Abstract

This paper studies a discrete-time stochastic LQ problem over an infinite time horizon with state-and control-dependent noises, whereas the weighting matrices in the cost function are allowed to be indefinite. We mainly use semidefinite programming (SDP) and its duality to treat corresponding problems. Several relations among stability, SDP complementary duality, the existence of the solution to stochastic algebraic Riccati equation (SARE), and the optimality of LQ problem are established. We can test mean square stabilizability and solve SARE via SDP by LMIs method.

1. Introduction

Stochastic linear quadratic (LQ) control problem was first studied by Wonham [1] and has become a popular research field of modern control theory, which has been extensively studied by many researchers; see, for example, [2โ€“12]. We should point out that, in the most early literature about stochastic LQ issue, it is always assumed that the control weighting matrix ๐‘… is positive definite and the state weight matrix ๐‘„ is positive semi-definite. A breakthrough belongs to [9], where a surprising fact was found that for a stochastic LQ modeled by a stochastic Itรด-type differential system, even if the cost-weighting matrices ๐‘„ and ๐‘… are indefinite, the original LQ optimization may still be well-posed. This finding reveals the essential difference between deterministic and stochastic systems. After that, follow-up research was carried out and a lot of important results were obtained. In [10โ€“12], continuous-time stochastic LQ control problem with indefinite weighting matrices was studied. The authors in [10] provided necessary and sufficient conditions for the solvability of corresponding generalized differential Riccati equation (GDRE). The authors introduced LMIs whose feasibility is shown to be equivalent to the solvability of SARE and developed a computational approach to the SARE by SDP in [11]. Furthermore, stochastic indefinite LQ problems with jumps in infinite time horizon and finite time horizon were, respectively, studied in [13, 14]. Discrete-time case was also studied in [15โ€“17]. Among these, a central issue is solving corresponding SARE. A traditional method is to consider the so-called associated Hamiltonian matrix. However, this method does not work on when ๐‘… is indefinite.

In this paper, we use SDP approach introduced in [11, 18] to discuss discrete-time indefinite stochastic LQ control problem over an infinite time horizon. Several equivalent relations between the stabilization/optimality of the LQ problem and the duality of SDP are established. We show that the stabilization is equivalent to the feasibility of the dual SDP. Furthermore, we prove that the maximal solution to SARE associated with the LQ problem can be obtained by solving the corresponding SDP. What we have obtained extend the results of [11] from continuous-time case to discrete-time case and the results of [15] from finite time horizon to infinite time horizon.

The organization of this paper is as follows. In Section 2, we formulate the discrete-time indefinite stochastic LQ problem in an infinite time horizon and present some preliminaries including some definitions, lemmas, and SDP. Section 3 is devoted to the relations between stabilization and dual SDP. In Section 4, we develop a computational approach to the SARE via SDP and characterize the optimal LQ control by the maximal solution to the SARE. Some numerical examples are presented in Section 5.

Notations 1. โ„›๐‘›: ๐‘›-dimensional Euclidean space. โ„›๐‘›ร—๐‘š: the set of all ๐‘›ร—๐‘š matrices. ๐’ฎ๐‘›: the set of all ๐‘›ร—๐‘› symmetric matrices. ๐ด๎…ž: the transpose of matrix ๐ด. ๐ดโ‰ฅ0(๐ด>0): ๐ด is positive semidefinite (positive definite). ๐ผ: the identity matrix. ๐œŽ(๐ฟ): the spectrum set of the operator ๐ฟ. โ„›: the set of all real numbers. ๐’ž: the set of all complex numbers. ๐’žโˆ’: the open left-hand side complex plane. Tr(๐‘€): the trace of a square matrix ๐‘€. ๐’œadj: the adjoint mapping of ๐’œ.

2. Preliminaries

2.1. Problem Statement

Consider the following discrete-time stochastic system:[]๐‘ฅ๐‘ฅ(๐‘ก+1)=๐ด๐‘ฅ(๐‘ก)+๐ต๐‘ข(๐‘ก)+๐ถ๐‘ฅ(๐‘ก)+๐ท๐‘ข(๐‘ก)๐‘ค(๐‘ก),(0)=๐‘ฅ0,๐‘ก=0,1,2,โ€ฆ,(2.1) where ๐‘ฅ(๐‘ก)โˆˆโ„›๐‘›, ๐‘ข(๐‘ก)โˆˆโ„›๐‘š are the system state and control input, respectively. ๐‘ฅ0โˆˆโ„›๐‘› is the initial state, and ๐‘ค(๐‘ก)โˆˆโ„› is the noise. ๐ด,๐ถโˆˆโ„›๐‘›ร—๐‘› and ๐ต,๐ทโˆˆโ„›๐‘›ร—๐‘š are constant matrices. {๐‘ค(๐‘ก),๐‘ก=0,1,2,โ€ฆ} is a sequence of real random variables defined on a filtered probability space (ฮฉ,โ„ฑ,โ„ฑ๐‘ก,๐‘ƒ) with โ„ฑ๐‘ก=๐œŽ{๐‘ค(๐‘ )โˆถ๐‘ =0,1,2,โ€ฆ,๐‘ก}, which is a wide sense stationary, second-order process with ๐ธ[๐‘ค(๐‘ก)]=0 and ๐ธ[๐‘ค(๐‘ )๐‘ค(๐‘ก)]=๐›ฟ๐‘ ๐‘ก, where ๐›ฟ๐‘ ๐‘ก is the Kronecker function. ๐‘ข(๐‘ก) belongs to โ„’2โ„ฑ(โ„›๐‘š), the space of all โ„›๐‘š-valued, โ„ฑ๐‘ก-adapted measurable processes satisfying๐ธ๎ƒฉโˆž๎“๐‘ก=0โ€–๐‘ข(๐‘ก)โ€–2๎ƒช<โˆž.(2.2) We assume that the initial state ๐‘ฅ0 is independent of the noise ๐‘ค(๐‘ก).

