Abstract

We introduce an iterative scheme for finding a common element of the set of solutions of generalized mixed equilibrium problems and the set of fixed points for countable families of total quasi-πœ™-asymptotically nonexpansive mappings in Banach spaces. We prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm in an uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property. The results presented in this paper improve and extend some recent corresponding results.

1. Introduction

Let 𝐸 be a real Banach space with the dual πΈβˆ— and let 𝐢 be a nonempty closed convex subset of 𝐸. We denote by 𝑅+ and 𝑅 the set of all nonnegative real numbers and the set of all real numbers, respectively. Also, we denote by 𝐽 the normalized duality mapping from 𝐸 to 2πΈβˆ— defined by π‘₯𝐽π‘₯=βˆ—βˆˆπΈβˆ—βˆΆβŸ¨π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–2=β€–π‘₯βˆ—β€–2,βˆ€π‘₯∈𝐸,(1.1) where βŸ¨β‹…,β‹…βŸ© denotes the generalized duality pairing. Recall that if 𝐸 is smooth then 𝐽 is single-valued and norm-to-weak* continuous, and that if 𝐸 is uniformly smooth then 𝐽 is uniformly norm-to-norm continuous on bounded subsets of 𝐸. We will denote by 𝐽 the single-value duality mapping.

A Banach space 𝐸 is said to be strictly convex if β€–π‘₯+𝑦‖/2≀1 for all π‘₯,π‘¦βˆˆπ‘ˆ={π‘§βˆˆπΈβˆΆβ€–π‘§β€–=1} with π‘₯≠𝑦. 𝐸 is said to be uniformly convex if, for each πœ€βˆˆ(0,2], there exists 𝛿>0 such that β€–π‘₯+𝑦‖/2≀1βˆ’π›Ώ for all π‘₯,π‘¦βˆˆπ‘ˆ with β€–π‘₯βˆ’π‘¦β€–β‰₯πœ€. 𝐸 is said to be smooth if the limitlim𝑑→0β€–π‘₯+π‘‘π‘¦β€–βˆ’β€–π‘₯‖𝑑(1.2)exists for all π‘₯,π‘¦βˆˆπ‘ˆ. 𝐸 is said to be uniformly smooth if the above limit exists uniformly in π‘₯,π‘¦βˆˆπ‘ˆ.

Remark 1.1. The following basic properties of Banach space 𝐸 can be founded in [1].(i)If 𝐸 is an uniformly smooth Banach space, then 𝐽 is uniformly continuous on each bounded subset of 𝐸.(ii)If 𝐸 is a reflexive and strictly convex Banach space, then π½βˆ’1 is norm-weak*-continuous.(iii)If 𝐸 is a smooth, reflexive and strictly convex Banach space, then the normalized duality mapping π½βˆΆπΈβ†’2πΈβˆ— is single-valued, one-to-one, and surjective.(iv)A Banach space 𝐸 is uniformly smooth if and only if πΈβˆ— is uniformly convex.(v)Each uniformly convex Banach space 𝐸 has the Kadec-Klee property, that is, for any sequence {π‘₯𝑛}βŠ‚πΈ, if π‘₯𝑛⇀π‘₯∈𝐸 and β€–π‘₯𝑛‖→‖π‘₯β€–, then π‘₯𝑛→π‘₯. (See [1, 2]) for more details.

Next, we assume that 𝐸 is a smooth, reflexive, and strictly convex Banach space. Consider the functional defined as in [3, 4] by πœ™(π‘₯,𝑦)=β€–π‘₯β€–2βˆ’2⟨π‘₯,π½π‘¦βŸ©+‖𝑦‖2,βˆ€π‘₯,π‘¦βˆˆπΈ.(1.3) It is clear that in a Hilbert space 𝐻, (1.3) reduces to πœ™(π‘₯,𝑦)=β€–π‘₯βˆ’π‘¦β€–2, for all π‘₯,π‘¦βˆˆπ».

It is obvious from the definition of πœ™ that()β€–π‘₯β€–βˆ’β€–π‘¦β€–2)β‰€πœ™(π‘₯,𝑦)≀(β€–π‘₯β€–+‖𝑦‖2,βˆ€π‘₯,π‘¦βˆˆπΈ,(1.4) and πœ™ξ€·π‘₯,π½βˆ’1ξ€Έ(πœ†π½π‘¦+(1βˆ’πœ†)𝐽𝑧)β‰€πœ†πœ™(π‘₯,𝑦)+(1βˆ’πœ†)πœ™(π‘₯,𝑧),βˆ€π‘₯,π‘¦βˆˆπΈ.(1.5)

Following Alber [3], the generalized projection Ξ πΆβˆΆπΈβ†’πΆ is defined byΞ C(π‘₯)=arginfπ‘¦βˆˆπΆπœ™(𝑦,π‘₯),βˆ€π‘₯∈𝐸.(1.6) That is, Ξ Cπ‘₯=π‘₯, where π‘₯ is the unique solution to the minimization problem πœ™(π‘₯,π‘₯)=infπ‘¦βˆˆπΆπœ™(𝑦,π‘₯).

The existence and uniqueness of the operator Π𝐢 follows from the properties of the functional πœ™(π‘₯,𝑦) and strict monotonicity of the mapping 𝐽 (see, e.g., [1–5]). In Hilbert space 𝐻, Π𝐢=𝑃𝐢.

Let 𝐢 be a nonempty closed convex subset of 𝐸, let 𝑇 be a mapping from 𝐢 into itself, and let 𝐹(𝑇) be the set of fixed points of 𝑇. A point π‘βˆˆπΆ is called an asymptotically fixed point of 𝑇 [6] if there exists a sequence {π‘₯𝑛}βŠ‚πΆ such that π‘₯𝑛⇀𝑝 and β€–π‘₯π‘›βˆ’π‘‡π‘₯𝑛‖→0. The set of asymptotical fixed points of 𝑇 will be denoted by 𝐹(𝑇). A point π‘βˆˆπΆ is said to be a strong asymptotic fixed point of 𝑇, if there exists a sequence {π‘₯𝑛}βŠ‚πΆ such that π‘₯𝑛→𝑝 and β€–π‘₯π‘›βˆ’π‘‡π‘₯𝑛‖→0. The set of strong asymptotical fixed points of 𝑇 will be denoted by 𝐹(𝑇).

A mapping π‘‡βˆΆπΆβ†’πΆ is said to be relatively nonexpansive [7–9], if 𝐹(𝑇)β‰ βˆ…, 𝐹(𝑇)=𝐹(𝑇) and πœ™(𝑝,𝑇π‘₯)β‰€πœ™(𝑝,π‘₯), for all π‘₯∈𝐢, π‘βˆˆπΉ(𝑇).

A mapping π‘‡βˆΆπΆβ†’πΆ is said to be quasi-πœ™-nonexpansive, if 𝐹(𝑇)β‰ βˆ… and πœ™(𝑝,𝑇π‘₯)β‰€πœ™(𝑝,π‘₯), for all π‘₯∈𝐢, π‘βˆˆπΉ(𝑇).

A mapping π‘‡βˆΆπΆβ†’πΆ is said to be quasi-πœ™-asymptotically nonexpansive, if 𝐹(𝑇)β‰ βˆ… and there exists a real sequence {π‘˜π‘›}βŠ‚[1,∞) with π‘˜π‘›β†’1 such thatπœ™(𝑝,𝑇𝑛π‘₯)β‰€π‘˜π‘›πœ™(𝑝,π‘₯),βˆ€π‘›β‰₯1,π‘₯∈𝐢,π‘βˆˆπΉ(𝑇).(1.7)

A mapping π‘‡βˆΆπΆβ†’πΆ is said to be total quasi-πœ™-asymptotically nonexpansive, if 𝐹(𝑇)β‰ βˆ… and there exists nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›} with πœˆπ‘›β†’0, πœ‡π‘›β†’0(asπ‘›β†’βˆž) and a strictly increasing continuous function πœ‰βˆΆπ‘…+→𝑅+ with πœ‰(0)=0 such thatπœ™(𝑝,𝑇𝑛π‘₯)β‰€πœ™(𝑝,π‘₯)+πœˆπ‘›πœ‰(πœ™(𝑝,π‘₯))+πœ‡π‘›,βˆ€π‘›β‰₯1,π‘₯∈𝐢,π‘βˆˆπΉ(𝑇).(1.8)

