0,asπ‘›βŸΆβˆž,(3.13) and hence π‘₯π‘›βˆ’π‘¦π‘›βŸΆ0,π‘₯π‘›βˆ’π‘§π‘›βŸΆ0,asπ‘›βŸΆβˆž.(3.14) Therefore, from (3.12) and (3.14), we obtain that π‘¦π‘›βˆ’π‘§π‘›βŸΆ0,π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›βŸΆ0,π‘¦π‘›βˆ’π‘„π‘Ÿπ‘¦π‘›βŸΆ0,asπ‘›βŸΆβˆž.(3.15) But observe that from (3.2) and (3.11), we have ‖‖𝐽π‘₯𝑛+1βˆ’π½π‘₯π‘›β€–β€–β‰€π›Ύπ‘›β€–β€–π½π‘‡π‘›π‘¦π‘›βˆ’π½π‘₯𝑛‖‖+πœƒπ‘›β€–β€–π½π‘„π‘Ÿπ‘¦π‘›βˆ’π½π‘₯π‘›β€–β€–βŸΆ0,(3.16) as π‘›β†’βˆž. Thus, as π½βˆ’1 is uniformly continuous on bounded sets, we have that π‘₯𝑛+1βˆ’π‘₯𝑛→0 which implies from (3.14) that π‘₯𝑛+1βˆ’π‘¦π‘›β†’0, as π‘›β†’βˆž, and that ‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–β‰€β€–β€–π‘¦π‘›+1βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯𝑛+1βˆ’π‘¦π‘›β€–β€–βŸΆ0,asπ‘›βŸΆβˆž.(3.17) Furthermore, since β€–β€–π‘¦π‘›βˆ’π‘‡π‘¦π‘›β€–β€–β‰€β€–β€–π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–+β€–β€–π‘‡π‘›π‘¦π‘›βˆ’π‘‡π‘›+1𝑦𝑛‖‖+‖‖𝑇𝑛+1π‘¦π‘›βˆ’π‘‡π‘¦π‘›β€–β€–,β‰€β€–β€–π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–+‖‖𝑇𝑛+1π‘¦π‘›βˆ’π‘‡π‘›+1𝑦𝑛+1β€–β€–+‖‖𝑇𝑛+1𝑦𝑛+1βˆ’π‘¦π‘›+1β€–β€–+‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–+β€–β€–π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–+β€–β€–π‘‡ξ€·π‘‡π‘›π‘¦π‘›ξ€Έβˆ’π‘‡π‘¦π‘›β€–β€–β‰€β€–β€–π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–β€–β€–π‘¦+πΏπ‘›βˆ’π‘¦π‘›+1β€–β€–+‖‖𝑇𝑛+1𝑦𝑛+1βˆ’π‘¦π‘›+1β€–β€–+‖‖𝑦𝑛+1βˆ’π‘¦π‘›β€–β€–+β€–β€–π‘¦π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–+β€–β€–π‘‡ξ€·π‘‡π‘›π‘¦π‘›ξ€Έβˆ’π‘‡π‘¦π‘›β€–β€–β€–β€–π‘¦β‰€2π‘›βˆ’π‘‡π‘›π‘¦π‘›β€–β€–β€–β€–π‘¦+(1+𝐿)π‘›βˆ’π‘¦π‘›+1β€–β€–+‖‖𝑇𝑛+1𝑦𝑛+1βˆ’π‘¦π‘›+1β€–β€–+β€–β€–π‘‡ξ€·π‘‡π‘›π‘¦π‘›ξ€Έβˆ’π‘‡π‘¦π‘›β€–β€–,(3.18) we have from (3.17), (3.15), and uniform continuity of 𝑇 that β€–β€–π‘¦π‘›βˆ’π‘‡π‘¦π‘›β€–β€–βŸΆ0,asπ‘›βŸΆβˆž.(3.19) Since {𝑧𝑛} is bounded and 𝐸 is reflexive, we choose a subsequence {𝑧𝑛𝑖} of {𝑧𝑛} such that 𝑧𝑛𝑖⇀𝑧 and limsupπ‘›β†’βˆžβŸ¨π‘§π‘›βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©=limπ‘–β†’βˆžβŸ¨π‘§π‘›π‘–βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©. Then, from (3.14) and (3.15) we get that 𝑦𝑛𝑖⇀𝑧,π‘₯𝑛𝑖⇀𝑧,asπ‘–βŸΆβˆž.(3.20) Thus, since 𝑇 satisfies condition (N3), we obtain from (3.19) that π‘§βˆˆπΉ(𝑇) and the fact that π‘„π‘Ÿ is relatively nonexpansive and 𝑦𝑛𝑖⇀𝑧 implies that π‘§βˆˆπΉ(π‘„π‘Ÿ)=π΄βˆ’1(0), and, hence, using (3.1), we obtain that π‘§βˆˆVI(𝐢,𝐴).