We first give the following definitions.

Definition 2.1 (see [17]). The following system ๐‘ฅ๐‘ฅ(๐‘ก+1)=๐ด๐‘ฅ(๐‘ก)+๐ถ๐‘ฅ(๐‘ก)๐‘ค(๐‘ก),(0)=๐‘ฅ0,๐‘ก=0,1,2,โ€ฆ,(2.3) is called asymptotically mean square stable if, for any initial state ๐‘ฅ0, the corresponding state satisfies lim๐‘กโ†’โˆž๐ธโ€–๐‘ฅ(๐‘ก)โ€–2=0.

Definition 2.2 (see [17]). System (2.1) is called stabilizable in the mean square sense if there exists a feedback control ๐‘ข(๐‘ก)=๐พ๐‘ฅ(๐‘ก) such that, for any initial state ๐‘ฅ0, the closed-loop system ๐‘ฅ๐‘ฅ(๐‘ก+1)=(๐ด+๐ต๐พ)๐‘ฅ(๐‘ก)+(๐ถ+๐ท๐พ)๐‘ฅ(๐‘ก)๐‘ค(๐‘ก),(0)=๐‘ฅ0,๐‘ก=0,1,2,โ€ฆ,(2.4) is asymptotically mean square stable; that is, the corresponding state ๐‘ฅ(โ‹…) of (2.4) satisfies lim๐‘กโ†’โˆž๐ธโ€–๐‘ฅ(๐‘ก)โ€–2=0, where ๐พโˆˆโ„›๐‘šร—๐‘› is a constant matrix.
For system (2.1), we define the admissible control set ๐‘ˆ๐‘Ž๐‘‘=๎‚ป๐‘ข(๐‘ก)โˆˆโ„’2โ„ฑ๎€ทโ„›๐‘š๎€ธ,๐‘ข(๐‘ก)ismeansquarestabilizingcontrol.(2.5) The cost function associated with system (2.1) is ๐ฝ๎€ท๐‘ฅ0๎€ธ=,๐‘ขโˆž๎“๐‘ก=0๐ธ๎‚ƒ๐‘ฅโ€ฒ(๐‘ก)๐‘„๐‘ฅ(๐‘ก)+๐‘ข๎…ž(๎‚„,๐‘ก)๐‘…๐‘ข(๐‘ก)(2.6) where ๐‘„ and ๐‘… are symmetric matrices with appropriate dimensions and may be indefinite. The LQ optimal control problem is to minimize the cost functional ๐ฝ(๐‘ฅ0,๐‘ข) over ๐‘ขโˆˆ๐‘ˆ๐‘Ž๐‘‘. We define the optimal value function as ๐‘‰๎€ท๐‘ฅ0๎€ธ=inf๐‘ขโˆˆ๐‘ˆ๐‘Ž๐‘‘๐ฝ๎€ท๐‘ฅ0๎€ธ.,๐‘ข(2.7) Since the weighting matrices ๐‘„ and ๐‘… may be indefinite, the LQ problem is called an indefinite LQ control problem.

Definition 2.3. The LQ problem is called well-posed if ๎€ท๐‘ฅโˆ’โˆž<๐‘‰0๎€ธ<โˆž,โˆ€๐‘ฅ0โˆˆโ„›๐‘›.(2.8) If there exists an admissible control ๐‘ขโˆ— such that ๐‘‰(๐‘ฅ0)=๐ฝ(๐‘ฅ0,๐‘ขโˆ—), the LQ problem is called attainable and ๐‘ขโˆ— is called an optimal control.
Stochastic algebraic Riccati equation (SARE) is a primary tool in solving LQ control problems. Associated with the above LQ problem, there is a discrete SARE: โ„›(๐‘ƒ)โ‰กโˆ’๐‘ƒ+๐ด๎…ž๐‘ƒ๐ด+๐ถ๎…ž๎€ท๐ด๐‘ƒ๐ถ+๐‘„โˆ’๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐‘ƒ๐ท๎€ธ๎€ท๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๎€ธ๐‘ƒ๐ทโˆ’1๎€ท๐ต๎…ž๐‘ƒ๐ด+๐ท๎…ž๎€ธ๐‘ƒ๐ถ=0,๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ท>0.(2.9)

Definition 2.4. A symmetric matrix ๐‘ƒmax is called a maximal solution to (2.9) if ๐‘ƒmax is a solution to (2.9) and ๐‘ƒmaxโ‰ฅ๐‘ƒ for any symmetric solution ๐‘ƒ to (2.9).
Throughout this paper, we assume that system (2.1) is mean square stabilizable.

2.2. Some Definitions and Lemmas

The following definitions and lemmas will be used frequently in this paper.

Definition 2.5. For any matrix ๐‘€, there exists a unique matrix ๐‘€+, called the Moore-Penrose inverse, satisfying ๐‘€๐‘€+๐‘€=๐‘€,๐‘€+๐‘€๐‘€+=๐‘€+,๎€ท๐‘€๐‘€+๎€ธ๎…ž=๐‘€๐‘€+,๎€ท๐‘€+๐‘€๎€ธ๎…ž=๐‘€+๐‘€.(2.10)

Definition 2.6. Suppose that ๐’ฑ is a finite-dimensional vector space and ๐’ฎ is a space of block diagonal symmetric matrices with given dimensions. ๐’œ: ๐’ฑโ†’๐’ฎ is a linear mapping and ๐ด0โˆˆ๐’ฎ. Then the inequality ๐’œ(๐‘ฅ)+๐ด0โ‰ฅ(>)0(2.11) is called a linear matrix inequality (LMI). An LMI is called feasible if there exists at least one ๐‘ฅโˆˆ๐’ฑ satisfying the above inequality and ๐‘ฅ is called a feasible point.