A countable family of mappings {𝑇𝑛}βˆΆπΆβ†’πΆ is said to be uniformly total quasi-πœ™-asymptotically nonexpansive, if β‹‚βˆžπ‘–=1𝐹(𝑇𝑖)β‰ βˆ…, and there exists nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›} with πœˆπ‘›β†’0, πœ‡π‘›β†’0(asπ‘›β†’βˆž) and a strictly increasing continuous function πœ‰βˆΆπ‘…+→𝑅+ with πœ‰(0)=0 such that for each 𝑖β‰₯1 and each π‘₯∈𝐢, β‹‚π‘βˆˆβˆžπ‘–=1𝐹(𝑇𝑖)πœ™ξ€·π‘,𝑇𝑛𝑖π‘₯ξ€Έβ‰€πœ™(𝑝,π‘₯)+πœˆπ‘›πœ‰(πœ™(𝑝,π‘₯))+πœ‡π‘›,βˆ€π‘›β‰₯1.(1.9)

Remark 1.2. From the definition, it is easy to know that:(i)each relatively nonexpansive mapping is closed;(ii)taking πœ‰(𝑑)=𝑑, 𝑑β‰₯0, πœˆπ‘›=(π‘˜π‘›βˆ’1) and πœ‡π‘›=0 then πœˆπ‘›β†’0  (asπ‘›β†’βˆž) and (1.7) can be rewritten as πœ™(𝑝,𝑇𝑛π‘₯)β‰€πœ™(𝑝,π‘₯)+πœˆπ‘›πœ‰(πœ™(𝑝,π‘₯))+πœ‡π‘›,βˆ€π‘›β‰₯1,π‘₯∈𝐢,π‘βˆˆπΉ(𝑇),(1.10) this implies that each quasi-πœ™-asymptotically nonexpansive mapping must be a total quasi-πœ™-asymptotically nonexpansive mapping, but the converse is not true;(iii)the class of quasi-πœ™-asymptotically nonexpansive mappings contains properly the class of quasi-πœ™-nonexpansive mappings as a subclass, but the converse is not true;(iv)the class of quasi-πœ™-nonexpansive mappings contains properly the class of relatively nonexpansive mappings as a subclass, but the converse may be not true. (See more details [10–14]).

Let π‘“βˆΆπΆΓ—πΆβ†’π‘… be a bifunction, where 𝑅 is the set of real numbers. The equilibrium problem (For short, EP) is to find π‘₯βˆ—βˆˆπΆ such that𝑓π‘₯βˆ—ξ€Έ,𝑦β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.11) The set of solutions of EP (1.11) is denoted by EP(𝑓).

Let π΅βˆΆπΆβ†’π» be a nonlinear mapping. The generalized equilibrium problem (for short, GEP) is to find π‘₯βˆ—βˆˆπΆ such that 𝑓π‘₯βˆ—ξ€Έ,𝑦+⟨𝐡π‘₯βˆ—,π‘¦βˆ’π‘₯βˆ—βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.12) The set of solutions of GEP (1.12) is denoted by GEP(𝑓,𝐡), that is, ξ€½π‘₯GEP(𝑓,𝐡)=βˆ—ξ€·π‘₯βˆˆπΆβˆΆπ‘“βˆ—ξ€Έ,𝑦+⟨𝐡π‘₯βˆ—,π‘¦βˆ’π‘₯βˆ—ξ€Ύ.⟩β‰₯0,βˆ€π‘¦βˆˆπΆ(1.13)

Let πœ‘βˆΆπΆβ†’π‘…βˆͺ{+∞} be a function. The mixed equilibrium problem (for short, MEP) is to find π‘₯βˆ—βˆˆπΆ such that𝑓π‘₯βˆ—ξ€Έξ€·π‘₯,𝑦+πœ‘(𝑦)βˆ’πœ‘βˆ—ξ€Έβ‰₯0,βˆ€π‘¦βˆˆπΆ.(1.14) The set of solutions of MEP (1.14) is denoted by MEP(𝑓).

The concept generalized mixed equilibrium problem (for short, GMEP) was introduced by Peng and Yao [15] in 2008. GMEP is to find π‘₯βˆ—βˆˆπΆ such that𝑓π‘₯βˆ—ξ€Έξ€·π‘₯,𝑦+πœ‘(𝑦)βˆ’πœ‘βˆ—ξ€Έ+⟨𝐡π‘₯βˆ—,π‘¦βˆ’π‘₯βˆ—βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ.(1.15) The set of solutions of GMEP (1.15) is denoted by GMEP(𝑓,𝐡,πœ‘), that is, ξ€½π‘₯GMEP(𝑓,𝐡,πœ‘)=βˆ—ξ€·π‘₯βˆˆπΆβˆΆπ‘“βˆ—ξ€Έξ€·π‘₯,𝑦+πœ‘(𝑦)βˆ’πœ‘βˆ—ξ€Έ+⟨𝐡π‘₯βˆ—,π‘¦βˆ’π‘₯βˆ—ξ€Ύ.⟩β‰₯0,βˆ€π‘¦βˆˆπΆ(1.16)

The equilibrium problem is an unifying model for several problems arising in physics, engineering, science optimization, economics, transportation, network and structural analysis, Nash equilibrium problems in noncooperative games, and others. It has been shown that variational inequalities and mathematical programming problems can be viewed as a special realization of the abstract equilibrium problems (e. g., [16, 17]). Many authors have proposed some useful methods to solve the EP, GEP, MEP, GMEP; see, for instance, [15–23] and the references therein.

In 2005, Matsushita and Takahashi [13] proposed the following hybrid iteration method (it is also called the CQ method) with generalized projection for relatively nonexpansive mapping 𝑇 in a Banach space 𝐸: π‘₯0∈𝐢chosenarbitrary,𝑦𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘₯𝑛,𝐢𝑛=ξ€½ξ€·π‘§βˆˆπΆβˆΆπœ™π‘§,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛,𝑄𝑛=ξ€½π‘§βˆˆπΆβˆΆβŸ¨π‘₯π‘›βˆ’π‘§,𝐽π‘₯0βˆ’π½π‘₯𝑛,π‘₯⟩β‰₯0𝑛+1=Ξ πΆπ‘›βˆ©π‘„π‘›π‘₯0,𝑛β‰₯0.(1.17) They prove that {π‘₯𝑛} converges strongly to Π𝐹(𝑇)π‘₯0, where Π𝐹(𝑇) is the generalized projection from 𝐢 onto 𝐹(𝑇).

Recently, Qin et al. [24] proposed a shrinking projection method to find a common element of the set of solutions of an equilibrium problem and the set of common fixed points of a finite family of quasi-πœ™-nonexpansive mappings in the framework of Banach spaces:π‘₯0=π‘₯chosenarbitrary,𝐢1π‘₯=𝐢,1=Π𝐢1π‘₯0,𝑦𝑛=π½βˆ’1𝛼𝑛,0𝐽π‘₯𝑛+𝑁𝑖=1𝛼𝑛,𝑖𝐽𝑇𝑖π‘₯𝑛ξƒͺ,π‘’π‘›βˆˆπΆsuchthat𝑓𝑒𝑛+1,π‘¦π‘Ÿπ‘›βŸ¨π‘¦βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›πΆβŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ,𝑛+1=ξ€½π‘§βˆˆπΆπ‘›ξ€·βˆΆπœ™π‘§,π‘’π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(1.18) where Π𝐢𝑛+1 is the generalized projection from 𝐸 onto 𝐢𝑛+1. They prove that the sequence {π‘₯𝑛} converges strongly to Ξ βˆ©π‘π‘–=1𝐹(𝑇𝑖)∩EP(𝑓)π‘₯0.

In [25], Saewan and Kumam introduced a modified new hybrid projection method to find a common element of the set of solutions of the generalized mixed equilibrium problems and the set of common fixed points of an infinite family of closed and uniformly quasi-πœ™-asymptotically nonexpansive mappings in an uniformly smooth and strictly convex Banach spaces 𝐸 with Kadec-Klee property: π‘₯0∈𝐢chosenarbitrary,π‘₯1=Π𝐢1π‘₯0,𝐢1𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛ξƒͺ,π‘’π‘›βˆˆπΆsuchthat𝑒𝑛=πΎπ‘Ÿπ‘›π‘¦π‘›,𝐢𝑛+1=ξ€½π‘§βˆˆπΆπ‘›ξ€·βˆΆπœ™π‘§,π‘’π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(1.19) where πœ‰π‘›=supπ‘βˆˆπΉ(π‘˜π‘›βˆ’1)πœ™(𝑝,π‘₯𝑛), Π𝐢𝑛+1 is the generalized projection of 𝐸 onto 𝐢𝑛+1. They prove that the sequence {π‘₯𝑛} converges strongly to Ξ βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)∩GMEP(𝑓)π‘₯0.