Therefore, from the above discussions, we obtain that π‘§βˆˆπΉβˆΆ=𝐹(𝑇)∩VI(𝐢,𝐴). Hence, by Lemma 2.6, we immediately obtain that limsupπ‘›β†’βˆžβŸ¨π‘§π‘›βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©=limπ‘–β†’βˆžβŸ¨π‘§π‘›π‘–βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©=βŸ¨π‘§βˆ’π‘,π½π‘€βˆ’π½π‘βŸ©β‰€0. It follows from Lemma 2.9 and (3.9) that πœ™(𝑝,π‘₯𝑛)β†’0, as π‘›β†’βˆž. Consequently, π‘₯𝑛→𝑝.
Case 2. Suppose that there exists a subsequence {𝑛𝑖} of {𝑛} such that πœ™ξ€·π‘,π‘₯𝑛𝑖<πœ™π‘,π‘₯𝑛𝑖+1ξ€Έ(3.21) for all π‘–βˆˆπ‘. Then, by Lemma 2.10, there exists a nondecreasing sequence {π‘šπ‘˜}βŠ‚π‘ such that π‘šπ‘˜β†’βˆž, πœ™(𝑝,π‘₯π‘šπ‘˜)β‰€πœ™(𝑝,π‘₯π‘šπ‘˜+1) and πœ™(𝑝,π‘₯π‘˜)β‰€πœ™(𝑝,π‘₯π‘šπ‘˜+1) for all π‘˜βˆˆπ‘. Then, from (3.8), (*) and the fact 𝛿𝑛→0, we have 𝑔‖‖𝐽π‘₯π‘šπ‘˜βˆ’π½π‘‡π‘šπ‘˜π‘¦π‘šπ‘˜β€–β€–ξ€Έξ€·β€–β€–βŸΆ0,𝑔𝐽π‘₯π‘šπ‘˜βˆ’π½π‘„π‘Ÿπ‘¦π‘šπ‘˜β€–β€–ξ€ΈβŸΆ0,asπ‘˜βŸΆβˆž.(3.22) Thus, using the same proof as in Case 1, we obtain that π‘¦π‘šπ‘˜βˆ’π‘‡π‘¦π‘šπ‘˜β†’0, π‘¦π‘šπ‘˜βˆ’π‘„π‘Ÿπ‘¦π‘šπ‘˜β†’0, as π‘˜β†’βˆž, and, hence, we obtain that limsupπ‘˜β†’βˆžξ«π‘§π‘šπ‘˜ξ¬βˆ’π‘,π½π‘€βˆ’π½π‘β‰€0.(3.23) Then, from (3.9), we have that πœ™ξ€·π‘,π‘₯π‘šπ‘˜+1≀1βˆ’π›Ώπ‘šπ‘˜ξ€Έπœ™ξ€·π‘,π‘₯π‘šπ‘˜ξ€Έ+2π›Ώπ‘šπ‘˜ξ«π‘§π‘šπ‘˜ξ¬+ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘π‘šπ‘˜ξ€Έβˆ’1𝑀.(3.24) Since πœ™(𝑝,π‘₯π‘šπ‘˜)β‰€πœ™(𝑝,π‘₯π‘šπ‘˜+1), (3.24) implies that π›Ώπ‘šπ‘˜πœ™ξ€·π‘,π‘₯π‘šπ‘˜ξ€Έξ€·β‰€πœ™π‘,π‘₯π‘šπ‘˜ξ€Έξ€·βˆ’πœ™π‘,π‘₯π‘šπ‘˜+1ξ€Έ+2π›Ώπ‘šπ‘˜ξ«π‘§π‘šπ‘˜ξ¬+ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘π‘šπ‘˜ξ€Έπ‘€βˆ’1≀2π›Ώπ‘šπ‘˜ξ«π‘§π‘šπ‘˜ξ¬+ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘π‘šπ‘˜ξ€Έβˆ’1𝑀.(3.25) In particular, since π›Ώπ‘šπ‘˜>0, we get πœ™ξ€·π‘,π‘₯π‘šπ‘˜ξ€Έξ«π‘§β‰€2π‘šπ‘˜ξ¬+ξ€·π‘˜βˆ’π‘,π½π‘€βˆ’π½π‘π‘šπ‘˜ξ€Έβˆ’1π›Ώπ‘šπ‘˜π‘€.(3.26) Then, from (3.23) and the fact that (π‘˜π‘šπ‘˜βˆ’1)/π›Ώπ‘šπ‘˜β†’0, we obtain πœ™(𝑝,π‘₯π‘šπ‘˜)β†’0, as π‘˜β†’βˆž. This together with (3.24) gives πœ™(𝑝,π‘₯π‘šπ‘˜+1)β†’0, as π‘˜β†’βˆž. But πœ™(𝑝,π‘₯π‘˜)β‰€πœ™(𝑝,π‘₯π‘šπ‘˜+1), for all π‘˜βˆˆπ‘, thus we obtain that π‘₯π‘˜β†’π‘. Therefore, from the above two cases, we can conclude that {π‘₯𝑛} converges strongly to 𝑝 and the proof is complete.

