Abstract

We construct new analytical solutions of the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

1. Introduction

Nonlinear partial differential equations (NLPDEs) play a prominent role in different branches of the applied sciences. In recent time, many researchers investigated exact traveling wave solutions of NLPDEs which play a crucial role to reveal the insight of complex physical phenomena. In the past several decades, a variety of effective and powerful methods, such as variational iteration method [1–3], tanh-coth method [4], homotopy perturbation method [5–7], Fan subequation method [8], projective Riccati equation method [9], differential transform method [10], direct algebraic method [11], first integral method [12], Hirota’s bilinear method [13], modified extended direct algebraic method [14], extended tanh method [15], Backlund transformation [16], bifurcation method [17], Cole-Hopf transformation method [18], sech-tanh method [19], (𝐺′/𝐺)-expansion method [20–22], modified (𝐺′/𝐺)-expansion method [23], multiwave method [24], extended (𝐺′/𝐺)-expansion method [25, 26], and others [27–33] were used to seek exact traveling wave solutions of the nonlinear evolution equations (NLEEs).

Recently, He and Wu [34] have presented a novel method called the Exp-function method for searching traveling wave solutions of the nonlinear evolution equations arising in mathematical physics. The Exp-function method is widely used to many kinds of NLPDEs, such as good Boussinesq equations [35], nonlinear differential equations [36], higher-order boundary value problems [37], nonlinear problems [38], Calogero-Degasperis-Fokas equation [39], nonlinear reaction-diffusion equations [40], 2D Bratu type equation [41], nonlinear lattice differential equations [42], generalized-Zakharov equations [43], (3 + 1)-dimensional Jimbo-Miwa equation [44], modified Zakharov-Kuznetsov equation [45], Brusselator reaction diffusion model [46], nonlinear heat equation [47], and the other important NLPDEs [48–51].

In this article, we apply the Exp-function method [34] to obtain the analytical solutions of the nonlinear partial differential equation, namely, (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsev equation.

2. Description of the Exp-Function Method

Consider the general nonlinear partial differential equation𝑃𝑒,𝑒𝑑,𝑒π‘₯,𝑒𝑦,𝑒𝑧,𝑒𝑑𝑑,𝑒π‘₯𝑑,𝑒π‘₯π‘₯,𝑒π‘₯𝑦,𝑒𝑦𝑦,𝑒𝑦𝑑,𝑒𝑧𝑧,𝑒𝑧𝑑,𝑒𝑧π‘₯,𝑒𝑧𝑦,…=0.(2.1) The main steps of the Exp-function method [34] are as follows.

Step 1. Consider a complex variable as 𝑒(π‘₯,𝑦,𝑧,𝑑)=𝑒(πœ‚),πœ‚=π‘₯+𝑦+π‘§βˆ’π‘‰π‘‘.(2.2) Now using (2.2), (2.1) converts to a nonlinear ordinary differential equation for 𝑒(πœ‚)𝑄𝑒,π‘’ξ…ž,π‘’ξ…žξ…ž,π‘’ξ…žξ…žξ…žξ€Έ,…=0,(2.3) where primes denote the ordinary derivative with respect to πœ‚.

Step 2. We assume that the traveling wave solution of (2.3) can be expressed in the form [34] βˆ‘π‘’(πœ‚)=𝑑𝑛=βˆ’π‘π‘Žπ‘›exp(π‘›πœ‚)βˆ‘π‘žπ‘š=βˆ’π‘π‘π‘š=π‘Žexp(π‘šπœ‚)βˆ’π‘exp(βˆ’π‘πœ‚)+β‹―+π‘Žπ‘‘exp(π‘‘πœ‚)π‘βˆ’π‘exp(βˆ’π‘πœ‚)+β‹―+π‘π‘žexp(π‘žπœ‚),(2.4) where 𝑐,𝑑,𝑝, and π‘ž are positive integers to be determined later, and π‘Žπ‘› and π‘π‘š are unknown constants. Equation (2.4) can be rewritten in the following equivalent form: π‘Žπ‘’(πœ‚)=𝑐exp(π‘πœ‚)+β‹―+π‘Žβˆ’π‘‘exp(βˆ’π‘‘πœ‚)𝑏𝑝exp(π‘πœ‚)+β‹―+π‘βˆ’π‘žexp(βˆ’π‘žπœ‚).(2.5)

Step 3. In order to determine the values of 𝑐 and 𝑝, we balance the highest order linear term with the highest order nonlinear term, and, determining the values of 𝑑 and π‘ž, we balance the lowest order linear term with the lowest order nonlinear term in (2.3). Thus, we obtain the values of 𝑐,𝑑,𝑝, and π‘ž.

