Abstract

The optimal boundary control problem for (๐‘›ร—๐‘›) infinite order distributed parabolic systems with multiple time delays given in the integral form both in the state equations and in the Neumann boundary conditions is considered. Constraints on controls are imposed. Necessary and suffacient optimality conditions for the Neumann problem with the quadratic performance functional are derived.

1. Introduction

Distributed parameters systems with delays can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic-plastic material, fluid dynamics, diffusion-reaction processes, the transmission of the signals at a certain distance by using electric long lines, and so forth, all lie within this area. The object that we are studying (temperature, displacement, concentration, velocity, etc.) is usually referred to as the state.

During the last twenty years, equations with deviating argument have been applied not only in applied mathematics, physics, and automatic control, but also in some problems of economy and biology. Currently, the theory of equations with deviating arguments constitutes a very important subfield of mathematical control theory.

Consequently, equations with deviating arguments are widely applied in optimal control problems of distributed parameter system with time delays [1].

The optimal control problems of distributed parabolic systems with time-delayed boundary conditions have been widely discussed in many papers and monographs. A fundamental study of such problems is given by [2] and was next developed by [3, 4]. It was also intensively investigated by [1, 5โ€“16] in which linear quadratic problem for parabolic systems with time delays given in the different form (constant, time delays, time-varying delays, time delays given in the integral form, etc.) was presented.

The necessary and sufficient conditions of optimality for systems consist of only one equation and for (๐‘›ร—๐‘›) systems governed by different types of partial differential equations defined on spaces of functions of infinitely many variables and also for infinite order systems are discussed for example in [9, 11, 15โ€“18] in which the argument of [19, 20] was used.

Making use of the Dubovitskii-Milyutin Theorem in [13, 21โ€“28] the necessary and sufficient conditions of optimality for similar systems governed by second order operator with an infinite number of variables and also for infinite order systems were investigated. The interest in the study of this class of operators is stimulated by problems in quantum field theory.

In particular, the papers of [1, 8] present necessary and sufficient optimality conditions for the Neumann problem with quadratic performance functionals, applied to a single one equation of second-order parabolic system with fixed time delay and with multiple time delays given in the integral form both in the state equations and in the Neumann boundary conditions, respectively. Such systems constitute a more complex case of distributed parameter systems with time delays given in the integral form.

Also in [9, 11] time-optimal boundary control for a single one equation distributed infinite order parabolic and hyperbolic systems in which constant time lags appear in the integral form both in the state equation and in the Neumann boundary condition is present. Some specific properties of the optimal control are discussed.

In this paper we recall the problem in a more general formulation. A distributed parameter for infinite order parabolic (๐‘›ร—๐‘›) systems with multiple time delays given in the integral form both in the state equations and in the Neumann boundary conditions is considered. Such an infinite order parabolic system can be treated as a generalization of the mathematical model for a plasma control process. The quadratic performance functionals defined over a fixed time horizon are taken and some constraints are imposed on the initial state and the boundary control. Such a system may be viewed as a linear representation of many diffusion processes, in which time-delayed signals are introduced at a spatial boundary, and there is a freedom in choosing the controlled process initial state. Following a line of the Lions scheme, necessary and sufficient optimality conditions for the Neumann problem applied to the above system were derived. The optimal control is characterized by the adjoint equations.

This paper is organized as follows. In Section 1, we introduce spaces of functions of infinite order. In Section 2, we formulate the mixed Neumann problem for infinite order parabolic operator with multiple time delays given in the integral form. In Section 3, the boundary optimal control problem for this case is formulated, then we give the necessary and sufficient conditions for the control to be an optimal. In Section 4, we generalized the discussion to two cases, the first case: the optimal control for (2ร—2) coupled infinite order parabolic systems is studied. The second case: the optimal control for (๐‘›ร—๐‘›) coupled infinite order parabolic systems was to be formulated.

2. Sobolev Spaces with Infinite Order

The object of this section is to give the definition of some function spaces of infinite order and the chains of the constructed spaces which will be used later.