Lemma 2.7 (Schurโ€™s lemma). Let matrices ๐‘€=๐‘€๎…ž, ๐‘ and ๐‘…=๐‘…๎…ž>0 be given with appropriate dimensions. Then the following conditions are equivalent:(1)๐‘€โˆ’๐‘๐‘…โˆ’1๐‘๎…žโ‰ฅ(>)0,(2)๎€บ๐‘๐‘€๐‘โ€ฒ๐‘…๎€ปโ‰ฅ(>)0,(3)๎€บ๐‘…๐‘โ€ฒ๐‘๐‘€๎€ปโ‰ฅ(>)0.

Lemma 2.8 (extended Schurโ€™s lemma). Let matrices ๐‘€=๐‘€๎…ž, ๐‘ and ๐‘…=๐‘…๎…ž be given with appropriate dimensions. Then the following conditions are equivalent:(1)๐‘€โˆ’๐‘๐‘…+๐‘๎…žโ‰ฅ0, ๐‘…โ‰ฅ0, and ๐‘(๐ผโˆ’๐‘…๐‘…+)=0,(2)๎€บ๐‘๐‘€๐‘โ€ฒ๐‘…๎€ปโ‰ฅ0,(3)๎€บ๐‘…๐‘โ€ฒ๐‘๐‘€๎€ปโ‰ฅ0.

Lemma 2.9 (see [11]). For a symmetric matrix ๐‘†, one has(1)๐‘†+=(๐‘†+)๎…ž,(2)๐‘†โ‰ฅ0 if and only if ๐‘†+โ‰ฅ0,(3)๐‘†๐‘†+=๐‘†+๐‘†.

2.3. Semidefinite Programming

Definition 2.10 (see [19]). Suppose that ๐’ฑ is a finite-dimensional vector space with an inner product โŸจโ‹…,โ‹…โŸฉ๐’ฑ and ๐’ฎ is a space of block diagonal symmetric matrices with an inner product โŸจโ‹…,โ‹…โŸฉ๐’ฎ. The following optimization problem minโŸจ๐‘,๐‘ฅโŸฉ๐’ฑsubjectto๐ด(๐‘ฅ)=๐’œ(๐‘ฅ)+๐ด0โ‰ฅ0(2.12) is called a semidefinite programming (SDP). From convex duality, the dual problem associated with the SDP is defined as maxโˆ’โŸจ๐ด0,๐‘โŸฉ๐’ฎsubjectto๐’œadj=๐‘,๐‘โ‰ฅ0.(2.13) In the context of duality, we refer to the SDP (2.12) as the primal problem associated with (2.13).

Remark 2.11. Definition 2.10 is more general than Definitionโ€‰โ€‰6 in [11].
Let ๐‘โˆ— denote the optimal value of SDP (2.12); that is, ๐‘โˆ—๎€ฝ=infโŸจ๐‘,๐‘ฅโŸฉ๐’ฑ๎€พโˆฃ๐ด(๐‘ฅ)โ‰ฅ0,(2.14) and let ๐‘‘โˆ— denote the optimal value of the dual SDP (2.13); that is, ๐‘‘โˆ—๎€ฝ=supโˆ’โŸจ๐ด0,๐‘โŸฉ๐’ฎโˆฃ๐‘โ‰ฅ0,๐’œadj๎€พ.=๐‘(2.15) Let ๐—opt and ๐™opt denote the primal and dual optimal sets; that is, ๐—opt=๎€ฝ๐‘ฅโˆฃ๐ด(๐‘ฅ)โ‰ฅ0,โŸจ๐‘,๐‘ฅโŸฉ๐’ฑ=๐‘โˆ—๎€พ,๐™opt=๎€ฝ๐‘โˆฃ๐‘โ‰ฅ0,๐’œadj=๐‘,โˆ’โŸจ๐ด0,๐‘โŸฉ๐’ฎ=๐‘‘โˆ—๎€พ.(2.16) About SDP, we have the following proposition (see [20, Theorem 3.1]).

Proposition 2.12. ๐‘โˆ—=๐‘‘โˆ— if either of the following conditions holds.(1)The primal problem (2.12) is strictly feasible; that is, there is an ๐‘ฅ with ๐ด(๐‘ฅ)>0.(2)The dual problem (2.13) is strictly feasible; that is, there is a ๐‘ with ๐‘>0 and ๐’œadj=๐‘.

If both conditions hold, the optimal sets ๐—opt and ๐™opt are nonempty. In this case, a feasible point ๐‘ฅ is optimal if and only if there is a feasible point ๐‘ satisfying the complementary slackness condition:๐ด(๐‘ฅ)๐‘=0.(2.17)

3. Mean Square Stabilization

The stabilization assumption of system (2.1) is basic for the study on the stochastic LQ problem for infinite horizon case. So, we will cite some equivalent conditions in verifying the stabilizability.