Very recently, Chang et al. [26] proposed the following iterative algorithm for solving fixed point problems for total quasi-πœ™-asymptotically nonexpansive mappings: π‘₯0∈𝐢chosenarbitrary,𝐢0𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛ξƒͺ,𝐢𝑛+1=ξ€½π‘§βˆˆπΆπ‘›ξ€·βˆΆπœ™πœˆ,π‘¦π‘›ξ€Έξ€·β‰€πœ™πœˆ,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(1.20) where πœ‰π‘›=πœˆπ‘›supπ‘βˆˆπΉπœ‰(πœ™(𝑝,π‘₯𝑛))+πœ‡π‘›, Π𝐢𝑛+1 is the generalized projection of 𝐸 onto 𝐢𝑛+1. They prove that the sequence {π‘₯𝑛} converges strongly to Ξ βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)π‘₯0.

Inspired and motivated by the recent work of Matsushita and Takahashi [13], Qin et al. [24], Saewan and Kumam [25], Chang et al. [26], and so forth, we introduce an iterative scheme for finding a common element of the set of solutions of generalized mixed equilibrium problems and the set of fixed points of a countable families of total quasi-πœ™-asymptotically nonexpansive mappings in Banach spaces. We prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm in an uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property. The results presented in this paper improve and extend some recent corresponding results in [13, 24–29].

2. Preliminaries

Throughout this paper, let 𝐸 be a real Banach space with the dual πΈβˆ— and let 𝐢 be a nonempty closed convex subset of 𝐸. We denote the strong convergence, weak convergence of a sequence {π‘₯𝑛} to a point π‘₯∈𝐸 by π‘₯𝑛→π‘₯, π‘₯𝑛⇀π‘₯, respectively, and 𝐹(𝑇) is the fixed point set of a mapping 𝑇.

In this paper, for solving generalized mixed equilibrium problems, we assume that bifunction π‘“βˆΆπΆΓ—πΆβ†’π‘… satisfies the following conditions:(A1)𝑓(π‘₯,π‘₯)=0, for all π‘₯∈𝐢;(A2)𝑓(π‘₯,𝑦)+𝑓(𝑦,π‘₯)≀0, for all π‘₯,π‘¦βˆˆπΆ;(A3) for all π‘₯,𝑦,π‘§βˆˆπΆ, lim𝑑↓0𝑓(𝑑𝑧+(1βˆ’π‘‘)π‘₯,𝑦)≀𝑓(π‘₯,𝑦);(A4) for each π‘₯∈𝐢, the function 𝑦↦𝑓(π‘₯,𝑦) is convex and lower semicontinuous.

Lemma 2.1 (see [16]). Let 𝐢 be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space 𝐸, let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4), and let π‘Ÿ>0 and π‘₯∈𝐸, then there exists π‘§βˆˆπΆ such that 1𝑓(𝑧,𝑦)+π‘ŸβŸ¨π‘¦βˆ’π‘§,π½π‘§βˆ’π½π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ.(2.1)

Lemma 2.2 (see [30]). Let 𝐢 be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space 𝐸. Let π΅βˆΆπΆβ†’πΈβˆ— be a continuous and monotone mapping, let πœ‘βˆΆπΆβ†’π‘… be convex and lower semicontinuous and let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4). For π‘Ÿ>0 and π‘₯∈𝐸, then there exists π‘’βˆˆπΆ such that 1𝑓(𝑒,𝑦)+πœ‘(𝑦)βˆ’πœ‘(𝑒)+βŸ¨π΅π‘’,π‘¦βˆ’π‘’βŸ©+π‘ŸβŸ¨π‘¦βˆ’π‘’,π½π‘’βˆ’π½π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ.(2.2) Define a mapping πΎπ‘ŸβˆΆπΆβ†’πΆ as follows: πΎπ‘Ÿξ‚†(π‘₯)=π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑦)+πœ‘(𝑦)βˆ’πœ‘(𝑒)+⟨B1𝑒,π‘¦βˆ’π‘’βŸ©+π‘Ÿξ‚‡βŸ¨π‘¦βˆ’π‘’,π½π‘’βˆ’π½π‘₯⟩β‰₯0,βˆ€π‘¦βˆˆπΆ(2.3) for all π‘₯∈𝐢. Then, the following hold:(1)πΎπ‘Ÿ is single-valued;(2)πΎπ‘Ÿ is firmly nonexpansive, that is, forallπ‘₯,π‘¦βˆˆπΈ, βŸ¨πΎπ‘Ÿπ‘₯βˆ’πΎπ‘Ÿπ‘¦,π½πΎπ‘Ÿπ‘₯βˆ’π½πΎπ‘Ÿπ‘¦βŸ©β‰€βŸ¨πΎπ‘Ÿπ‘₯βˆ’πΎπ‘Ÿπ‘¦,𝐽π‘₯βˆ’π½π‘¦βŸ©;(2.4)(3)𝐹(πΎπ‘Ÿ)=GMEP(𝑓,𝐡,πœ‘);(4)GMEP(𝑓,𝐡,πœ‘) is closed and convex;(5)πœ™(𝑝,πΎπ‘Ÿπ‘§)+πœ™(πΎπ‘Ÿπ‘§,𝑧)β‰€πœ™(𝑝,𝑧), for all π‘βˆˆπΉ(πΎπ‘Ÿ) and π‘§βˆˆπΈ.

Lemma 2.3 (see [28]). Let 𝐸 be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property and let 𝐢 be a nonempty closed convex subset of 𝐸. Let {π‘₯𝑛} and {𝑦𝑛} be two sequences in 𝐢 such that π‘₯𝑛→𝑝 and πœ™(π‘₯𝑛,𝑦𝑛)β†’0, where πœ™ is the function defined by (1.3), then 𝑦𝑛→𝑝.

Lemma 2.4 (see [3]). Let 𝐸 be a smooth, strictly convex and reflexive Banach space and let 𝐢 be a nonempty closed convex subset of 𝐸. Then, the following conclusions hold: (a)πœ™(π‘₯,Π𝐢𝑦)+πœ™(Π𝐢𝑦,𝑦)β‰€πœ™(π‘₯,𝑦), for all π‘₯∈𝐢,π‘¦βˆˆπΈ;(b)if π‘₯∈𝐸  and π‘§βˆˆπΆ, then 𝑧=Π𝐢π‘₯ if and only if βŸ¨π‘§βˆ’π‘¦,𝐽π‘₯βˆ’π½π‘§βŸ©β‰₯0, for all π‘¦βˆˆπΆ;(c)for π‘₯,π‘¦βˆˆπΈ, πœ™(π‘₯,𝑦)=0  if and only if π‘₯=𝑦.

Lemma 2.5 (see [28]). Let 𝐸 be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property and let 𝐢 be a nonempty closed convex subset of 𝐸. Let π‘‡βˆΆπΆβ†’πΆ be a closed and total quasi-πœ™-asymptotically nonexpansive mapping with nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›}, and a strictly increasing continuous functions πœ‰βˆΆπ‘…+→𝑅+ such that πœˆπ‘›β†’0, πœ‡π‘›β†’0 (as π‘›β†’βˆž) and πœ‰(0)=0. If πœ‡1=0, then the fixed point set 𝐹(𝑇) of 𝑇 is a closed and convex subset of 𝐢.

Lemma 2.6 (see [31]). Let 𝐸 be an uniformly convex Banach space, let π‘Ÿ be a positive number, and let π΅π‘Ÿ(0) be a closed ball of 𝐸. Then, for any sequence {π‘₯𝑖}βˆžπ‘–=1βŠ‚π΅π‘Ÿ(0) and for any sequence {πœ†π‘–}βˆžπ‘–=1 of positive numbers with βˆ‘βˆžπ‘›=1πœ†π‘›=1, there exists a continuous, strictly increasing, and convex function π‘”βˆΆ[0,2π‘Ÿ]β†’[0,∞), 𝑔(0)=0 such that, for any positive integer 𝑖≠1, the following holds: β€–β€–β€–β€–βˆžξ“π‘›=1πœ†π‘›π‘₯𝑛‖‖‖‖2β‰€βˆžξ“π‘›=1πœ†π‘›β€–β€–π‘₯𝑛‖‖2βˆ’πœ†1πœ†π‘–π‘”ξ€·β€–β€–π‘₯1βˆ’π‘₯𝑖‖‖.(2.5)