Let ฮฉ be a bounded open set of โ„๐‘› with a smooth boundary ฮ“, which is a ๐ถโˆž manifold of dimension (๐‘›โˆ’1). Locally, ฮฉ is totally on one side of ฮ“. We define the infinite order Sobolev space ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) of infinite order of periodic functions ๐œ™(๐‘ฅ) defined on ฮฉ [29โ€“31] as follows: ๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)=โŽงโŽจโŽฉ๐œ™(๐‘ฅ)โˆˆCโˆž(ฮฉ)โˆถโˆž๎“|๐›ผ|=0๐‘Ž๐›ผโ€–D๐›ผ๐œ™โ€–22<โˆžโŽซโŽฌโŽญ,(2.1) where ๐ถโˆž(ฮฉ) is the space of infinitely differentiable functions, ๐‘Ž๐›ผโ‰ฅ0 is a numerical sequence, and โ€–โ‹…โ€–2 is the canonical norm in the space ๐ฟ2(ฮฉ), and ๐ท๐›ผ=๐œ•|๐›ผ|๎€ท๐œ•๐‘ฅ1๎€ธ๐›ผ1โ‹ฏ๎€ท๐œ•๐‘ฅ๐‘›๎€ธ๐›ผ๐‘›,(2.2)๐›ผ=(๐›ผ1,โ€ฆ,๐›ผ๐‘›) being a multi-index for differentiation, |๐›ผ|=โˆ‘๐‘›๐‘–=1๐›ผ๐‘–.

The space ๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ) is defined as the formal conjugate space to the space ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ), namely: ๐‘Šโˆ’โˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)=โŽงโŽจโŽฉ๐œ“(๐‘ฅ)โˆถ๐œ“(๐‘ฅ)=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท๐›ผ๐œ“๐›ผ(๐‘ฅ)โŽซโŽฌโŽญ,(2.3) where ๐œ“๐›ผโˆˆ๐ฟ2(ฮฉ) and โˆ‘โˆž|๐›ผ|=0๐‘Ž๐›ผโ€–๐œ“๐›ผโ€–22<โˆž.

The duality pairing of the spaces ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) and ๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ) is postulated by the formula: (๐œ™,๐œ“)=โˆž๎“|๐›ผ|=0๐‘Ž๐›ผ๎€œฮฉ๐œ“๐›ผ(๐‘ฅ)๐ท๐›ผ๐œ™(๐‘ฅ)๐‘‘๐‘ฅ,(2.4) where ๐œ™โˆˆ๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ),๐œ“โˆˆ๐‘Šโˆ’โˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ).(2.5)

From above, ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) is everywhere dense in ๐ฟ2(ฮฉ) with topological inclusions and ๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ) denotes the topological dual space with respect to ๐ฟ2(ฮฉ), so we have the following chain of inclusions: ๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)โŠ†๐ฟ2(ฮฉ)โŠ†๐‘Šโˆ’โˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ).(2.6) We now introduce ๐ฟ2(0,๐‘‡;๐ฟ2(ฮฉ)) which we will denoted by ๐ฟ2(๐‘„), where ๐‘„=ฮฉร—]0,๐‘‡[ denotes the space of measurable functions ๐‘กโ†’๐œ™(๐‘ก) such that โ€–๐œ™โ€–๐ฟ2(๐‘„)=๎‚ต๎€œ๐‘‡0โ€–๐œ™(๐‘ก)โ€–22๐‘‘๐‘ก๎‚ถ1/2<โˆž,(2.7) endowed with the scalar product (๐‘“,๐‘”)=โˆซ๐‘‡0(๐‘“(๐‘ก),๐‘”(๐‘ก))๐ฟ2(ฮฉ)๐‘‘๐‘ก, ๐ฟ2(๐‘„) is a Hilbert space.

In the same manner we define the spaces ๐ฟ2(0,๐‘‡;๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ)), and ๐ฟ2(0,๐‘‡;๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ)), as its formal conjugate.