Step 4. Substituting the values of 𝑐,𝑑,𝑝, and π‘ž into (2.5), and then substituted (2.5) into (2.3) and simplifying, we obtain 𝑖𝐢𝑖exp(Β±π‘–πœ‚)=0,𝑖=0,1,2,3,….(2.6) Then each coefficient 𝐢𝑖=0 is to set, yields a system of algebraic equations for π‘Žπ‘β€²π‘  and 𝑏𝑝′𝑠.

Step 5. We assume that the unknown π‘Žπ‘β€²π‘  and 𝑏𝑝′𝑠 can be determined by solving the system of algebraic equations obtained in Step 4. Putting these values into (2.5), we obtain exact traveling wave solutions of the (2.1).

3. Application of the Method

In this section, we apply the method to construct the traveling wave solutions of the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsev equation. The obtained solutions will be displayed in Figures 1, 2, 3, 4, 5, and 6 by using the software Maple 13.

We consider the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsev equation𝑒𝑑+𝛼𝑒2𝑒π‘₯+𝑒π‘₯π‘₯π‘₯+𝑒π‘₯𝑦𝑦+𝑒π‘₯𝑧𝑧=0,(3.1) where 𝛼 is a nonzero constant.

Zayed [52] solved (3.1) using the (𝐺′/𝐺)-expansion method. Later, in article [53], he solved same equation by the generalized (𝐺′/𝐺)-expansion method.

Here, we will solve this equation by the Exp-function method.

Now, we use the transformation (2.2) into (3.1), which yieldsβˆ’π‘‰π‘’ξ…ž+𝛼𝑒2π‘’ξ…ž+3π‘’ξ…žξ…žξ…ž=0,(3.2) where primes denote the derivatives with respect to πœ‚.

According to Step 2, the solution of (3.2) can be written in the form of (2.5). To determine the values of 𝑐 and 𝑝, according to Step 3, we balance the highest order linear term of 𝑒′′′ with the highest order nonlinear term of 𝑒2𝑒′ in (3.2), that is, 𝑒′′′ and 𝑒2𝑒′. Therefore, we have the following:𝑐𝑒′′′=1[]exp(3𝑝+𝑐)πœ‚+⋯𝑐2[],𝑒exp4π‘πœ‚+β‹―2𝑐𝑒′=3[(]exp𝑝+3𝑐)πœ‚+⋯𝑐4[],exp4π‘πœ‚+β‹―(3.3) where 𝑐𝑗 are coefficients only for simplicity; from (3.3), we obtain that 3𝑝+𝑐=𝑝+3𝑐,whichleads𝑝=𝑐.(3.4) To determine the values of 𝑑 and π‘ž, we balance the lowest order linear term of π‘’ξ…žβ€²β€² with the lowest order nonlinear term of 𝑒2𝑒′ in (3.2). We have𝑒′′′=β‹―+𝑑1[]expβˆ’(π‘‘βˆ’π‘ž)πœ‚β‹―+𝑑2[],𝑒expβˆ’4π‘žπœ‚2𝑒′=β‹―+𝑑3[]expβˆ’3(π‘‘βˆ’π‘ž)πœ‚β‹―+𝑑4[],expβˆ’4π‘žπœ‚(3.5) where 𝑑𝑗 are determined coefficients only for simplicity; from (3.5), we obtain βˆ’(π‘‘βˆ’π‘ž)=βˆ’3(π‘‘βˆ’π‘ž),whichleadsπ‘ž=𝑑.(3.6) Any real values can be considered for 𝑐 and 𝑑, since they are free parameters. But the final solutions of (3.1) do not depend upon the choice of 𝑐 and 𝑑.