3. Main Results

Theorem 3.1. Let 𝐢 be a nonempty, closed, and convex subset of an uniformly smooth and strictly convex Banach Banach space 𝐸 with Kadec-Klee property. Let π΅βˆΆπΆβ†’πΈβˆ— be a continuous and monotone mapping and let πœ‘βˆΆπΆβ†’π‘… be a lower semicontinuous and convex function. Let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4). Let {𝑇𝑖}βˆžπ‘–=1βˆΆπΆβ†’πΆ be a countable family of closed and uniformly total quasi-πœ™-asymptotically nonexpansive mappings with nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›} and a strictly increasing continuous function πœβˆΆπ‘…+→𝑅+ such that πœ‡1=0, πœˆπ‘›β†’0, πœ‡π‘›β†’0 (as π‘›β†’βˆž), and 𝜁(0)=0, and for each 𝑖β‰₯1, 𝑇𝑖 is uniformly 𝐿𝑖-Lipschitz continuous. {π‘₯𝑛} is defined by π‘₯0∈𝐢chosenarbitrary,𝐢0𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛ξƒͺ,π‘’π‘›βˆˆπΆsuchthat𝑒𝑛=πΎπ‘Ÿπ‘›π‘¦π‘›,𝐢𝑛+1=ξ€½πœˆβˆˆπΆπ‘›ξ€·βˆΆπœ™πœˆ,π‘’π‘›ξ€Έξ€·β‰€πœ™πœˆ,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(3.1) where πœ‰π‘›=πœˆπ‘›supπ‘žβˆˆΞ˜πœ(πœ™(π‘ž,π‘₯𝑛))+πœ‡π‘›, Π𝐢𝑛+1is the generalized projection of 𝐸  onto 𝐢𝑛+1, {π‘Ÿπ‘›}βŠ‚[π‘Ž,∞)  for some π‘Ž>0, {𝛽𝑛,0,𝛽𝑛,𝑖}  and {𝛼𝑛}  are sequences in [0,1] satisfying the following conditions: (1)for each 𝑛β‰₯0,𝛽𝑛,0+βˆ‘βˆžπ‘–=1𝛽𝑛,𝑖=1;(2)liminfπ‘›β†’βˆžπ›½π‘›,0𝛽𝑛,𝑖>0 for any 𝑖β‰₯1;(3)0≀𝛼𝑛≀𝛼<1 for some π›Όβˆˆ(0,1). If β‹‚Ξ˜βˆΆ=βˆžπ‘–=1𝐹(𝑇𝑖)∩GMEP(𝑓,𝐡,πœ‘) is a nonempty and bounded subset in 𝐢, then the sequence {π‘₯𝑛}  converges strongly to π‘βˆˆπΉ, where 𝑝=ΠΘπ‘₯0.