Also, we have the following chain of inclusions: ๐ฟ2๎€ท0,๐‘‡;๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธโŠ†๐ฟ2(๐‘„)โŠ†๐ฟ2๎€ท0,๐‘‡;๐‘Šโˆ’โˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธ.(2.8)

The construction of the Cartesian product of ๐‘›-times to the above Hilbert spaces can be constructed, for example ๎€ท๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธ๐‘›=๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)ร—๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)ร—โ‹ฏร—๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎„ฟ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…ƒ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…Œ๐‘›-times=๐‘›๎‘๐‘–=1๎€ท๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธ๐‘–,(2.9) with norm defined by: โ€–๐œ™โ€–(๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ))๐‘›=๐‘›๎“๐‘–=1โ€–โ€–๐œ™๐‘–โ€–โ€–๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ),(2.10) where ๐œ™=(๐œ™1,๐œ™2,โ€ฆ,๐œ™๐‘›)=(๐œ™๐‘–)๐‘›๐‘–=1 is a vector function and ๐œ™๐‘–โˆˆ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ).

Finally, we have the following chain of inclusions: ๎€ท๐ฟ2๎€ท0,๐‘‡;๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธ๎€ธ๐‘›โŠ†๎€ท๐ฟ2(๐‘„)๎€ธ๐‘›โŠ†๎€ท๐ฟ2๎€ท0,๐‘‡;๐‘Šโˆ’โˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธ๎€ธ๐‘›,(2.11) where (๐ฟ2(0,๐‘‡;๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ)))๐‘› are the dual spaces of (๐ฟ2(0,๐‘‡;๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ)))๐‘›. The spaces considered in this paper are assumed to be real.

3. Mixed Neumann Problem for Infinite Order Parabolic System with Multiple Time Lags

The object of this section is to formulate the following mixed initial boundary value Neumann problem for infinite order parabolic system with multiple time delays which defines the state of the system model [1, 5โ€“11, 18, 24, 26].๐œ•๐‘ฆ๐œ•๐‘ก+๐’œ(๐‘ก)๐‘ฆ(๐‘ฅ,๐‘ก)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–(๐‘ฅ,๐‘ก)๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–๎€ธ๐‘‘โ„Ž๐‘–=๐‘ข,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,(3.1)๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ=ฮฆ0๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮฉร—(โˆ’ฮ”,0),(3.2)๐‘ฆ(๐‘ฅ,0)=๐‘ฆ0(๐‘ฅ),๐‘ฅโˆˆฮฉ,(3.3)๐œ•๐‘ฆ๐œ•๐œˆ๐’œ(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ (๐‘ฅ,๐‘ก)๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ๎€ธ๐‘‘๐‘˜๐‘ +๐‘ฃ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,(3.4)๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ=ฮจ0๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮ“ร—(โˆ’ฮ”,0),(3.5) where ฮฉโŠ‚๐‘…๐‘› has the same properties as in Section 1. We have ๐‘ฆโ‰ก๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ข),๐‘ฆ(0)โ‰ก๐‘ฆ(๐‘ฅ,0;๐‘ข),๐‘ฆ(๐‘‡)โ‰ก๐‘ฆ(๐‘ฅ,๐‘‡;๐‘ข),๐‘ขโ‰ก๐‘ข(๐‘ฅ,๐‘ก),๐‘ฃโ‰ก๐‘ฃ(๐‘ฅ,๐‘ก),๐‘„=ฮฉร—(0,๐‘‡),๐‘„=ฮฉร—[0,๐‘‡],๐‘„0=ฮฉร—[โˆ’ฮ”,0),ฮฃ=ฮ“ร—(0,๐‘‡),ฮฃ0=ฮ“ร—[โˆ’ฮ”,0),(3.6)(i)๐‘‡is a specified positive number representing a finite time horizon,(ii)โ„Ž๐‘–,๐‘˜๐‘  are time delays, such that โ„Ž๐‘–โˆˆ(๐‘Ž๐‘–,๐‘๐‘–) and ๐‘˜๐‘ โˆˆ(๐‘๐‘ ,๐‘‘๐‘ ) where 0<๐‘Ž1<๐‘Ž2<โ‹ฏ<๐‘Ž๐‘š, 0<๐‘1<๐‘2<โ‹ฏ<๐‘๐‘š, for ๐‘–=1,2,โ€ฆ,๐‘š and 0<๐‘1<๐‘2<โ‹ฏ<๐‘๐‘™, 0<๐‘‘1<๐‘‘2<โ‹ฏ<๐‘‘๐‘™, for ๐‘ =1,2,โ€ฆ,๐‘™,(iii)๐‘๐‘–(๐‘ก),๐‘–=1,2,โ€ฆ,๐‘š are given real ๐ถโˆž functions defined on ๐‘„,(iv)๐‘๐‘ (๐‘ฅ,๐‘ก),๐‘ =1,2,โ€ฆ,๐‘™ are given real ๐ถโˆž functions defined on ฮฃ,(v)ฮ”=max{๐‘๐‘š,๐‘‘๐‘™},(vi)๐‘ฆ is a function defined on ๐‘„ such that ฮฉร—(0,๐‘‡)โˆ‹(๐‘ฅ,๐‘ก)โ†’๐‘ฆ(๐‘ฅ,๐‘ก)โˆˆ๐‘…,(vii)๐‘ข,๐‘ฃ are functions defined on ๐‘„ and ฮฃ such that ฮฉร—(0,๐‘‡)โˆ‹(๐‘ฅ,๐‘ก)โ†’๐‘ข(๐‘ฅ,๐‘ก)โˆˆ๐‘… and ฮ“ร—(0,๐‘‡)โˆ‹(๐‘ฅ,๐‘ก)โ†’๐‘ฃ(๐‘ฅ,๐‘ก)โˆˆ๐‘…,(viii)ฮฆ0,ฮจ0 are initial functions defined on ๐‘„0 and ฮฃ0, respectively, such that ฮฉร—[โˆ’ฮ”,0)โˆ‹(๐‘ฅ,๐‘ก๎…ž)โ†’ฮฆ0(๐‘ฅ,๐‘ก๎…ž)โˆˆ๐‘…. ฮ“ร—[โˆ’ฮ”,0)โˆ‹(๐‘ฅ,๐‘ก๎…ž)โ†’ฮจ0(๐‘ฅ,๐‘ก๎…ž)โˆˆ๐‘….