Lemma 3.1 (see [16, 21]). System (2.1) is mean square stabilizable if and only if one of the following conditions holds.(1)There are a matrix ๐พ and a symmetric matrix ๐‘ƒ>0 such that โˆ’๐‘ƒ+(๐ด+๐ต๐พ)๐‘ƒ(๐ด+๐ต๐พ)โ€ฒ+(๐ถ+๐ท๐พ)๐‘ƒ(๐ถ+๐ท๐พ)๎…ž<0.(3.1) Moreover, the stabilizing feedback control is given by ๐‘ข(๐‘ก)=๐พ๐‘ฅ(๐‘ก).(2)There are a matrix ๐พ and a symmetric matrix ๐‘ƒ>0 such that โˆ’๐‘ƒ+(๐ด+๐ต๐พ)๎…ž๐‘ƒ(๐ด+๐ต๐พ)+(๐ถ+๐ท๐พ)๎…ž๐‘ƒ(๐ถ+๐ท๐พ)<0.(3.2) Moreover, the stabilizing feedback control is given by ๐‘ข(๐‘ก)=๐พ๐‘ฅ(๐‘ก).(3)For any matrix ๐‘Œ>0, there is a matrix ๐พ such that the following matrix equation โˆ’๐‘ƒ+(๐ด+๐ต๐พ)๎…ž๐‘ƒ(๐ด+๐ต๐พ)+(๐ถ+๐ท๐พ)๎…ž๐‘ƒ(๐ถ+๐ท๐พ)+๐‘Œ=0(3.3) has a unique positive definite solution ๐‘ƒ>0. Moreover, the stabilizing feedback control is given by ๐‘ข(๐‘ก)=๐พ๐‘ฅ(๐‘ก).(4)For any matrix ๐‘Œ>0, there is a matrix ๐พ such that the following matrix equation โˆ’๐‘ƒ+(๐ด+๐ต๐พ)๐‘ƒ(๐ด+๐ต๐พ)๎…ž+(๐ถ+๐ท๐พ)๐‘ƒ(๐ถ+๐ท๐พ)๎…ž+๐‘Œ=0(3.4) has a unique positive definite solution ๐‘ƒ>0. Moreover, the stabilizing feedback control is given by ๐‘ข(๐‘ก)=๐พx(๐‘ก).(5)There exist matrices ๐‘ƒ>0 and ๐‘ˆ such that the following LMI โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘ƒ๐ด๐‘ƒ+๐ต๐‘ˆ๐ถ๐‘ƒ+๐ท๐‘ˆ๐‘ƒ๐ดโ€ฒ+๐‘ˆ๎…ž๐ต๎…žโˆ’๐‘ƒ0๐‘ƒ๐ถ๎…ž+๐‘ˆ๎…ž๐ท๎…žโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ0โˆ’๐‘ƒ<0(3.5) holds. Moreover, the stabilizing feedback control is given by ๐‘ข(๐‘ก)=๐‘ˆ๐‘ƒโˆ’1๐‘ฅ(๐‘ก).

Below, we will construct the relation between the stabilization and the dual SDP. First, we assume that the interior of the set ๐’ซ={๐‘ƒโˆˆ๐’ฎ๐‘›|โ„›(๐‘ƒ)โ‰ฅ0,๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ท>0} is nonempty; that is, there is a ๐‘ƒ0โˆˆ๐’ฎ๐‘› such that โ„›(๐‘ƒ0)>0 and ๐‘…+๐ต๎…ž๐‘ƒ0๐ต+๐ท๎…ž๐‘ƒ0๐ท>0.

Consider the following SDP problem:โŽกโŽขโŽขโŽขโŽขโŽฃmaxTr(๐‘ƒ)subjectto๐ด(๐‘ƒ)=โˆ’๐‘ƒ+๐ดโ€ฒ๐‘ƒ๐ด+๐ถ๎…ž๐‘ƒ๐ถ+๐‘„๐ด๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐ต๐‘ƒ๐ท0๎…ž๐‘ƒ๐ด+๐ท๎…ž๐‘ƒ๐ถ๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ท000๐‘ƒโˆ’๐‘ƒ0โŽคโŽฅโŽฅโŽฅโŽฅโŽฆโ‰ฅ0.(3.6)

By the definition of SDP, we can get the dual problem of (3.6).

Theorem 3.2. The dual problem of (3.6) can be formulated as ๎€ท๐‘ƒmaxโˆ’Tr(๐‘„๐‘†+๐‘…๐‘‡)+Tr0๐‘Š๎€ธโŽงโŽชโŽชโŽจโŽชโŽชโŽฉsubjecttoโˆ’๐‘†+๐ด๐‘†๐ดโ€ฒ+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘‡๐ต๎…ž+๐ท๐‘‡๐ท๎…ž๎‚ธ+๐‘Š+๐ผ=0,๐‘†๐‘ˆ๎…ž๎‚น๐‘ˆ๐‘‡โ‰ฅ0,๐‘Šโ‰ฅ0.(3.7)