Case 1. We set 𝑝=𝑐=1 and π‘ž=𝑑=1.
For this case, the trial solution (2.5) reduces to π‘Žπ‘’(πœ‚)=1π‘’πœ‚+π‘Ž0+π‘Žβˆ’1π‘’βˆ’πœ‚π‘1π‘’πœ‚+𝑏0+π‘βˆ’1π‘’βˆ’πœ‚.(3.7) Since, 𝑏1β‰ 0, (3.7) can be simplified π‘Žπ‘’(πœ‚)=1π‘’πœ‚+π‘Ž0+π‘Žβˆ’1π‘’βˆ’πœ‚π‘’πœ‚+𝑏0+π‘βˆ’1π‘’βˆ’πœ‚.(3.8) By substituting (3.8) into (3.2) and equating the coefficients of exp(Β±π‘›πœ‚),𝑛=0,1,2,3,…, with the aid of Maple 13, we obtain a set of algebraic equations in terms of π‘Žβˆ’1,π‘Ž0,π‘Ž1,π‘βˆ’1,𝑏0, and 𝑉1𝐴𝐢3𝑒3πœ‚+𝐢2𝑒2πœ‚+𝐢1π‘’πœ‚+𝐢0+πΆβˆ’1π‘’βˆ’πœ‚+πΆβˆ’2π‘’βˆ’2πœ‚+πΆβˆ’3π‘’βˆ’3πœ‚ξ€Έ=0.(3.9) And, setting each coefficient of exp(Β±π‘›πœ‚),𝑛=0,1,2,3,…, to zero, we obtain 𝐢3=0,𝐢2=0,𝐢1=0,𝐢0=0,πΆβˆ’1=0,πΆβˆ’2=0,πΆβˆ’3=0.(3.10) For determining unknowns, we solve the obtained system of algebraic (3.10) with the aid of Maple 13, and we obtain four different sets of solutions.Set 1. We obtain that π‘βˆ’1=π‘βˆ’1,π‘Žβˆ’1=βˆ“6π‘βˆ’1βˆšβˆ’2𝛼,π‘Ž0=0,π‘Ž16=Β±βˆšβˆ’2𝛼,𝑏0=0,𝑉=βˆ’6,(3.11) where π‘βˆ’1 is free parameter.Set 2. We obtain that π‘Ž0=π‘Ž0,𝑏0=𝑏0,π‘Žβˆ’11=βˆ“βˆš12ξ€·βˆ’2𝛼2π›Όπ‘Ž20+9𝑏20ξ€Έ,π‘Ž13=Β±βˆšβˆ’2𝛼,π‘βˆ’1=118π›Όπ‘Ž20+14𝑏203,𝑉=βˆ’2,(3.12) where π‘Ž0 and 𝑏0 are free parameters.Set 3. We obtain that π‘Ž1=π‘Ž1,𝑏0=𝑏0,π‘Žβˆ’1=𝑏20ξ€·2π›Όπ‘Ž21ξ€Έ+98π›Όπ‘Ž1,π‘Ž0=𝑏0ξ€·π›Όπ‘Ž21ξ€Έ+9π›Όπ‘Ž1,π‘βˆ’1=𝑏20ξ€·2π›Όπ‘Ž21ξ€Έ+98π›Όπ‘Ž21,𝑉=3+π›Όπ‘Ž21,(3.13) where π‘Ž1 and 𝑏0 are free parameters.Set 4. We obtain that π‘Ž0=π‘Ž0,π‘Žβˆ’1=0,π‘Ž1=0,π‘βˆ’1=172π›Όπ‘Ž20,𝑏0=0,𝑉=3,(3.14) where π‘Ž0 is free parameter.