The parabolic operator (๐œ•/๐œ•๐‘ก)+๐’œ(๐‘ก) in the state equation (3.1) is an infinite order parabolic operator and ๐’œ(๐‘ก) [17, 21, 29โ€“31] is given by: ๐’œ๐‘ฆ=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ๐‘ฆ(๐‘ฅ,๐‘ก),๐’œ=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ(3.7) is an infinite order self-adjoint elliptic partial differential operator maps ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) onto ๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ).

For this operator we define the bilinear form as follows.

Definition 3.1. For each ๐‘กโˆˆ(0,๐‘‡), we define a family of bilinear forms on ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) by: ๐œ‹(๐‘ก;๐‘ฆ,๐œ™)=(๐’œ(๐‘ก)๐‘ฆ,๐œ™)๐ฟ2(ฮฉ),๐‘ฆ,๐œ™โˆˆ๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ),(3.8) where ๐’œ(๐‘ก) maps ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ) onto ๐‘Šโˆ’โˆž{๐‘Ž๐›ผ,2}(ฮฉ) and takes the above form. Then ๐œ‹(๐‘ก;๐‘ฆ,๐œ™)=(๐’œ(๐‘ก)๐‘ฆ,๐œ™)๐ฟ2(ฮฉ)=โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ๐‘ฆ(๐‘ฅ,๐‘ก),๐œ™(๐‘ฅ)โŽžโŽŸโŽ ๐ฟ2(ฮฉ)=๎€œฮฉโˆž๎“|๐›ผ|=0๐‘Ž๐›ผ๐ท๐›ผ๐‘ฆ(๐‘ฅ)๐ท๐›ผ๐œ™(๐‘ฅ)๐‘‘๐‘ฅ.(3.9)