Proof. The objective of the primal problem can be rewritten as maximizing โŸจ๐ผ,๐‘ƒโŸฉ๐’ฎ๐‘›. Define the dual variable ๐‘โˆˆ๐’ฎ2๐‘›+๐‘š as โŽกโŽขโŽขโŽขโŽขโŽฃ๐‘=๐‘†๐‘ˆ๎…ž๐‘ˆ๐‘‡๐‘Œ๎…ž๐‘Œ๐‘ŠโŽคโŽฅโŽฅโŽฅโŽฅโŽฆโ‰ฅ0,(3.8) where (๐‘†,๐‘‡,๐‘Š,๐‘ˆ,๐‘Œ)โˆˆ๐’ฎ๐‘›ร—๐’ฎ๐‘šร—๐’ฎ๐‘›ร—โ„›๐‘šร—๐‘›ร—โ„›๐‘›ร—(๐‘›+๐‘š). The LMI constraint in the primal problem can be represented as ๐ด(๐‘ƒ)=๐’œ(๐‘ƒ)+๐ด0=โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘ƒ+๐ด๎…ž๐‘ƒ๐ด+๐ถ๎…ž๐‘ƒ๐ถ๐ด๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐ต๐‘ƒ๐ท0๎…ž๐‘ƒ๐ด+๐ท๎…ž๐‘ƒ๐ถ๐ต๎…ž๐‘ƒ๐ต+๐ท๎…žโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ+โŽกโŽขโŽขโŽขโŽขโŽฃ๐‘ƒ๐ท000๐‘ƒ๐‘„000๐‘…000โˆ’๐‘ƒ0โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ,(3.9) that is, โŽกโŽขโŽขโŽขโŽขโŽฃ๐’œ(๐‘ƒ)=โˆ’๐‘ƒ+๐ด๎…ž๐‘ƒ๐ด+๐ถ๎…ž๐‘ƒ๐ถ๐ด๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐ต๐‘ƒ๐ท0๎…ž๐‘ƒ๐ด+๐ท๎…ž๐‘ƒ๐ถ๐ต๎…ž๐‘ƒ๐ต+๐ท๎…žโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ๐‘ƒ๐ท000๐‘ƒ,๐ด0=โŽกโŽขโŽขโŽขโŽขโŽฃ๐‘„000๐‘…000โˆ’๐‘ƒ0โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ.(3.10) According to the definition of adjoint mapping, we have โŸจ๐’œ(๐‘ƒ),๐‘โŸฉ๐’ฎ2๐‘›+๐‘š=โŸจ๐‘ƒ,๐’œadj(๐‘)โŸฉ๐’ฎ๐‘›, that is, Tr[๐’œ(๐‘ƒ)๐‘]=Tr[๐‘ƒ๐’œadj(๐‘)]. It follows ๐’œadj(๐‘)=โˆ’๐‘†+๐ด๐‘†๐ดโ€ฒ+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘‡๐ต๎…ž+๐ท๐‘‡๐ท๎…ž+๐‘Š. By Definition 2.10, the objective of the dual problem is to maximize โˆ’โŸจ๐ด0,๐‘โŸฉ๐’ฎ2๐‘›+๐‘š=โˆ’Tr(๐ด0๐‘)=โˆ’Tr(๐‘„๐‘†+๐‘…๐‘‡)+Tr(๐‘ƒ0๐‘Š). On the other hand, we will state that the constraints of the dual problem (2.13) are equivalent to the constraints of (3.7). Obviously, ๐’œadj(๐‘)=โˆ’๐ผ is equivalent to the equality constraint of (3.7). Furthermore, notice that the matrix variable ๐‘Œ does not work on in the above formulation and therefore can be treated as zero matrix. So, the condition ๐‘โ‰ฅ0 is equivalent to โŽกโŽขโŽขโŽฃ๐‘†๐‘ˆโ€ฒโŽคโŽฅโŽฅโŽฆ๐‘ˆ๐‘‡โ‰ฅ0,๐‘Šโ‰ฅ0.(3.11) This ends the proof.

Remark 3.3. This proof is simpler than the proof in [11] because we use a more general dual definition.

The following theorem reveals that the stabilizability of discrete stochastic system can be also regarded as a dual concept of optimality. This result is a discrete edition of Theoremโ€‰โ€‰6 in [11].

Theorem 3.4. The system (2.1) is mean square stabilizable if and only if the dual problem (3.7) is strictly feasible.

Proof. First, we prove the necessary condition. Assume that system (2.1) is mean square stabilizable by the feedback ๐‘ข(๐‘ก)=๐พ๐‘ฅ(๐‘ก). By Lemma 3.1, there is a unique ๐‘†>0 satisfying โˆ’๐‘†+(๐ด+๐ต๐พ)๐‘†(๐ด+๐ต๐พ)๎…ž+(๐ถ+๐ท๐พ)๐‘†(๐ถ+๐ท๐พ)๎…ž+๐‘Œ+๐ผ=0,(3.12) where ๐‘Œ>0 is a fixed matrix. Set ๐‘ˆ=๐พ๐‘†, then ๐‘ˆ๎…ž=๐‘†๐พ๎…ž. The above equality can be written as โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ต๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ท๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ท๎…ž+๐‘Œ+๐ผ=0.(3.13) Let ๐œ€>0, ๐‘‡=๐œ€๐ผ+๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž and ๐‘Š=โˆ’๐œ€๐ต๐ต๎…žโˆ’๐œ€๐ท๐ท๎…ž+๐‘Œ. Obviously, ๐‘‡ and ๐‘Š satisfy โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ต๐‘‡๐ต๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ท๐‘‡๐ท๎…ž+๐‘Š+๐ผ=0.(3.14) We have ๐‘Š>0 for sufficiently small ๐œ€>0. By Lemma 2.7, ๐‘‡>๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž is equivalent to ๎€บ๐‘†๐‘ˆโ€ฒ๐‘ˆ๐‘‡๎€ป>0. We conclude that the dual problem (3.7) is strictly feasible.
Next, we prove the sufficient condition. Assume that the dual problem is strictly feasible; that is, โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘‡๐ต๎…ž+๐ท๐‘‡๐ท๎…ž+๐‘Š+๐ผ=0, ๎€บ๐‘†๐‘ˆโ€ฒ๐‘ˆ๐‘‡๎€ป>0, ๐‘Š>0. It implies that there are ๐‘†>0, ๐‘‡ and ๐‘ˆ such that โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ต๐‘‡๐ต๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ท๐‘‡๐ท๎…ž<0,๐‘‡>๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž.(3.15) It follows that โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ต๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ท๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ท๎…ž<0.(3.16) Let ๐พ=๐‘ˆ๐‘†โˆ’1. The above inequality is equivalent to โˆ’๐‘†+(๐ด+๐ต๐พ)๐‘†(๐ด+๐ต๐พ)๎…ž+(๐ถ+๐ท๐พ)๐‘†(๐ถ+๐ท๐พ)๎…ž<0.(3.17) By Lemma 3.1, system (2.1) is mean square stabilizable.