Proof. We will divide the proof into seven steps.Step 1. We first show that Θ and 𝐢𝑛 are closed and convex for each 𝑛β‰₯0.
It follows from Lemma 2.5 that 𝐹(𝑇𝑖) is closed and convex subset of 𝐢 for each 𝑖β‰₯1. Therefore, Θ is closed and convex in 𝐢.
Again by the assumption, 𝐢0=𝐢 is closed and convex. Suppose that 𝐢𝑛 is closed and convex for some 𝑛β‰₯1. Since for any π‘§βˆˆπΆπ‘›, we know that πœ™ξ€·π‘§,π‘’π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛+πœ‰π‘›βŸΊ2βŸ¨π‘§,𝐽π‘₯π‘›βˆ’π½π‘’π‘›β€–β€–π‘₯βŸ©β‰€π‘›β€–β€–2βˆ’β€–β€–π‘’π‘›β€–β€–2+πœ‰π‘›.(3.2) Hence, the set 𝐢𝑛+1={π‘§βˆˆπΆπ‘›βˆΆ2βŸ¨π‘§,𝐽π‘₯π‘›βˆ’π½π‘’π‘›βŸ©β‰€β€–π‘₯𝑛‖2βˆ’β€–π‘’π‘›β€–2+πœ‰π‘›} is closed and convex. Therefore, Π𝐢𝑛π‘₯0 and ΠΘπ‘₯0 are well defined.
Step 2. We show that Ξ˜βŠ‚πΆπ‘› for all 𝑛β‰₯0.
It is obvious that Ξ˜βŠ‚πΆ0=𝐢. Suppose that Ξ˜βŠ‚πΆπ‘› for some 𝑛β‰₯1. Since 𝐸 is uniformly smooth, πΈβˆ— is uniformly convex. By the convexity of β€–β‹…β€–2, property of πœ™, for any given π‘žβˆˆΞ˜βŠ‚πΆπ‘›, we observe that πœ™ξ€·π‘ž,𝑒𝑛=πœ™π‘ž,πΎπ‘Ÿπ‘›π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘ž,𝑦𝑛=πœ™π‘ž,π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έξ€Έ=β€–π‘žβ€–2ξ«βˆ’2π‘ž,𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ¬+‖‖𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›β€–β€–2β‰€β€–π‘žβ€–2βˆ’2π›Όπ‘›βŸ¨π‘ž,𝐽π‘₯π‘›ξ€·βŸ©βˆ’21βˆ’π›Όπ‘›ξ€ΈβŸ¨π‘ž,π½π‘§π‘›βŸ©+𝛼𝑛‖‖π‘₯𝑛‖‖2+ξ€·1βˆ’π›Όπ‘›ξ€Έβ€–β€–π‘§π‘›β€–β€–2=π›Όπ‘›πœ™ξ€·π‘ž,π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘ž,𝑧𝑛.(3.3) Furthermore, it follows from Lemma 2.6 that, for any positive integers 𝑙>1 and for any π‘žβˆˆΞ˜, we have πœ™ξ€·π‘ž,𝑧𝑛=πœ™π‘ž,π½βˆ’1𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛ξƒͺξƒͺ=β€–π‘žβ€–2ξ„”βˆ’2π‘ž,𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛+‖‖‖‖𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛‖‖‖‖2β‰€β€–π‘žβ€–2βˆ’2𝛽𝑛,0βŸ¨π‘ž,𝐽π‘₯π‘›βŸ©βˆ’2βˆžξ“π‘–=1𝛽𝑛,π‘–ξ«π‘ž,𝐽𝑇𝑛𝑖π‘₯𝑛+𝛽𝑛,0β€–β€–π‘₯𝑛‖‖2+βˆžξ“π‘–=1𝛽𝑛,𝑖‖‖𝑇𝑛𝑖π‘₯𝑛‖‖2βˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖=𝛽𝑛,0πœ™ξ€·π‘ž,π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,π‘–πœ™ξ€·π‘ž,𝑇𝑛𝑖π‘₯π‘›ξ€Έβˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖≀𝛽𝑛,0πœ™ξ€·π‘ž,π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,π‘–ξ€½πœ™ξ€·π‘ž,π‘₯𝑛+πœˆπ‘›πœξ€·πœ™ξ€·π‘ž,π‘₯𝑛+πœ‡π‘›ξ€Ύβˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯π‘›β€–β€–ξ€Έξ€·β‰€πœ™π‘ž,π‘₯𝑛+πœˆπ‘›supπ‘βˆˆΞ˜πœ™ξ€·π‘,π‘₯𝑛+πœ‡π‘›βˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖=πœ™π‘ž,π‘₯𝑛+πœ‰π‘›βˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖.(3.4) Substituting (3.4) into (3.3), we get πœ™ξ€·π‘ž,π‘’π‘›ξ€Έβ‰€π›Όπ‘›πœ™ξ€·π‘ž,π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπœ™ξ€·π‘ž,π‘§π‘›ξ€Έβ‰€π›Όπ‘›πœ™ξ€·π‘ž,π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›πœ™ξ€·ξ€Έξ€Ίπ‘ž,π‘₯𝑛+πœ‰π‘›βˆ’π›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯π‘›β€–β€–ξ€·ξ€Έξ€»β‰€πœ™π‘ž,π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπœ‰π‘›.(3.5) This shows that π‘žβˆˆπΆπ‘›+1. Further, this implies that Ξ˜βŠ‚πΆπ‘›+1 and hence Ξ˜βŠ‚πΆπ‘› for all 𝑛β‰₯0. Since Θ is nonempty, 𝐢𝑛 is a nonempty closed convex subset of 𝐸, and hence Π𝐢𝑛 exists for all 𝑛β‰₯0. This implies that the sequence {π‘₯𝑛} is well defined.
Moreover, by the assumption of {πœˆπ‘›}, {πœ‡π‘›}, and Θ, from (1.4), we have πœ‰π‘›=πœˆπ‘›supπ‘βˆˆΞ˜πœξ€·πœ™ξ€·π‘,π‘₯𝑛+πœ‡π‘›βŸΆ0,π‘›βŸΆβˆž.(3.6)
Step 3. {π‘₯𝑛} is bounded and {πœ™(π‘₯𝑛,π‘₯0)} is a convergent sequence.
It follows from (3.1) and Lemma 2.4 that πœ™ξ€·π‘₯𝑛,π‘₯0ξ€Έξ€·Ξ =πœ™πΆπ‘›π‘₯0,π‘₯0ξ€Έξ€·β‰€πœ™π‘,π‘₯0ξ€Έξ€·βˆ’πœ™π‘,π‘₯π‘›ξ€Έξ€·β‰€πœ™π‘,π‘₯0ξ€Έ,βˆ€π‘βˆˆπΆπ‘›+1,βˆ€π‘›β‰₯0.(3.7) From definition of 𝐢𝑛+1 that π‘₯𝑛=Π𝐢𝑛π‘₯0 and π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0, we have πœ™ξ€·π‘₯𝑛,π‘₯0ξ€Έξ€·π‘₯β‰€πœ™π‘›+1,π‘₯0ξ€Έ,βˆ€π‘›β‰₯0.(3.8) Therefore, {πœ™(π‘₯𝑛,π‘₯0)} is nondecreasing and bounded. So, {πœ™(π‘₯𝑛,π‘₯0)} is a convergent sequence, without loss of generality, we can assume that limπ‘›β†’βˆžπœ™(π‘₯𝑛,π‘₯0)=𝑑β‰₯0. In particular, by (1.4), the sequence {(β€–π‘₯π‘›β€–βˆ’β€–π‘₯0β€–)2} is bounded. This implies {π‘₯𝑛} is also bounded.
Step 4. We prove that {π‘₯𝑛} converges strongly to some point π‘βˆˆπΆ.
Since {π‘₯𝑛} is bounded and 𝐸 is reflexive, there exists a subsequence {π‘₯𝑛𝑖}βŠ‚{π‘₯𝑛} such that π‘₯𝑛𝑖⇀𝑝 (some point in 𝐢). Since 𝐢𝑛 is closed and convex and 𝐢𝑛+1βŠ‚πΆπ‘›, this implies that 𝐢𝑛 is weakly closed and π‘βˆˆπΆπ‘› for each 𝑛β‰₯0. From π‘₯𝑛𝑖=Π𝐢𝑛𝑖π‘₯0, we have πœ™ξ€·π‘₯𝑛𝑖,π‘₯0ξ€Έξ€·β‰€πœ™π‘,π‘₯0ξ€Έ,βˆ€π‘›π‘–β‰₯0.(3.9) Since the norm β€–β‹…β€– is weakly lower semicontinuous, we have liminfπ‘›π‘–β†’βˆžπœ™ξ€·π‘₯𝑛𝑖,π‘₯0ξ€Έ=liminfπ‘›π‘–β†’βˆžξ‚†β€–β€–π‘₯𝑛𝑖‖‖2π‘₯βˆ’2𝑛𝑖,𝐽π‘₯0+β€–β€–π‘₯0β€–β€–2β‰₯‖𝑝‖2βˆ’2βŸ¨π‘,𝐽π‘₯0β€–β€–π‘₯⟩+0β€–β€–2ξ€·=πœ™π‘,π‘₯0ξ€Έ,(3.10) and so πœ™ξ€·π‘,π‘₯0≀liminfπ‘›π‘–β†’βˆžπœ™ξ€·π‘₯𝑛𝑖,π‘₯0≀limsupπ‘›π‘–β†’βˆžπœ™ξ€·π‘₯𝑛𝑖,π‘₯0ξ€Έξ€·β‰€πœ™π‘,π‘₯0ξ€Έ.(3.11) This implies that limπ‘›π‘–β†’βˆžπœ™(π‘₯𝑛𝑖,π‘₯0)β†’πœ™(𝑝,π‘₯0), and so β€–π‘₯𝑛‖→‖𝑝‖. Since π‘₯𝑛𝑖⇀𝑝, by virtue of the Kadec-Klee property of 𝐸, we obtain that limπ‘›π‘–β†’βˆžπ‘₯𝑛𝑖=𝑝.(3.12) Since {πœ™(π‘₯𝑛,π‘₯0)} is convergent, this together with limπ‘›π‘–β†’βˆžπœ™(π‘₯𝑛𝑖,π‘₯0)=πœ™(𝑝,π‘₯0), we have limπ‘›β†’βˆžπœ™(π‘₯𝑛,π‘₯0)=πœ™(𝑝,π‘₯0). If there exists some subsequence {π‘₯𝑛𝑗}βŠ‚{π‘₯𝑛} such that π‘₯π‘›π‘—β†’π‘ž, then from Lemma 2.4, we have that πœ™(𝑝,π‘ž)=lim𝑛𝑖,π‘›π‘—β†’βˆžπœ™ξ‚€π‘₯𝑛𝑖,π‘₯𝑛𝑗=lim𝑛𝑖,π‘›π‘—β†’βˆžπœ™ξ‚€π‘₯𝑛𝑖,Π𝐢𝑛𝑗π‘₯0≀lim𝑛𝑖,π‘›π‘—β†’βˆžξ‚€πœ™ξ€·π‘₯𝑛𝑖,π‘₯0ξ€Έξ‚€Ξ βˆ’πœ™πΆπ‘›π‘—π‘₯0,π‘₯0=lim𝑛𝑖,π‘›π‘—β†’βˆžξ‚€πœ™ξ€·π‘₯𝑛𝑖,π‘₯0ξ€Έξ‚€π‘₯βˆ’πœ™π‘›π‘—,π‘₯0=πœ™π‘,π‘₯0ξ€Έξ€·βˆ’πœ™π‘,π‘₯0ξ€Έ=0.(3.13) This implies that 𝑝=π‘ž and limπ‘›β†’βˆžπ‘₯𝑛=𝑝.(3.14)
Step 5. We prove that limπ‘›β†’βˆžβ€–π½π‘₯π‘›βˆ’π½π‘’π‘›β€–=0.
By definition of Π𝐢𝑛π‘₯0, we have πœ™ξ€·π‘₯𝑛+1,π‘₯𝑛π‘₯=πœ™π‘›+1,Π𝐢𝑛π‘₯0ξ€Έξ€·π‘₯β‰€πœ™π‘›+1,π‘₯0ξ€Έξ€·Ξ βˆ’πœ™πΆπ‘›π‘₯0,π‘₯0ξ€Έξ€·π‘₯=πœ™π‘›+1,π‘₯0ξ€Έξ€·π‘₯βˆ’πœ™π‘›,π‘₯0ξ€Έ.(3.15) Since limπ‘›β†’βˆžπœ™(π‘₯𝑛,π‘₯0) exists, we have limπ‘›β†’βˆžπœ™ξ€·π‘₯𝑛+1,π‘₯𝑛=0.(3.16) Since π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0βˆˆπΆπ‘›+1βŠ‚πΆπ‘› and the definition of 𝐢𝑛+1, we get πœ™ξ€·π‘₯𝑛+1,𝑒𝑛π‘₯β‰€πœ™π‘›+1,π‘₯𝑛+πœ‰π‘›.(3.17) It follows from (3.6) and (3.16) that limπ‘›β†’βˆžπœ™ξ€·π‘₯𝑛+1,𝑒𝑛=0.(3.18) From (1.4), we have limπ‘›β†’βˆžβ€–β€–π‘’π‘›β€–β€–=𝑝.(3.19) So, limπ‘›β†’βˆžβ€–β€–π½π‘’π‘›β€–β€–=𝐽𝑝.(3.20) This implies that {𝐽𝑒𝑛} is bounded in πΈβˆ—. Note that 𝐸 is reflexive and πΈβˆ— is also reflexive, we can assume that 𝐽𝑒𝑛⇀π‘₯βˆ—βˆˆπΈβˆ—. In view of the reflexive of 𝐸, we know that 𝐽(𝐸)=πΈβˆ—. Hence, there exist π‘₯∈𝐢 such that 𝐽π‘₯=π‘₯βˆ—. It follows that πœ™ξ€·π‘₯𝑛+1,𝑒𝑛=β€–β€–π‘₯𝑛+1β€–β€–2π‘₯βˆ’2𝑛+1,𝐽𝑒𝑛+‖‖𝑒𝑛‖‖2=β€–β€–π‘₯𝑛+1β€–β€–2π‘₯βˆ’2𝑛+1,𝐽𝑒𝑛+‖‖𝐽𝑒𝑛‖‖2.(3.21) Taking liminfπ‘›β†’βˆž on the both sides of equality above and by the weak lower semicontinuity of norm β€–β‹…β€–, we have 0β‰₯‖𝑝‖2βˆ’2βŸ¨π‘,π‘₯βˆ—βŸ©+β€–π‘₯βˆ—β€–2=‖𝑝‖2βˆ’2βŸ¨π‘,𝐽π‘₯⟩+‖𝐽π‘₯β€–2=‖𝑝‖2βˆ’2βŸ¨π‘,𝐽π‘₯⟩+β€–π‘₯β€–2=πœ™(𝑝,π‘₯).(3.22) That is, 𝑝=π‘₯, which implies that π‘₯βˆ—=𝐽𝑝. It follows that π½π‘’π‘›β‡€π½π‘βˆˆπΈβˆ—. From (1.4) and the Kadec-Klee property of 𝐸, we have limπ‘›β†’βˆžπ‘’π‘›=𝑝.(3.23) Since β€–π‘₯π‘›βˆ’π‘’π‘›β€–β‰€β€–π‘₯π‘›βˆ’π‘β€–+β€–π‘βˆ’π‘’π‘›β€–, so, liminfπ‘›β†’βˆžβ€–β€–π‘₯π‘›βˆ’π‘’π‘›β€–β€–=0.(3.24) Since 𝐽 is uniformly norm-to-norm continuous on bounded subsets of 𝐸, we obtain liminfπ‘›β†’βˆžβ€–β€–π½π‘₯π‘›βˆ’π½π‘’π‘›β€–β€–=0,(3.25)