Lemma 3.2. The bilinear form ๐œ‹(๐‘ก;๐‘ฆ,๐œ™) is coercive on ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ), that is, ๐œ‹(๐‘ก;๐‘ฆ,๐‘ฆ)โ‰ฅ๐œ†โ€–๐‘ฆโ€–2๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ),๐œ†>0.(3.10)

Proof. It is well known that the ellipticity of ๐’œ(๐‘ก) is sufficient for the coerciveness of ๐œ‹(๐‘ก;๐‘ฆ,๐œ™) on ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ): ๐œ‹(๐‘ก;๐œ™,๐œ“)=๎€œฮฉโˆž๎“|๐›ผ|=0๐‘Ž๐›ผ๐ท๐›ผ๐œ™๐ท๐›ผ๐œ“๐‘‘๐‘ฅ.(3.11) Then ๐œ‹(๐‘ก;๐‘ฆ,๐‘ฆ)=๎€œฮฉโˆž๎“|๐›ผ|=0๐‘Ž๐›ผ๐ท๐›ผ๐‘ฆ๐ท๐›ผ๐‘ฆ๐‘‘๐‘ฅโ‰ฅโˆž๎“|๐›ผ|=0๐‘Ž๐›ผโ€–โ€–๐ท2๐›ผ๐‘ฆ(๐‘ฅ)โ€–โ€–2๐ฟ2(ฮฉ)โ‰ฅ๐œ†โ€–๐‘ฆโ€–2๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ),๐œ†>0.(3.12) Also we have โˆ€๐‘ฆ,๐œ™โˆˆ๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)thefunction๐‘กโŸถ๐œ‹(๐‘ก;๐‘ฆ,๐œ™)iscontinuouslydi๏ฌ€erentiablein(0,๐‘‡)and๐œ‹(๐‘ก;๐‘ฆ,๐œ™)=๐œ‹(๐‘ก;๐œ™,๐‘ฆ).(3.13)
Equations (3.1)โ€“(3.5) constitute a Neumann problem. Then the left-hand side of the boundary condition (3.4) may be written in the following form: ๐œ•๐‘ฆ(๐‘ฅ,๐‘ก)๐œ•๐œˆ๐’œ=โˆž๎“|๐œ”|=0(๐ท๐œ”๐‘ฆ(๐‘ฅ,๐‘ก))cos๎€ท๐‘›,๐‘ฅ๐‘˜๎€ธ=๐‘ž(๐‘ฅ,๐‘ก),๐‘ฅโˆˆฮ“,๐‘กโˆˆ(0,๐‘‡),(3.14) where ๐œ•/๐œ•๐œˆ๐’œ is a normal derivative at ฮ“, directed towards the exterior of ฮฉ, and cos(๐‘›,๐‘ฅ๐‘˜) is the ๐‘˜th direction cosine of ๐‘›, with ๐‘› being the normal at ฮ“ exterior to ฮฉ.
Then (3.4) can be written as: ๐‘ž(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ (๐‘ฅ,๐‘ก)๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ๎€ธ๐‘‘๐‘˜๐‘ +๐‘ฃ(๐‘ฅ,๐‘ก),๐‘ฅโˆˆฮ“,๐‘กโˆˆ(0,๐‘‡).(3.15)

Remark 3.3. We will apply the indication ๐‘ž(๐‘ฅ,๐‘ก) appearing in (3.14) to prove the existence of a unique solution for (3.1)โ€“(3.5).

We will formulate sufficient conditions for the existence of a unique solution of the mixed boundary value problem (3.1)โ€“(3.5) for the cases where the boundary control ๐‘ฃโˆˆ๐ฟ2(ฮฃ).