If, in Theorem 3.1, we assume that 𝑇 is relatively nonexpansive, we get the following corollary.

Corollary 3.2. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a monotone mapping satisfying (2.8) and ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–,for all π‘₯∈𝐢 and π‘βˆˆVI(𝐢,𝐴). Let π‘‡βˆΆπΆβ†’πΆ be a relatively nonexpansive mapping. Assume that 𝐹∢=VI(𝐢,𝐴)∩𝐹(𝑆) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.27) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Proof. We note that the method of proof of Theorem 3.1 provides the required assertion.

If 𝐸=𝐻, a real Hilbert space, then 𝐸 is uniformly convex and uniformly smooth real Banach space. In this case, 𝐽=𝐼, identity map on 𝐻 and Π𝐢=𝑃𝐢, projection mapping from 𝐻 onto 𝐢. Thus, the following corollary holds.

Corollary 3.3. Let 𝐢 be a nonempty, closed, and convex subset of a real Hilbert space 𝐻. Let π΄βˆΆπΆβ†’π» be a monotone mapping satisfying (2.8) and ‖𝐴π‘₯‖≀‖𝐴π‘₯βˆ’π΄π‘β€–,for all π‘₯∈𝐢 and π‘βˆˆπ‘‰πΌ(𝐢,𝐴). Let π‘‡βˆΆπΆβ†’πΆ be a uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {π‘˜π‘›}. Assume that 𝐹∢=𝑉𝐼(𝐢,𝐴)∩𝐹(𝑆) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=𝑃𝐢𝛼𝑛𝑀+1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛,π‘₯𝑛+1=𝛽𝑛π‘₯𝑛+𝛾𝑛𝑇𝑛𝑦𝑛+πœƒπ‘›π‘„π‘Ÿπ‘¦π‘›,(3.28) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆž((π‘˜π‘›βˆ’1)/𝛼𝑛)=0,βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Now, we state the second main theorem of our paper.

Theorem 3.4. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a monotone mapping satisfying (2.8). Let π‘‡βˆΆπΆβ†’πΆ be a uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {π‘˜π‘›}. Assume that 𝐹∢=π΄βˆ’1(0)∩𝐹(𝑆) is nonempty. Let π‘„π‘Ÿ be the resolvent of 𝐴 and {π‘₯𝑛} a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.29) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆž((π‘˜π‘›βˆ’1)/𝛼𝑛)=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Proof. Similar method of proof of Theorem 3.1 provides the required assertion.

If, in Theorem 3.4, 𝐴=0, then we have the following corollary. Similar proof of Theorem 3.1 provides the assertion.

Corollary 3.5. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π‘‡βˆΆπΆβ†’πΆ be a uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {π‘˜π‘›}. Assume that 𝐹∢=𝐹(𝑆) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ½π‘‡π‘›π‘¦π‘›ξ€Έ,(3.30) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆž((π‘˜π‘›βˆ’1)/𝛼𝑛)=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛}βŠ‚[𝑐,𝑑]βŠ‚(0,1). Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

If, in Theorem 3.4, 𝑇=𝐼, identity mapping on 𝐢, then we have the following corollary.