Now, substituting (3.11) into (3.8), we obtain traveling wave solution 𝑒(πœ‚)=Β±6π‘’πœ‚βˆ“6π‘βˆ’1π‘’βˆ’πœ‚βˆšξ€·π‘’βˆ’2π›Όπœ‚+π‘βˆ’1π‘’βˆ’πœ‚ξ€Έ.(3.15) Equation (3.15) can be simplified as 𝑒(πœ‚)=Β±6βˆšξƒ¬βˆ’2𝛼1βˆ’2π‘βˆ’1(coshπœ‚βˆ’sinhπœ‚)ξ€·1+π‘βˆ’1ξ€Έξ€·coshπœ‚+1βˆ’π‘βˆ’1ξ€Έξƒ­sinhπœ‚,(3.16) where πœ‚=π‘₯+𝑦+𝑧+6𝑑.
If π‘βˆ’1=1 from (3.16), we obtain 𝑒(πœ‚)=Β±6π‘–βˆš2𝛼tanhπœ‚.(3.17) Substituting (3.12) into (3.8) and simplifying, we get traveling wave solution 𝑒(πœ‚)=Β±3βˆšβŽ‘βŽ’βŽ’βŽ£ξ‚€βˆ’2𝛼1+12Β±π‘Ž0βˆšβˆ’2𝛼+3𝑏0ξ‚ξ€·βˆ’22π›Όπ‘Ž20+9𝑏20ξ€Έ(coshπœ‚βˆ’sinhπœ‚)ξ€·36+2π›Όπ‘Ž20+9𝑏20ξ€Έξ€·coshπœ‚+36βˆ’2π›Όπ‘Ž20βˆ’9𝑏20ξ€Έsinhπœ‚+36𝑏0⎀βŽ₯βŽ₯⎦,(3.18) where πœ‚=π‘₯+𝑦+𝑧+(3/2)𝑑.
If 𝛼 is negative, that is, 𝛼=βˆ’π›½, 𝛽>0, 𝑏0=2 and π‘Ž0=0, then from (3.18), we obtain 𝑒(πœ‚)=Β±3βˆšπœ‚2𝛽tanh2.(3.19) Substituting (3.13) into (3.8) and simplifying, we obtain 𝑒(πœ‚)=π‘Ž11+72𝑏0ξ€½8π›Όπ‘Ž21+𝑏20ξ€·2π›Όπ‘Ž21ξ€½+9ξ€Έξ€Ύcoshπœ‚+8π›Όπ‘Ž21βˆ’π‘20ξ€·2π›Όπ‘Ž21+9ξ€Έξ€Ύsinhπœ‚+8π›Όπ‘Ž21𝑏0ξƒ­,(3.20) where πœ‚=π‘₯+𝑦+π‘§βˆ’(3+π›Όπ‘Ž21)𝑑.
If 𝑏0=1,𝛼=6, and π‘Ž1=1/2, (3.20) becomes 1𝑒(πœ‚)=2+31+2coshπœ‚.(3.21) Substituting (3.14) into (3.8) and simplifying, we obtain 𝑒(πœ‚)=72π‘Ž0ξ€·72+π›Όπ‘Ž20ξ€Έξ€·coshπœ‚+72βˆ’π›Όπ‘Ž20ξ€Έsinhπœ‚,(3.22) where πœ‚=π‘₯+𝑦+π‘§βˆ’3𝑑.
If π‘Ž0=3 and 𝛼=8, (3.22) becomes 3𝑒(πœ‚)=2secβ„Žπœ‚.(3.23)