For this purpose, we introduce the Sobolev space ๐‘Šโˆž,1(๐‘„) [20, Vol. 2, page 6] defined by: ๐‘Šโˆž,1(๐‘„)=๐ฟ2๎€ท0,๐‘‡;๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๎€ธโˆฉ๐‘Š1๎€ท0,๐‘‡;๐ฟ2(ฮฉ)๎€ธ,(3.16) which is a Hilbert space normed by โ€–๐‘ฆโ€–๐‘Šโˆž,1(๐‘„)=๎‚ธ๎€œ๐‘‡0๎€œโ€–๐‘ฆโ€–2๐‘Šโˆž๎€ฝ๐‘Ž๐›ผ,2๎€พ(ฮฉ)๐‘‘๐‘ก+โ€–๐‘ฆโ€–2๐‘Š1๎€ท0,๐‘‡;๐ฟ2(ฮฉ)๎€ธ๎‚น1/2=โŽกโŽขโŽฃ๎€œ๐‘„โŽ›โŽœโŽโˆž๎“|๐›ผ|=0๐‘Ž๐›ผ||๐ท๐›ผ๐‘ฆ||2+|||๐œ•๐‘ฆ๐œ•๐‘ก|||2โŽžโŽŸโŽ ๐‘‘๐‘ฅ๐‘‘๐‘กโŽคโŽฅโŽฆ1/2=โŽกโŽขโŽฃ๎€œ๐‘„โŽ›โŽœโŽ๐‘Ž0||๐‘ฆ||2+โˆž๎“|๐›ผ|=1๐‘Ž๐›ผ||๐ท๐›ผ๐‘ฆ||2+|||๐œ•๐‘ฆ๐œ•๐‘ก|||2โŽžโŽŸโŽ ๐‘‘๐‘ฅ๐‘‘๐‘กโŽคโŽฅโŽฆ1/2,๐‘Ž0>0,(3.17) where the space ๐‘Š1(0,๐‘‡;๐ฟ2(ฮฉ)) denotes the Sobolev space of order 1 of functions defined on (0,๐‘‡) and taking values in ๐ฟ2(ฮฉ) [20, Vol. 1].

The existence of a unique solution for the mixed initial-boundary value problem (3.1)โ€“(3.5) on the cylinder ๐‘„ can be proved using a constructive method, that is, solving at first equations (3.1)โ€“(3.5) on the subcylinder ๐‘„1 and in turn on ๐‘„2 and so forth, until the procedure covers the whole cylinder ๐‘„. In this way, the solution in the previous step determines the next one.

For simplicity, we introduce the following notation: ๐ธ๐‘—๎=((๐‘—โˆ’1)๐œ†,๐‘—๐œ†),๐‘„๐‘—=ฮฉร—๐ธ๐‘—,ฮฃ๐‘—=ฮ“ร—๐ธ๐‘—for๐‘—=1,โ€ฆ,๐พ,๐œ†=min๎€ฝ๐‘Ž1,๐‘1๎€พ.(3.18)

Making use of the results of [7, 20] we can prove that the following result holds.

Theorem 3.4. Let ๐‘ฆ0, ฮฆ0, ฮจ0, ๐‘ฃ and ๐‘ข be given with ๐‘ฆ0โˆˆ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ), ฮฆ0โˆˆ๐‘Šโˆž,1(๐‘„0), ฮจ0โˆˆ๐ฟ2(ฮฃ0), ๐‘ฃโˆˆ๐ฟ2(ฮฃ) and ๐‘ขโˆˆ๐‘Šโˆ’โˆž,โˆ’1(๐‘„). Then, there exists a unique solution ๐‘ฆโˆˆ๐‘Šโˆž,1(๐‘„) for the mixed initial-boundary value problem (3.1)โ€“(3.5). Moreover, ๐‘ฆ(โ‹…,๐‘—๐œ†)โˆˆ๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ)for๐‘—=1,โ€ฆ,๐พ.

4. Problem Formulation-Optimization Theorems

Now, we formulate the optimal control problem for (3.1)โ€“(3.5) in the context of the Theorem 3.4, that is ๐‘ฃโˆˆ๐ฟ2(ฮฃ).

Let us denote by ๐‘ˆ=๐ฟ2(ฮฃ) the space of controls. The time horizon ๐‘‡ is fixed in our problem.