Corollary 3.6. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly smooth and uniformly convex real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a monotone mapping satisfying (2.8). Assume that 𝐹∢=π΄βˆ’1(0) is nonempty. Let π‘„π‘Ÿ be the resolvent of 𝐴 and {π‘₯𝑛} a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.31) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛}βŠ‚[𝑐,𝑑]βŠ‚(0,1). Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

If, in Theorem 3.4, we assume that 𝑇 is relatively nonexpansive, we get the following corollary.

Corollary 3.7. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a monotone mapping satisfying (2.8). Let π‘‡βˆΆπΆβ†’πΆ be a relatively nonexpansive mapping. Assume that 𝐹∢=π΄βˆ’1(0)∩𝐹(𝑆) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.32) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

We may also get the following corollary for a common zero of monotone mappings.

Corollary 3.8. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let 𝐴,π΅βˆΆπΆβ†’πΈβˆ— be monotone mappings satisfying (2.8). Suppose that 𝑇1=(𝐽+π‘Ÿπ΄)βˆ’1𝐽 and 𝑇2=(𝐽+π‘Ÿπ΅)βˆ’1𝐽. Assume that 𝐹∢=π΄βˆ’1(0)βˆ©π΅βˆ’1(0) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇1𝑦𝑛+πœƒπ‘›π½π‘‡2𝑦𝑛,(3.33) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Proof. Clearly, from Lemma 2.8, we know that 𝑇1 and 𝑇2 are relatively nonexpansive mappings. We also have that 𝐹(𝑇1)=π΄βˆ’1(0) and 𝐹(𝑇2)=π΅βˆ’1(0). Thus, the conclusion follows from Corollary 3.7.

Remark 3.9. We remark that from Corollary 3.8 the scheme converges strongly to a common zero of two monotone operators. We may also have the following theorem for a common zero of finite family of monotone mappings.

Theorem 3.10. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄π‘–βˆΆπΆβ†’πΈβˆ—, 𝑖=1,2,…,𝑁 be monotone mappings satisfying (2.8). Suppose that 𝑇𝑖=(𝐽+π‘Ÿπ΄π‘–)βˆ’1𝐽, and assume that 𝐹∢=βˆ©π‘π‘–=1π΄π‘–βˆ’1(0) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽n,0𝐽π‘₯𝑛+𝛽𝑛,1𝐽𝑇1𝑦𝑛+β‹―+𝛽𝑛,𝑁𝐽𝑇𝑁𝑦𝑛,(3.34) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛,𝑖}βŠ‚[𝑐,𝑑]βŠ‚(0,1), for 𝑖=0,1,2,…,𝑁, such that βˆ‘π‘π‘–=0𝛽𝑛,𝑖=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

A monotone mapping π΄βˆΆπΆβ†’πΈβˆ— is said to be maximal monotone if its graph is not properly contained in the graph of any monotone operator. We know that if 𝐴 is maximal monotone operator, then π΄βˆ’1(0) is closed and convex: see [4] for more details. The following Lemma is well known.

Lemma 3.11 (see [28]). Let 𝐸 be a smooth and strictly convex and reflexive Banach space, let 𝐢 be a nonempty closed convex subset of 𝐸, and let π΄βˆΆπΆβ†’πΈβˆ— be a monotone operator. Then 𝐴 is maximal if and only if 𝑅(𝐽+π‘Ÿπ΄)=πΈβˆ— for all π‘Ÿ>0.

We note from the above lemma that if 𝐴 is maximal then it satisfies condition (2.8) and hence we have the following corollary.

Corollary 3.12. Let 𝐢 be a nonempty, closed, and convex subset of a uniformly convex and uniformly smooth real Banach space 𝐸. Let π΄βˆΆπΆβ†’πΈβˆ— be a maximal monotone mapping. Let π‘‡βˆΆπΆβ†’πΆ be a uniformly 𝐿-Lipschitzian relatively asymptotically nonexpansive mapping with sequence {π‘˜π‘›}. Assume that 𝐹∢=π΄βˆ’1(0)∩𝐹(𝑆) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,π‘₯𝑛+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+𝛾𝑛𝐽𝑇𝑛𝑦𝑛+πœƒπ‘›π½π‘„π‘Ÿπ‘¦π‘›ξ€Έ,(3.35) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0,limπ‘›β†’βˆž((π‘˜π‘›βˆ’1)/𝛼𝑛)=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

4. Application

In this section, we study the problem of finding a minimizer of a lower semicontinuous continuously convex functional in Banach spaces.