Step 6. We show that β‹‚π‘βˆˆΞ˜βˆΆ=βˆžπ‘–=1𝐹(𝑇𝑖)β‹‚GMEP(𝑓,𝐡,πœ‘).
First, we show that β‹‚π‘βˆˆβˆžπ‘–=1𝐹(𝑇𝑖).
Since π‘₯𝑛+1βˆˆπΆπ‘›+1, it follows from (3.1) and (3.14) that πœ™ξ€·π‘₯𝑛+1,𝑒𝑛π‘₯β‰€πœ™π‘›+1,π‘₯𝑛+πœ‰π‘›(⟢0asπ‘›βŸΆβˆž).(3.26) Since π‘₯𝑛→𝑝, by Lemma 2.3, limπ‘›β†’βˆžπ‘’π‘›=𝑝.(3.27) By (3.3) and (3.4), for any π‘žβˆˆΞ˜, we have πœ™ξ€·π‘ž,π‘’π‘›ξ€Έξ€·β‰€πœ™π‘ž,π‘₯𝑛+πœ‰π‘›βˆ’ξ€·1βˆ’π›Όπ‘›ξ€Έπ›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖.(3.28) So, ξ€·1βˆ’π›Όπ‘›ξ€Έπ›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯π‘›β€–β€–ξ€·β‰€πœ™π‘ž,π‘₯𝑛+πœ‰π‘›ξ€·βˆ’πœ™π‘ž,𝑒𝑛(⟢0asπ‘›βŸΆβˆž).(3.29) Therefore, limπ‘›β†’βˆžξ€·1βˆ’π›Όπ‘›ξ€Έπ›½π‘›,0𝛽𝑛,𝑙𝑔‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯𝑛‖‖=0.(3.30) In view of the property of 𝑔, we have ‖‖𝐽π‘₯π‘›βˆ’π½π‘‡π‘›π‘™π‘₯π‘›β€–β€–βŸΆ0(asπ‘›βŸΆβˆž).(3.31) Since 𝐽π‘₯𝑛→𝐽𝑝, this implies that limπ‘›β†’βˆžπ½π‘‡π‘›π‘™π‘₯𝑛=𝐽𝑝. From Remark 1.1(ii), it yields 𝑇𝑛𝑙π‘₯𝑛⇀𝑝(asπ‘›βŸΆβˆž).(3.32) Again since ‖‖𝑇𝑛𝑙π‘₯π‘›β€–β€–β€–β€–π½ξ€·π‘‡βˆ’β€–π‘β€–=𝑛𝑙π‘₯π‘›ξ€Έβ€–β€–β€–β€–π½ξ€·π‘‡βˆ’β€–π½π‘β€–β‰€π‘›π‘™π‘₯𝑛‖‖(βˆ’π½π‘βŸΆ0asπ‘›βŸΆβˆž),(3.33) this together with (3.32) and the Kadec-Klee-property of 𝐸 shows that limπ‘›β†’βˆžπ‘‡π‘›π‘™π‘₯𝑛=𝑝.(3.34) By the assumption that 𝑇𝑙 is uniformly 𝐿𝑙-Lipschitz continuous, we have ‖‖𝑇𝑙𝑛+1π‘₯π‘›βˆ’π‘‡π‘›π‘™π‘₯𝑛‖‖≀‖‖𝑇𝑙𝑛+1π‘₯π‘›βˆ’π‘‡π‘™π‘›+1π‘₯𝑛+1β€–β€–+‖‖𝑇𝑙𝑛+1π‘₯𝑛+1βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯𝑛+1βˆ’π‘₯𝑛‖‖+β€–β€–π‘₯π‘›βˆ’π‘‡π‘›π‘™π‘₯𝑛‖‖≀𝐿𝑙‖‖π‘₯+1𝑛+1βˆ’π‘₯𝑛‖‖+‖‖𝑇𝑙𝑛+1π‘₯𝑛+1βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯π‘›βˆ’π‘‡π‘›π‘™π‘₯𝑛‖‖.(3.35) This together with (3.34) and π‘₯𝑛→𝑝 shows that limπ‘›β†’βˆžβ€–π‘‡π‘™π‘›+1π‘₯π‘›βˆ’π‘‡π‘›π‘™π‘₯𝑛‖=0 and limπ‘›β†’βˆžπ‘‡π‘™π‘›+1π‘₯𝑛=𝑝, that is, limπ‘›β†’βˆžπ‘‡π‘™π‘‡π‘›π‘™π‘₯𝑛=𝑝. In view of the closeness of 𝑇𝑙, it follows that 𝑇𝑙𝑝=𝑝, that is, π‘βˆˆπΉ(𝑇𝑙). By the arbitrariness of 𝑙β‰₯1, we have π‘βˆˆβˆ©βˆžπ‘–=1𝐹(𝑇𝑖).
Now, we show that π‘βˆˆGMEP(𝑓,𝐡,πœ‘).
It follows from (3.2), (3.3), (3.6), Lemma 2.4, and 𝑒𝑛=πΎπ‘Ÿπ‘›π‘¦π‘› that πœ™ξ€·π‘’π‘›,𝑦𝑛𝐾=πœ™π‘Ÿπ‘›π‘¦π‘›,π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘,π‘¦π‘›ξ€Έξ€·βˆ’πœ™π‘,πΎπ‘Ÿπ‘›π‘¦π‘›ξ€Έξ€·β‰€πœ™π‘,π‘₯π‘›ξ€Έξ€·βˆ’πœ™π‘,πΎπ‘Ÿπ‘›π‘¦π‘›ξ€Έ+πœ‰π‘›ξ€·=πœ™π‘,π‘₯π‘›ξ€Έξ€·βˆ’πœ™π‘,𝑒𝑛+πœ‰π‘›βŸΆ0,(asπ‘›βŸΆβˆž).(3.36) By (1.4), we have β€–β€–π‘’π‘›β€–β€–βŸΆβ€–β€–π‘¦π‘›β€–β€–,(asπ‘›βŸΆβˆž).(3.37) Since 𝑒𝑛→𝑝 as π‘›β†’βˆž, so β€–β€–π‘¦π‘›β€–β€–βŸΆ(‖𝑝‖,asπ‘›βŸΆβˆž).(3.38) Therefore, β€–β€–π½π‘’π‘›β€–β€–βŸΆ(‖𝐽𝑝‖,asπ‘›βŸΆβˆž).(3.39) Since πΈβˆ— is reflexive, we may assume that π½π‘¦π‘›β‡€π‘§βˆ—βˆˆπΈβˆ—. In view of the reflexive of 𝐸, we have 𝐽(𝐸)=πΈβˆ—. Hence, there exist π‘§βˆˆπΈ such that 𝐽𝑧=π‘§βˆ—. It follows that πœ™ξ€·π‘’π‘›,𝑦𝑛=‖‖𝑒𝑛‖‖2βˆ’2βŸ¨π‘’π‘›,π½π‘¦π‘›β€–β€–π‘¦βŸ©+𝑛‖‖2=‖‖𝑒𝑛‖‖2βˆ’2βŸ¨π‘’π‘›,π½π‘¦π‘›β€–β€–βŸ©+𝐽𝑦𝑛‖‖2.(3.40) Taking liminfπ‘›β†’βˆž on the both sides of equality above yields that 0β‰₯‖𝑝‖2βˆ’2βŸ¨π‘,π‘§βˆ—βŸ©+β€–π‘§βˆ—β€–2=‖𝑝‖2βˆ’2βŸ¨π‘,π½π‘§βŸ©+‖𝐽𝑧‖2=‖𝑝‖2βˆ’2βŸ¨π‘,π½π‘§βŸ©+‖𝑧‖2=πœ™(𝑝,π‘₯).(3.41) That is, 𝑝=𝑧, which implies that π‘§βˆ—=𝐽𝑝. It follows that π½π‘¦π‘›β‡€π½π‘βˆˆπΈβˆ—. Since π½βˆ’1 is norm-weak*-continuous, it follows that 𝑦𝑛⇀𝑝. From (3.38) and 𝐸 with the Kadec-Klee property, we obtain π‘¦π‘›βŸΆπ‘(asπ‘›βŸΆβˆž).(3.42) It follows from (3.23) and (3.42) that limπ‘›β†’βˆžβ€–β€–π‘’π‘›βˆ’π‘¦π‘›β€–β€–=0.(3.43) Since 𝐽 is uniformly norm-to-norm continuous, we have limπ‘›β†’βˆžβ€–β€–π½π‘’π‘›βˆ’π½π‘¦π‘›β€–β€–=0.(3.44) By Lemma 2.2, we have 𝑓𝑒𝑛𝑒,𝑦+πœ‘(𝑦)βˆ’πœ‘π‘›ξ€Έ+βŸ¨π΅π‘¦π‘›,π‘¦βˆ’π‘’π‘›1⟩+π‘Ÿπ‘›βŸ¨π‘¦βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›βŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ.(3.45) From (A2), we have ξ€·π‘’πœ‘(𝑦)βˆ’πœ‘π‘›ξ€Έ+βŸ¨π΅π‘¦π‘›,π‘¦βˆ’π‘’π‘›1⟩+π‘Ÿπ‘›βŸ¨π‘¦βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›ξ€·π‘’βŸ©β‰₯βˆ’π‘“π‘›ξ€Έξ€·,𝑦β‰₯𝑓𝑦,𝑒𝑛,βˆ€π‘¦βˆˆπΆ.(3.46)
Put 𝑧𝑑=𝑑𝑦+(1βˆ’π‘‘)𝑝 for all π‘‘βˆˆ(0,1] and π‘¦βˆˆπΆ. Consequently, we get π‘§π‘‘βˆˆπΆ. It follows from (3.46) that βŸ¨π΅π‘§π‘‘,π‘§π‘‘βˆ’π‘’π‘›βŸ©β‰₯βŸ¨π΅π‘§π‘‘,π‘§π‘‘βˆ’π‘’π‘›ξ€·π‘§βŸ©βˆ’πœ‘π‘‘ξ€Έξ€·π‘’+πœ‘π‘›ξ€Έβˆ’βŸ¨π΅π‘¦π‘›,π‘§π‘‘βˆ’π‘’π‘›ξ€·π‘§βŸ©+𝑓𝑑,π‘’π‘›ξ€Έβˆ’ξƒ‘π‘§π‘‘βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›π‘Ÿπ‘›ξƒ’=βŸ¨π΅π‘§π‘‘βˆ’π΅π‘’π‘›,π‘§π‘‘βˆ’π‘’π‘›ξ€·π‘§βŸ©βˆ’πœ‘π‘‘ξ€Έξ€·π‘’+πœ‘π‘›ξ€Έ+βŸ¨π΅π‘’π‘›βˆ’π΅π‘¦π‘›,π‘§π‘‘βˆ’π‘’π‘›ξ€·π‘§βŸ©+𝑓𝑑,π‘’π‘›ξ€Έβˆ’ξƒ‘π‘§π‘‘βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›π‘Ÿπ‘›ξƒ’.(3.47) Since 𝐡 is continuous, and from (3.43), and 𝑒𝑛→𝑝, 𝑦𝑛→𝑝, as π‘›β†’βˆž, therefore β€–π΅π‘’π‘›βˆ’π΅π‘¦π‘›β€–β†’0. Since 𝐡 is monotone, we know that βŸ¨π΅π‘§π‘‘βˆ’π΅π‘’π‘›,π‘§π‘‘βˆ’π‘’π‘›βŸ©β‰₯0. Further, limπ‘›β†’βˆžβ€–π½π‘’π‘›βˆ’π½π‘¦π‘›β€–/π‘Ÿπ‘›=0. So, it follows from (A4), and the weak lower semicontinuity of πœ‘ and (3.43) that 𝑓𝑧𝑑𝑧,π‘βˆ’πœ‘π‘‘ξ€Έ+πœ‘(𝑝)≀limπ‘›β†’βˆžβŸ¨π΅π‘§π‘‘,π‘§π‘‘βˆ’π‘’π‘›βŸ©=βŸ¨π΅π‘§π‘‘,π‘§π‘‘βˆ’π‘βŸ©.(3.48) From (A1) and (3.48), we have 𝑧0=𝑓𝑑,π‘§π‘‘ξ€Έξ€·π‘§βˆ’πœ‘π‘‘ξ€Έξ€·π‘§+πœ‘π‘‘ξ€Έξ€·π‘§β‰€π‘‘π‘“π‘‘ξ€Έξ€·π‘§,𝑦+(1βˆ’π‘‘)𝑓𝑑𝑧,𝑝+π‘‘πœ‘(𝑦)+(1βˆ’π‘‘)πœ‘(𝑝)βˆ’πœ‘π‘‘ξ€Έξ€Ίπ‘“ξ€·π‘§=𝑑𝑑𝑧,𝑦+πœ‘(𝑦)βˆ’πœ‘π‘‘+𝑓𝑧(1βˆ’π‘‘)𝑑𝑧,𝑝+πœ‘(𝑝)βˆ’πœ‘π‘‘ξ€Ίπ‘“ξ€·π‘§ξ€Έξ€»β‰€π‘‘π‘‘ξ€Έξ€·π‘§,𝑦+πœ‘(𝑦)βˆ’πœ‘π‘‘ξ€Έξ€»+(1βˆ’π‘‘)βŸ¨π΅π‘§π‘‘,π‘§π‘‘ξ€Ίπ‘“ξ€·π‘§βˆ’π‘βŸ©β‰€π‘‘π‘‘ξ€Έξ€·π‘§,𝑦+πœ‘(𝑦)βˆ’πœ‘π‘‘+ξ€Έξ€»(1βˆ’π‘‘)π‘‘βŸ¨π΅π‘§π‘‘,π‘¦βˆ’π‘βŸ©,(3.49) and hence 𝑓𝑧𝑑𝑧,𝑦+πœ‘(𝑦)βˆ’πœ‘π‘‘ξ€Έ+(1βˆ’π‘‘)βŸ¨π΅π‘§π‘‘,π‘¦βˆ’π‘βŸ©β‰₯0.(3.50) Letting 𝑑→0, we have 𝑓(𝑝,𝑦)+πœ‘(𝑦)βˆ’πœ‘(𝑝)+βŸ¨π΅π‘,π‘¦βˆ’π‘βŸ©β‰₯0.(3.51) This implies that π‘βˆˆGMEP(𝑓,𝐡,πœ‘). Hence, π‘βˆˆβˆ©βˆžπ‘–=1𝐹(𝑇𝑖)∩GMEP(𝑓,𝐡,πœ‘).
Step 7. We prove that π‘₯𝑛→𝑝=ΠΘπ‘₯0.
Let π‘ž=ΠΘπ‘₯0. From π‘₯𝑛=Π𝐢𝑛π‘₯0 and π‘žβˆˆΞ˜βŠ‚πΆπ‘›, we have πœ™ξ€·π‘₯𝑛,π‘₯0ξ€Έξ€·β‰€πœ™π‘ž,π‘₯0ξ€Έ,βˆ€π‘›β‰₯0.(3.52) This implies that πœ™ξ€·π‘,π‘₯0ξ€Έ=limπ‘›β†’βˆžπœ™ξ€·π‘₯𝑛,π‘₯0ξ€Έξ€·β‰€πœ™π‘ž,π‘₯0ξ€Έ.(3.53) By definition of 𝑝=ΠΘπ‘₯0, we have 𝑝=π‘ž. Therefore, π‘₯𝑛→𝑝=ΠΘπ‘₯0. This completes the proof.