The performance functional is given by ๐ผ(๐‘ฃ)=๐œ†1๎€œ๐‘„๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ง๐‘‘๎€ป2๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œฮฃ(๐‘๐‘ฃ)๐‘ฃ๐‘‘ฮ“๐‘‘๐‘ก,(4.1) where ๐œ†๐‘–โ‰ฅ0, and ๐œ†1+๐œ†2>0,๐‘ง๐‘‘ is a given element in ๐ฟ2(๐‘„); ๐‘ is a positive linear operator on ๐ฟ2(ฮฃ) into ๐ฟ2(ฮฃ).

Control Contraints
We define the set of admissible controls ๐‘ˆad such that ๐‘ˆadisclosed,convexsubsetof๐‘ˆ=๐ฟ2(ฮฃ).(4.2)

Let ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ) denote the solution of the mixed initial-boundary value problem (3.1)โ€“(3.5) at (๐‘ฅ,๐‘ก) corresponding to a given control ๐‘ฃโˆˆ๐‘ˆad. We note from Theorem 3.4 that for any ๐‘ฃโˆˆ๐‘ˆad the performance functional (4.1) is well-defined since (๐‘ฃ)โˆˆ๐‘Šโˆž,1(๐‘„)โŠ‚๐ฟ2(๐‘„).

Making use of the Loins's scheme we will derive the necessary and sufficient conditions of optimality for the optimization problem (3.1)โ€“(3.5), (4.1), (4.2). The solving of the formulated optimal control problem is equivalent to seeking a ๐‘ฃโˆ—โˆˆ๐‘ˆad such that ๐ผ๎€ท๐‘ฃโˆ—๎€ธโ‰ค๐ผ(๐‘ฃ),โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.3)

From the Lion's scheme [19, Theoremโ€‰โ€‰1.3, page 10], it follows that for ๐œ†2>0 a unique optimal control ๐‘ฃโˆ— exists. Moreover, ๐‘ฃโˆ— is characterized by the following condition: ๐ผ๎…ž๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธโ‰ฅ0,โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.4) For the performance functional of form (4.1) the relation (4.4) can be expressed as ๐œ†1๎€œ๐‘„๎€ท๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œฮฃ๐‘๐‘ฃโˆ—๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.5)

In order to simplify (4.5), we introduce the adjoint equation, and for every ๐‘ฃโˆˆ๐‘ˆad, we define the adjoint variable ๐‘=๐‘(๐‘ฃ)โ‰ก๐‘(๐‘ฅ,๐‘ก;๐‘ฃ) as the solution of the equations: โˆ’๐œ•๐‘(๐‘ฃ)๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘(๐‘ฃ)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃ๎€ธ๐‘‘โ„Ž๐‘–=๐œ†1๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ง๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,(4.6)โˆ’๐œ•๐‘(๐‘ฃ)๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘(๐‘ฃ)=๐œ†1๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ง๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),(4.7)๐‘(๐‘ฅ,๐‘‡;๐‘ฃ)=0,๐‘ฅโˆˆฮฉ,(4.8)๐‘(๐‘ฅ,๐‘ก;๐‘ฃ)=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡),(4.9)๐œ•๐‘(๐‘ฃ)๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃ๎€ธ๐‘‘๐‘˜๐‘ ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”(๐‘‡)),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,(4.10)๐œ•๐‘(๐‘ฃ)๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=0,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(๐‘‡โˆ’ฮ”(๐‘‡),๐‘‡),(4.11) where ๐œ•๐‘(๐‘ฃ)๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=โˆž๎“|๐œ”|=0(๐ท๐œ”๐‘(๐‘ฃ))cos๎€ท๐‘›,๐‘ฅ๐œ”๎€ธ(๐‘ฅ,๐‘ก),๐’œโˆ—(๐‘ก)๐‘(๐‘ฃ)=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ๐‘(๐‘ฅ,๐‘ก).(4.12)

As in the above section with change of variables, that is, with reversed sense of time. that is, ๐‘ก๎…ž=๐‘‡โˆ’๐‘ก, for given ๐‘ง๐‘‘โˆˆ๐ฟ2(๐‘„) and any ๐‘ฃโˆˆ๐ฟ2(ฮฃ), there exists a unique solution ๐‘(๐‘ฃ)โˆˆ๐‘Šโˆž,1(๐‘„) for problem (4.6)โ€“(4.11).