4. Solutions to SARE and SDP

The following theorem will state the existence of the solution of the SARE (2.9) via SDP (3.6).

Theorem 4.1. The optimal set of (3.6) is nonempty, and any optimal solution ๐‘ƒโˆ— must satisfy the SARE (2.9).

Proof. Since system (2.1) is mean square stabilizable, by Theorem 3.4, (3.7) is strictly feasible. Equation (3.6) is strictly feasible because ๐‘ƒ0 is a interior point of ๐’ซ. By Proposition 2.12, (3.6) is nonempty and ๐‘ƒโˆ— satisfies ๐ด(๐‘ƒโˆ—)๐‘=0; that is, โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘ƒโˆ—+๐ด๎…ž๐‘ƒโˆ—๐ด+๐ถ๎…ž๐‘ƒโˆ—๐ถ+๐‘„๐ด๎…ž๐‘ƒโˆ—๐ต+๐ถ๎…ž๐‘ƒโˆ—๐ท๐ต๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๐ท+๐‘…00๐‘ƒโˆ—โˆ’๐‘ƒ0โŽคโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽขโŽฃ๐‘†๐‘ˆ๎…ž๐‘ˆ๐‘‡00๐‘ŠโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ=0.(4.1) From the above equality, we have the following equalities: ๎€ทโˆ’๐‘ƒโˆ—+๐ด๎…ž๐‘ƒโˆ—๐ด+๐ถ๎…ž๐‘ƒโˆ—๎€ธ๎€ท๐ด๐ถ+๐‘„๐‘†+๎…ž๐‘ƒโˆ—๐ต+๐ถ๎…ž๐‘ƒโˆ—๐ท๎€ธ๎€ท๐‘ˆ=0,(4.2)โˆ’๐‘ƒโˆ—+๐ด๎…ž๐‘ƒโˆ—๐ด+๐ถ๎…ž๐‘ƒโˆ—๎€ธ๐‘ˆ๐ถ+๐‘„๎…ž+๎€ท๐ด๎…ž๐‘ƒโˆ—๐ต+๐ถ๎…ž๐‘ƒโˆ—๐ท๎€ธ๎€ท๐ต๐‘‡=0,(4.3)๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ๎€ธ๎€ท๐ต๐‘†+๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๎€ธ๎€ท๐ต๐ท+๐‘…๐‘ˆ=0,(4.4)๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ๎€ธ๐‘ˆ๎…ž+๎€ท๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๎€ธ๎€ท๐‘ƒ๐ท+๐‘…๐‘‡=0,(4.5)โˆ—โˆ’๐‘ƒ0๎€ธ๐‘Š=0.(4.6) Moreover, ๐‘…+๐ท๎…ž๐‘ƒโˆ—๐ท+๐ต๎…ž๐‘ƒโˆ—๐ต>0 because of ๐‘…+๐ท๎…ž๐‘ƒ0๐ท+๐ต๎…ž๐‘ƒ0๐ต>0 and ๐‘ƒโˆ—โ‰ฅ๐‘ƒ0. Then by (4.4), ๐‘ˆ=โˆ’(๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๐ท+๐‘…)โˆ’1(๐ต๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ)๐‘†. Substituting it into (4.2) yields โ„›(๐‘ƒโˆ—)๐‘†=0. Remember that ๐‘†, ๐‘‡, ๐‘ˆ, ๐‘Š satisfy the equality constraint in (3.7). Multiplying both sides by โ„›(๐‘ƒโˆ—), we have โ„›๎€ท๐‘ƒโˆ—๎€ธ๎€บ๐ด๐‘†๐ด๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘‡๐ต๎…ž+๐ท๐‘‡๐ท๎…ž๎€ปโ„›๎€ท๐‘ƒ+๐‘Š+๐ผโˆ—๎€ธ=0.(4.7) Considering ๎€บ๐‘†๐‘ˆโ€ฒ๐‘ˆ๐‘‡๎€ปโ‰ฅ0, it follows from Lemma 2.8 that ๐‘‡โ‰ฅ๐‘ˆ๐‘†+๐‘ˆ๎…ž and ๐‘ˆ=๐‘ˆ๐‘†๐‘†+. By Lemma 2.9, ๐‘†+โ‰ฅ0 and ๐‘†๐‘†+=๐‘†+๐‘†. So we have โ„›๎€ท๐‘ƒโˆ—๎€ธ๎€ท๐ด๐‘†๐ด๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘ˆ๐‘†+๐‘ˆ๎…ž๐ต๎…ž+๐ท๐‘ˆ๐‘†+๐‘ˆ๎…ž๐ท๎…ž๎€ธโ„›๎€ท๐‘ƒโˆ—๎€ธ๎€ท๐‘ƒ=โ„›โˆ—(๎€ธ๎€บ๐ถ๐‘†+๐ท๐‘ˆ)๐‘†+๎€ท๐‘†๐ถ๎…ž+๐‘ˆ๎…ž๐ท๎…ž๎€ธ+(๐ด๐‘†+๐ต๐‘ˆ)๐‘†+๎€ท๐‘†๐ด๎…ž+๐‘ˆ๎…ž๐ต๎…žโ„›๎€ท๐‘ƒ๎€ธ๎€ปโˆ—๎€ธโ‰ค0.(4.8) Then it follows that โ„›(๐‘ƒโˆ—)โ„›(๐‘ƒโˆ—)โ‰ค0. It yields โ„›(๐‘ƒโˆ—)=0 due to โ„›(๐‘ƒโˆ—)โ‰ฅ0.