Taking πœ‘=0, 𝑇𝑖=𝑇 for each π‘–βˆˆπ‘ in Theorem 3.1, we have the following result.

Corollary 3.2. Let 𝐢 be a nonempty, closed, and convex subset of an uniformly smooth and strictly convex Banach Banach space 𝐸 with Kadec-Klee property. Let π΅βˆΆπΆβ†’πΈβˆ— be a continuous and monotone mapping. Let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4). Let π‘‡βˆΆπΆβ†’πΆ be a closed uniformly 𝐿-Lipschitz continuous and uniformly total quasi-πœ™-asymptotically nonexpansive mappings with nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›} and a strictly increasing continuous function πœβˆΆπ‘…+→𝑅+ such that πœ‡1=0, πœˆπ‘›β†’0, πœ‡π‘›β†’0 (as π‘›β†’βˆž), and 𝜁(0)=0. Let {π‘₯𝑛} be the sequence generated by π‘₯0∈𝐢chosenarbitrary,𝐢0𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ½π‘‡π‘›π‘₯𝑛,π‘’π‘›βˆˆπΆsuchthat𝑓𝑒𝑛,𝑦+βŸ¨π΅π‘¦π‘›,π‘¦βˆ’π‘’π‘›1⟩+π‘ŸnβŸ¨π‘¦βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›πΆβŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ,𝑛+1=ξ€½πœˆβˆˆπΆπ‘›ξ€·βˆΆπœ™πœˆ,π‘’π‘›ξ€Έξ€·β‰€πœ™πœˆ,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(3.54) where πœ‰π‘›=πœˆπ‘›supπ‘žβˆˆΞ˜πœ(πœ™(π‘ž,π‘₯𝑛))+πœ‡π‘›, Π𝐢𝑛+1is the generalized projection of 𝐸  onto 𝐢𝑛+1, {𝛽𝑛}  and {𝛼𝑛}are sequences in [0,1], liminfπ‘›β†’βˆžπ›½π‘›(1βˆ’π›½π‘›)>0, {π‘Ÿπ‘›}βŠ‚[π‘Ž,∞) for some π‘Ž>0. If Θ∢=βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)∩GEP(𝑓,𝐡)  is a nonempty and bounded subset in 𝐢, then the sequence {π‘₯𝑛} converges strongly to π‘βˆˆΞ˜, where 𝑝=ΠΘπ‘₯0.