Theorem 4.1. Let 𝐸 be a uniformly convex and uniformly smooth real Banach space. Let 𝑓,π‘”βˆΆπΈβ†’(βˆ’βˆž,∞) be a proper lower semicontinuous convex functions. Assume that 𝐹∢=(πœ•π‘“)βˆ’1(0)∩(πœ•π‘”)βˆ’1(0) is nonempty. Let {π‘₯𝑛} be a sequence generated by π‘₯0𝑦=π‘€βˆˆπΆ,chosenarbitrarily,𝑛=Ξ πΆπ½βˆ’1𝛼𝑛𝐽𝑀+1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,β„Žπ‘›ξ‚†1=argmin𝑓(𝑧)+πœ™ξ€·2π‘Ÿπ‘§,𝑦𝑛,𝑑,π‘§βˆˆπΈπ‘›ξ‚†1=argmin𝑔(𝑧)+πœ™ξ€·2π‘Ÿπ‘§,𝑦𝑛,π‘₯,π‘§βˆˆπΈπ‘›+1=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+π›Ύπ‘›π½β„Žπ‘›+πœƒπ‘›π½π‘‘π‘›ξ€Έ,(4.1) where π›Όπ‘›βˆˆ(0,1) such that limπ‘›β†’βˆžπ›Όπ‘›=0, βˆ‘βˆžπ‘›=1𝛼𝑛=∞, {𝛽𝑛},{𝛾𝑛},{πœƒπ‘›}βŠ‚[𝑐,𝑑]βŠ‚(0,1) such that 𝛽𝑛+𝛾𝑛+πœƒπ‘›=1. Then, {π‘₯𝑛} converges strongly to an element of 𝐹.

Proof. Let 𝐴 and 𝐡 be operators defined by 𝐴=πœ•π‘“ and 𝐡=πœ•π‘” and π‘„π‘Ÿ=(𝐽+π‘Ÿπ΄)βˆ’1𝐽, π‘„π΅π‘Ÿ=(𝐽+π‘Ÿπ΅)βˆ’1𝐽 for all π‘Ÿ>0. Then, by Rockafellar [29], 𝐴 and 𝐡 are maximal monotone mappings. We also have that β„Žπ‘›=π‘„π΄π‘Ÿξ‚†1𝑦=argmin𝑓(𝑧)+,𝑑2π‘Ÿπœ™(𝑧,𝑦),π‘§βˆˆπΈπ‘›=π‘„π΅π‘Ÿξ‚†1𝑦=argmin𝑔(𝑧)+,2π‘Ÿπœ™(𝑧,𝑦),π‘§βˆˆπΈ(4.2) for all π‘¦βˆˆπΈ and π‘Ÿ>0. Furthermore, we have that 𝐹(π‘„π΄π‘Ÿ)=π΄βˆ’1(0) and 𝐹(π‘„π΅π‘Ÿ)=π΅βˆ’1(0). Thus, by Corollary 3.8, we obtain the desired result.

Remark 4.2. Consider the following.(1) Theorem 3.1 improves and extends the corresponding results of Zegeye et al. [12] and Zegeye and Shahzad [22] in the sense that either our scheme does not require computation of 𝐢𝑛+1 for each 𝑛β‰₯1 or the space considered is more general.(2) Corollary 3.5 improves the corresponding results of Nakajo and Takahashi [30] and Matsushita and Takahashi [17] in the sense that either our scheme does not require computation of 𝐢𝑛+1 for each 𝑛β‰₯1 or the class of mappings considered in our corollary is more general.(3) Corollary 3.6 improves the corresponding results of Iiduka and Takahashi [11], Iiduka et al. [14], and Alber [1] in the sense that our scheme does not require computation of 𝐢𝑛+1 for each 𝑛β‰₯1 or the class of mappings considered in our corollary is more general.