Case 2. We set 𝑝=𝑐=2 and π‘ž=𝑑=1.
For this case, the trial solution (2.5) reduces to π‘Žπ‘’(πœ‚)=2𝑒2πœ‚+π‘Ž1π‘’πœ‚+π‘Ž0+π‘Žβˆ’1π‘’βˆ’πœ‚π‘2𝑒2πœ‚+𝑏1π‘’πœ‚+𝑏0+π‘βˆ’1π‘’βˆ’πœ‚.(3.24) Since, there are some free parameters in (3.24), for simplicity, we may consider that 𝑏2=1 and π‘βˆ’1=0. Then the solution (3.24) is simplified as π‘Žπ‘’(πœ‚)=2𝑒2πœ‚+π‘Ž1π‘’πœ‚+π‘Ž0+π‘Žβˆ’1π‘’βˆ’πœ‚π‘’2πœ‚+𝑏1π‘’πœ‚+𝑏0.(3.25) Performing the same procedure as described in Case 1, we obtain four sets of solutions.

Set 1. We obtain that𝑏0=𝑏0,π‘Žβˆ’1=0,π‘Ž0=βˆ“6𝑏0βˆšβˆ’2𝛼,π‘Ž1=0,π‘Ž26=Β±βˆšβˆ’2𝛼,𝑏1=0,𝑉=βˆ’6,(3.26) where 𝑏0 is free parameter.

Set 2. We obtain that π‘Ž1=π‘Ž1,𝑏1=𝑏1,π‘Žβˆ’1=0,π‘Ž01=βˆ“βˆš12ξ€·βˆ’2𝛼2π›Όπ‘Ž21+9𝑏21ξ€Έ,π‘Ž23=Β±βˆšβˆ’2𝛼,𝑏0=118π›Όπ‘Ž21+14𝑏21,𝑉=βˆ’32,(3.27) where π‘Ž1 and 𝑏1 are free parameters.

Set 3. We obtain that π‘Ž2=π‘Ž2,𝑏1=𝑏1,π‘Žβˆ’1=0,π‘Ž0=𝑏21ξ€·2π›Όπ‘Ž22ξ€Έ+98π›Όπ‘Ž2,π‘Ž1=𝑏1ξ€·π›Όπ‘Ž22ξ€Έ+9π›Όπ‘Ž2,𝑏0=𝑏21ξ€·2π›Όπ‘Ž22ξ€Έ+98π›Όπ‘Ž22,𝑉=π›Όπ‘Ž22+3,(3.28) where π‘Ž2 and 𝑏1 are free parameters.

Set 4. We obtain thatπ‘Ž1=π‘Ž1,π‘Žβˆ’1=0,π‘Ž0=0,π‘Ž2=0,𝑏0=π›Όπ‘Ž2172,𝑏1=0,𝑉=3,(3.29) where π‘Ž1 is a free parameter.
Using (3.26) into (3.25) and simplifying, we obtain that 𝑒(πœ‚)=Β±6βˆšξƒ¬βˆ’2𝛼1βˆ’2𝑏0(coshπœ‚βˆ’sinhπœ‚)ξ€·1+𝑏0ξ€Έξ€·coshπœ‚+1βˆ’π‘0ξ€Έξƒ­sinhπœ‚.(3.30) If 𝑏0=1, from (3.30), we obtain that 𝑒(πœ‚)=Β±6π‘–βˆš2𝛼tanhπœ‚,(3.31) where πœ‚=π‘₯+𝑦+𝑧+6𝑑.
Substituting (3.27) into (3.25) and simplifying, we obtain that 𝑒(πœ‚)=Β±3βˆšβŽ‘βŽ’βŽ’βŽ£ξ‚€βˆ’2𝛼1+12Β±π‘Ž1βˆšβˆ’2𝛼+3𝑏1ξ‚ξ€·βˆ’22π›Όπ‘Ž21+9𝑏21ξ€Έ(coshπœ‚βˆ’sinhπœ‚)ξ€·36+2π›Όπ‘Ž21+9𝑏21ξ€Έξ€·coshπœ‚+36βˆ’2π›Όπ‘Ž21βˆ’9𝑏21ξ€Έsinhπœ‚+36𝑏1⎀βŽ₯βŽ₯⎦.(3.32) If 𝛼 is negative, that is, 𝛼=βˆ’π›½, 𝛽>0, 𝑏1=2 and π‘Ž1=0, (3.32) can be simplified as 𝑒(πœ‚)=Β±3βˆšπœ‚2𝛽tanh2,(3.33) where πœ‚=π‘₯+𝑦+𝑧+(3/2)𝑑.
Substituting (3.28) into (3.25) and simplifying, we obtain that 𝑒(πœ‚)=π‘Ž21+72𝑏1ξ€½8π›Όπ‘Ž22+𝑏21ξ€·2π›Όπ‘Ž22ξ€½+9ξ€Έξ€Ύcoshπœ‚+8π›Όπ‘Ž22βˆ’π‘21ξ€·2π›Όπ‘Ž22+9ξ€Έξ€Ύsinhπœ‚+8π›Όπ‘Ž22𝑏1ξƒ­.(3.34) If 𝑏1=1,𝛼=6, and π‘Ž2=1/2, (3.34) becomes 1𝑒(πœ‚)=2+31+2coshπœ‚,(3.35) where πœ‚=π‘₯+𝑦+π‘§βˆ’(3+π›Όπ‘Ž22)𝑑.
Using (3.29) into (3.25) and simplifying, we obtain that 𝑒(πœ‚)=72π‘Ž1ξ€·72+π›Όπ‘Ž21ξ€Έξ€·coshπœ‚+72βˆ’π›Όπ‘Ž21ξ€Έsinhπœ‚.(3.36) If π‘Ž1=3, and 𝛼=8, (3.36) becomes 3𝑒(πœ‚)=2secβ„Žπœ‚,(3.37) where πœ‚=π‘₯+𝑦+π‘§βˆ’3𝑑.