In Theorem 3.1, as πœ‘=0, 𝐡=0, 𝑇𝑖=𝑇 for each π‘–βˆˆπ‘, we can obtain the following corollary.

Corollary 3.3. Let 𝐢 be a nonempty, closed and convex subset of an uniformly smooth and strictly convex Banach Banach space 𝐸 with Kadec-Klee property. Let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4), and π‘‡βˆΆπΆβ†’πΆ be a closed uniformly 𝐿-Lipschitz continuous and uniformly total quasi-πœ™-asymptotically nonexpansive mappings with nonnegative real sequences {πœˆπ‘›}, {πœ‡π‘›} and a strictly increasing continuous function πœβˆΆπ‘…+→𝑅+ such that πœ‡1=0, πœˆπ‘›β†’0, πœ‡π‘›β†’0 (as π‘›β†’βˆž) and 𝜁(0)=0. Let {π‘₯𝑛} be the sequence generated by π‘₯0∈𝐢chosenarbitrary,𝐢0𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯n+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ½π‘‡π‘›π‘₯𝑛,π‘’π‘›βˆˆπΆsuchthat𝑓𝑒𝑛+1,π‘¦π‘Ÿπ‘›βŸ¨π‘¦βˆ’π‘’π‘›,π½π‘’π‘›βˆ’π½π‘¦π‘›πΆβŸ©β‰₯0,βˆ€π‘¦βˆˆπΆ,𝑛+1=ξ€½πœˆβˆˆπΆπ‘›ξ€·βˆΆπœ™πœˆ,π‘’π‘›ξ€Έξ€·β‰€πœ™πœˆ,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(3.55) where πœ‰π‘›=πœˆπ‘›supπ‘žβˆˆΞ˜πœ‰(πœ™(π‘ž,π‘₯𝑛))+πœ‡π‘›, Π𝐢𝑛+1is the generalized projection of 𝐸  onto 𝐢𝑛+1, {𝛽𝑛} and {𝛼𝑛} are sequences in [0,1], liminfπ‘›β†’βˆžπ›½π‘›(1βˆ’π›½π‘›)>0, {π‘Ÿπ‘›}βŠ‚[π‘Ž,∞)  for some π‘Ž>0. If Θ∢=βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)∩EP(𝑓) is a nonempty and bounded subset in 𝐢, then the sequence {π‘₯𝑛} converges strongly to π‘βˆˆΞ˜, where 𝑝=ΠΘπ‘₯0.

Definition 3.4. A countable family of mapping {𝑇𝑛}βˆΆπΆβ†’πΆ is said to be uniformly quasi-πœ™-asymptotically nonexpansive, if βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)β‰ βˆ… and there exist real sequences {π‘˜π‘›}βŠ‚[1,∞),π‘˜π‘›β†’1 such that for each iβ‰₯1, πœ™ξ€·π‘,𝑇𝑛𝑖π‘₯ξ€Έβ‰€π‘˜π‘›πœ™(𝑝,π‘₯),βˆ€π‘₯∈𝐢,π‘βˆˆβˆžξ™π‘–=1𝐹𝑇𝑖.(3.56) The following Corollary can be directly obtained from Theorem 3.1.

Corollary 3.5. Let 𝐢 be a nonempty, closed and convex subset of an uniformly smooth and strictly convex Banach Banach space 𝐸 with Kadec-Klee property. Let π΅βˆΆπΆβ†’πΈβˆ— be a continuous and monotone mapping and let πœ‘βˆΆπΆβ†’π‘… be a lower semicontinuous and convex function. Let 𝑓 be a bifunction from 𝐢×𝐢 to 𝑅 satisfying (A1)–(A4). Let {𝑇𝑖}βˆžπ‘–=1βˆΆπΆβ†’πΆ be an infinite family of closed and uniformly 𝐿𝑖-Lipschitz continuous and uniformly quasi-πœ™-asymptotically nonexpansive mappings with a sequence {π‘˜π‘›}βŠ‚[1,∞), π‘˜π‘›β†’1 such that Θ∢=βˆ©βˆžπ‘–=1𝐹(𝑇𝑖)∩GMEP(𝑓,𝐡,πœ‘) is a nonempty and bounded subset in 𝐢. Let {π‘₯𝑛} be the sequence generated by π‘₯0∈𝐢chosenarbitrary,𝐢0𝑦=𝐢,𝑛=π½βˆ’1𝛼𝑛𝐽π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ½π‘§π‘›ξ€Έ,𝑧𝑛=π½βˆ’1𝛽𝑛,0𝐽π‘₯𝑛+βˆžξ“π‘–=1𝛽𝑛,𝑖𝐽𝑇𝑛𝑖π‘₯𝑛ξƒͺ,π‘’π‘›βˆˆπΆsuchthat𝑒𝑛=πΎπ‘Ÿπ‘›π‘¦π‘›,𝐢𝑛+1=ξ€½π‘§βˆˆπΆπ‘›ξ€·βˆΆπœ™π‘§,π‘’π‘›ξ€Έξ€·β‰€πœ™π‘§,π‘₯𝑛+πœ‰π‘›ξ€Ύ,π‘₯𝑛+1=Π𝐢𝑛+1π‘₯0,𝑛β‰₯0,(3.57) where πœ‰π‘›=supπ‘βˆˆπΉ(π‘˜π‘›βˆ’1)πœ™(𝑝,π‘₯𝑛), Π𝐢𝑛+1is the generalized projection of 𝐸  onto 𝐢𝑛+1, {π‘Ÿπ‘›}βŠ‚[π‘Ž,∞) for some π‘Ž>0, {𝛽𝑛,0,𝛽𝑛,𝑖} and {𝛼𝑛} are sequences in [0,1]. If βˆ‘βˆžπ‘–=1𝛽𝑛,𝑖=1 for all 𝑛β‰₯0, and liminfπ‘›β†’βˆžπ›½π‘›,0𝛽𝑛,𝑖>0 for all 𝑖β‰₯1, then the sequence {π‘₯𝑛} converges strongly to π‘βˆˆΞ˜, where 𝑝=ΠΘπ‘₯0.

Remark 3.6. Theorem 3.1 improves and extend the corresponding results in [13, 24–29] in the following aspects:(1)for the mappings, extend the mappings from relatively nonexpansive mappings, quasi-πœ™-nonexpansive mappings, and quasi-πœ™-asymptotically nonexpansive mappings to a countable family of total quasi-πœ™-asymptotically nonexpansive mappings;(2)for the framework of spaces, extend the space from an uniformly smooth and uniformly convex Banach space to an uniformly smooth and strictly convex Banach space with the Kadec-Klee property.

Acknowledgment

This work was supported by the Natural Science Foundation of Yunnan Province (no. 2011FB074).