The following theorem shows that any optimal solution of the primal SDP results in a stabilizing control for LQ problem.

Theorem 4.2. Let ๐‘ƒโˆ— be an optimal solution to the SDP (3.6). Then the feedback control ๐‘ข(๐‘ก)=โˆ’(๐‘…+๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๐ท)โˆ’1(๐ต๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ)๐‘ฅ(๐‘ก) is mean square stabilizing for system (2.1).

Proof. Optimal dual variables ๐‘†, ๐‘‡, ๐‘ˆ, ๐‘Š satisfy (4.2)โ€“(4.6). ๐‘ˆ=โˆ’(๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๐ท+๐‘…)โˆ’1(๐ต๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ)๐‘†. Now we show ๐‘†>0. Let ๐‘†๐‘ฅ=0, ๐‘ฅโˆˆโ„›๐‘›. The constraints in (3.7) imply ๐‘ฅ๎…ž๎€ท๐ด๐‘†๐ด๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘ˆ๐‘†+๐‘ˆ๎…ž๐ต๎…ž+๐ท๐‘ˆ๐‘†+๐‘ˆ๎…ž๐ท๎…ž๎€ธ+๐‘Š+๐ผ๐‘ฅโ‰ค0.(4.9) Similar to the proof of Theorem 4.1, we have ๐‘ฅ=0. We conclude that ๐‘†>0 from ๐‘†โ‰ฅ0. Again by the equality constraint in (3.7), we have โˆ’๐‘†+๐ด๐‘†๐ด๎…ž+๐ถ๐‘†๐ถ๎…ž+๐ต๐‘ˆ๐ด๎…ž+๐ท๐‘ˆ๐ถ๎…ž+๐ด๐‘ˆ๎…ž๐ต๎…ž+๐ถ๐‘ˆ๎…ž๐ท๎…ž+๐ต๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ต๎…ž+๐ท๐‘ˆ๐‘†โˆ’1๐‘ˆ๎…ž๐ท๎…ž๎€ท=โˆ’๐‘†+๐ด+๐ต๐‘ˆ๐‘†โˆ’1๎€ธ๐‘†๎€ท๐ด+๐ต๐‘ˆ๐‘†โˆ’1๎€ธ๎…ž+๎€ท๐ถ+๐ท๐‘ˆ๐‘†โˆ’1๎€ธ๐‘†๎€ท๐ถ+๐ท๐‘ˆ๐‘†โˆ’1๎€ธ๎…ž<0.(4.10) By Lemma 3.1, the above inequality is equivalent to the mean square stabilizability of system (2.1) with ๐‘ข(๐‘ก)=๐‘ˆ๐‘†โˆ’1๐‘ฅ(๐‘ก)=โˆ’(๐‘…+๐ต๎…ž๐‘ƒโˆ—๐ต+๐ท๎…ž๐‘ƒโˆ—๐ท)โˆ’1(๐ต๎…ž๐‘ƒโˆ—๐ด+๐ท๎…ž๐‘ƒโˆ—๐ถ)๐‘ฅ(๐‘ก). This ends the proof.

Theorem 4.3. There is a unique optimal solution to (3.6), which is the maximal solution to SARE (2.9).

Proof. The proof is similar to Theoremโ€‰โ€‰9 in [11] and is omitted.

Theorem 4.4. Assume that ๐’ซ is nonempty, then SARE (2.9) has a maximal solution ๐‘ƒmax, which is the unique optimal solution to SDP: โŽกโŽขโŽขโŽฃmaxTr(๐‘ƒ)subjectto๐ด(๐‘ƒ)=โˆ’๐‘ƒ+๐ดโ€ฒ๐‘ƒ๐ด+๐ถ๎…ž๐‘ƒ๐ถ+๐‘„๐ด๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐ต๐‘ƒ๐ท๎…ž๐‘ƒ๐ด+๐ท๎…ž๐‘ƒ๐ถ๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…žโŽคโŽฅโŽฅโŽฆ๐‘ƒ๐ท๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒD>0.โ‰ฅ0,(4.11)

Proof. The first assertion is Theoremโ€‰โ€‰4 in [16]. As to the second part, we proceed as follows. By Lemma 2.7, ๐‘ƒmax satisfies the constraints in (4.11). ๐‘ƒmax is an optimal solution to (4.11) due to the maximality. Next we prove the uniqueness. Assume that ๐‘ƒโ€ฒmax is another optimal solution to (4.11). Then we have Tr(๐‘ƒmax)=Tr(๐‘ƒ๎…žmax). According to Definition 2.4, ๐‘ƒmaxโ‰ฅ๐‘ƒ๎…žmax. This yields ๐‘ƒmax=๐‘ƒ๎…žmax. Hence, the proof of the theorem is completed.

Remark 4.5. Here we drop the assumption that the interior of ๐’ซ is nonempty.