Case 3. We set 𝑝=𝑐=2 and π‘ž=𝑑=2.
For this case, the trial solution (2.5) reduces to π‘Žπ‘’(πœ‚)=2𝑒2πœ‚+π‘Ž1π‘’πœ‚+π‘Ž0+π‘Žβˆ’1π‘’βˆ’πœ‚+π‘Žβˆ’2π‘’βˆ’2πœ‚π‘2𝑒2πœ‚+𝑏1π‘’πœ‚+𝑏0+π‘βˆ’1π‘’βˆ’πœ‚+π‘βˆ’2π‘’βˆ’2πœ‚.(3.38) Since, there are some free parameters in (3.38), we may consider 𝑏2=1,π‘Žβˆ’2=0,π‘βˆ’2=0, and π‘βˆ’1=0 so that the (3.38) reduces to the (3.25). This indicates that the Case 3 is equivalent to the Case 2. Equation (3.38) can be rewritten as π‘Žπ‘’(πœ‚)=2π‘’πœ‚+π‘Ž1+π‘Ž0π‘’βˆ’πœ‚+π‘Žβˆ’1π‘’βˆ’2πœ‚+π‘Žβˆ’2π‘’βˆ’3πœ‚π‘2π‘’πœ‚+𝑏1+𝑏0π‘’βˆ’πœ‚+π‘βˆ’1π‘’βˆ’2πœ‚+π‘βˆ’2π‘’βˆ’3πœ‚.(3.39)
If we put π‘Žβˆ’2=0,π‘Žβˆ’1=0,𝑏2=1,π‘βˆ’2=0, and π‘βˆ’1=0 into (3.39), we obtain the solution form as (3.8). This implies that the Case 3 is equivalent to the Case 1.
Also, if we consider 𝑝=𝑐=3 and π‘ž=𝑑=3, it can be shown that this Case is also equivalent to the Cases 1 and 2.
Therefore, we think that no need to find the solutions again.

It is noted that the solution (3.17) and (3.31) are identical, solution (3.19) and (3.33) are identical, solution (3.21) and (3.35) are identical, and solution (3.23) and (3.37) are identical.

Beyond Table 1, Zayed [52] obtained another solution (3.39). But, we obtain two more new solutions (3.21) and (3.23).

Graphical Representations of the Solutions
The above solutions are shown with the aid of Maple 13 in the graphs.

4. Conclusions

Using the Exp-function method, with the aid of symbolic computation software Maple 13, new exact traveling wave solutions of the (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsev equation are constructed. It is important that some of the obtained solutions are identical to the solutions available in the literature and some are new. These solutions can be used to describe the insight of the complex physical phenomena.

Acknowledgment

This paper is supported by USM short-term Grant no. 304/PMATHS/6310072, and the authors would like to express their thanks to the School of Mathematical Sciences, USM for providing related research facilities. The authors are also grateful to the referee(s) for their valuable comments and suggestions.