Remark 4.6. Theorem 4.4 presents that the maximal solution to SARE (2.9) can be obtained by solving SDP (4.11). The result provides us a computational approach to the SARE. Furthermore, as shown in [16], the relationship between the LQ value function and the maximal solution to SARE (2.9) can be established; that is, assuming that ๐’ซ is nonempty, then the value function ๐‘‰(๐‘ฅ0)=๐‘ฅ๎…ž0๐‘ƒmax๐‘ฅ0 and the optimal control can be expressed as ๐‘ข(๐‘ก)=โˆ’(๐‘…+๐ต๎…ž๐‘ƒmax๐ต+๐ท๎…ž๐‘ƒmax๐ท)โˆ’1(๐ต๎…ž๐‘ƒmax๐ด+๐ท๎…ž๐‘ƒmax๐ถ)๐‘ฅ(๐‘ก).
The above results represent SARE (2.9) may exist a solution even if ๐‘… is indefinite (even negative definite). To describe the allowable negative degree, we give the following definition to solvability margin.

Definition 4.7 (see [11]). The solvability margin ๐‘Ÿโˆ— is defined as the largest nonnegative scalar ๐‘Ÿโ‰ฅ0 such that (2.9) has a solution for any ๐‘…>โˆ’๐‘Ÿโˆ—๐ผ.

By Theorem 4.4, the following conclusion is obvious.

Theorem 4.8. The solvability margin ๐‘Ÿโˆ— can be obtained by solving the following SDP: โŽงโŽชโŽจโŽชโŽฉ๎‚ธmax๐‘Ÿsubjecttoโˆ’๐‘ƒ+๐ดโ€ฒ๐‘ƒ๐ด+๐ถ๎…ž๐‘ƒ๐ถ+๐‘„๐ด๎…ž๐‘ƒ๐ต+๐ถ๎…ž๐ต๐‘ƒ๐ท๎…ž๐‘ƒ๐ด+๐ท๎…ž๐‘ƒ๐ถ๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๎‚น๐ต๐‘ƒ๐ทโˆ’๐‘Ÿ๐ผโ‰ฅ0,๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ทโˆ’๐‘Ÿ๐ผ>0,๐‘Ÿ>0.(4.12)

5. Numerical Examples

Consider the system (2.1) with ๐ด, ๐ต, ๐ถ, ๐ท as follows:โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ,โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ.๐ด=โˆ’0.43262.28771.1892โˆ’1.6656โˆ’1.1465โˆ’0.03760.12531.19090.3273,๐ต=โˆ’0.8147โˆ’0.9134โˆ’0.90580.63240.12700.0975๐ถ=0.1746โˆ’0.58830.1139โˆ’0.18672.18321.06680.7258โˆ’0.13640.0593,๐ท=0.27850.96490.54690.15760.9575โˆ’0.9706(5.1)

5.1. Mean Square Stabilizability

In order to test the mean square stabilizability of system (2.1), we only need to check weather or not LMI (3.5) is feasible by Theorem 3.2. Making use of LMI feasp solver [22], we find matrices ๐‘ƒ and ๐‘ˆ satisfying (3.5):โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฆ๐‘ƒ=4.82030.21052.07570.21051.2812โˆ’2.22872.0757โˆ’2.22875.3885,๐‘ˆ=โˆ’5.4185โˆ’0.9228โˆ’1.31134.54990.94260.5770,(5.2) and the stabilizing control ๐‘ข(๐‘ก)=๐‘ˆ๐‘ƒโˆ’1๐‘ฅ(๐‘ก); that is,โŽกโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฆ๐‘ข(๐‘ก)=โˆ’0.6606โˆ’2.1116โˆ’0.86230.96790.4079โˆ’0.0970๐‘ฅ(๐‘ก).(5.3)

5.2. Solutions of SARE

Let ๐‘„=๐ผ in SARE (2.9). Below, we solve SARE (2.9) via the SDP (4.11) (LMI mincx solver [22]).

Case 1. ๐‘… is positive definite. Choose ๎€บ๐‘…=2112๎€ป, and we obtain the maximal solution to (2.9): ๐‘ƒmax=โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ44.2780โˆ’100.5744โˆ’48.8271โˆ’100.5744360.6942182.4572โˆ’48.8271182.457294.6103.(5.4)

Case 2. ๐‘… is indefinite. Choose ๎€บ๐‘…=0.20.30.30.2๎€ป, and we obtain the maximal solution to (2.9): ๐‘ƒmax=โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ17.7975โˆ’40.0973โˆ’19.1900โˆ’40.0973135.218967.6790โˆ’19.190067.679035.5117.(5.5)

Case 3. ๐‘… is negative definite. First we can get the solvability margin ๐‘Ÿโˆ—=0.4936 by solving SDP (4.12) (LMI gevp solver [22]). Hence (2.9) has a maximal solution when ๐‘…>โˆ’0.4936๐ผ. Choose ๐‘…=โˆ’0.4๐ผ, and we obtain the maximal solution to (2.9): ๐‘ƒmax=โŽกโŽขโŽขโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฅโŽฅโŽฆ29.6283โˆ’66.7897โˆ’32.2431โˆ’66.7897234.0792117.9065โˆ’32.2431117.906561.3301.(5.6)

6. Conclusion

In this paper, we use the SDP approach to the study of discrete-time indefinite stochastic LQ control. It was shown that the mean square stabilization of system (2.1) is equivalent to the strict feasibility of the SDP (3.7). In addition, the relation between the optimal solution of (3.6) and the maximal solution of SARE (2.9) has been established. What we have obtained can be viewed as a discrete-time version of [11]. Of course, there are many open problems to be solved. For example, ๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ท>0 is a basic assumption in this paper. A natural question is whether or not we can weaken it to ๐‘…+๐ต๎…ž๐‘ƒ๐ต+๐ท๎…ž๐‘ƒ๐ทโ‰ฅ0. This problem merits further study.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61174078), Specialized Research Fund for the Doctoral Program of Higher Education (20103718110006), and Key Project of Natural Science Foundation of Shandong Province (ZR2009GZ001).