The existence of a unique solution for the problem (4.6)โ€“(4.11) on the cylinder ฮฉร—(0,๐‘‡) can be proved using a constructive method. It is easy to notice that for given ๐‘ง๐‘‘ and ๐‘ข, the problem (4.6)โ€“(4.11) can be solved backwards in time starting from ๐‘ก=๐‘‡, that is, first solving (4.6)โ€“(4.11) on the subcylinder ๐‘„๐พ and in turn on ๐‘„๐พโˆ’1, and so forth until the procedure covers the whole cylinder ฮฉร—(0,๐‘‡). For this purpose, we may apply Theorem 3.4 (with an obvious change of variables).

Hence, using Theorem 3.4, the following result can be proved.

Lemma 4.1. Let the hypothesis of Theorem 3.4 be satisfied. Then for given ๐‘ง๐‘‘โˆˆ๐ฟ2(ฮฉ,๐‘…โˆž) and any ๐‘ฃโˆˆ๐ฟ2(ฮฃ), there exists a unique solution ๐‘(๐‘ฃ)โˆˆ๐‘Šโˆž,1(๐‘„) for the adjoint problem (4.6)โ€“(4.11).

We simplify (4.5) using the adjoint equation (4.6)โ€“(4.11). For this purpose denoting by ๐‘(0)โ‰ก๐‘(๐‘ฅ,0;๐‘ฃ) and ๐‘(๐‘‡)โ‰ก๐‘(๐‘ฅ,๐‘‡;๐‘ฃ), respectively, setting ๐‘ฃ=๐‘ฃโˆ— in (4.6)โ€“(4.11), multiplying both sides of (4.6) and (4.7) by ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ(๐‘ฃโˆ—), then integrating over ฮฉร—(0,๐‘‡โˆ’ฮ”) and ฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡), respectively and then adding both sides of (4.6), (4.11), we get ๐œ†1๎€œ๐‘„๎€ท๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก=๎€œ๐‘„โŽ›โŽœโŽโˆ’๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ฃโˆ—๎€ธโŽžโŽŸโŽ ร—๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๎€œ๐‘‡โˆ’ฮ”0๎€œฮฉโŽ›โŽœโŽ๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘‘โ„Ž๐‘–โŽžโŽŸโŽ ร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก=๎€œ๐‘‡0๎€œฮฉ๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œ•๐‘ก๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๎€œ๐‘‡0๎€œฮฉ๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’ฮ”0๎€ท๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก๐‘‘โ„Ž๐‘–.(4.13) Using (3.1), the first integral on the right-hand side of (4.13) can be written as: ๎€œ๐‘‡0๎€œฮฉ๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œ•๐‘ก๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก=โˆ’๎€œ๐‘„๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡0๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๐‘๐‘–(๐‘ฅ,๐‘ก)ร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–=โˆ’๎€œ๐‘„๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’โ„Ž๐‘–โˆ’โ„Ž๐‘–๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–=โˆ’๎€œฮฉ๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ0โˆ’โ„Ž๐‘–๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–โˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’ฮ”0๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–โˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’โ„Ž๐‘–๐‘‡โˆ’ฮ”๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–=โˆ’๎€œ๐‘„๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ0โˆ’โ„Ž๐‘–๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–โˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’ฮ”0๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘๐‘–๎€ท๐‘ฅ,๐‘ก๎…ž+โ„Ž๐‘–๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘กโ€ฒ๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–โˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡๐‘‡โˆ’ฮ”+โ„Ž๐‘–๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๐‘๐‘–(๐‘ฅ,๐‘ก)ร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–.(4.14) Using Greenโ€™s formula, the second integral on the right-hand side of (4.13) can be written as: ๎€œ๐‘‡0๎€œฮฉ๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก=๎€œ๐‘‡0๎€œฮฉ๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธโŽ›โŽœโŽ๐œ•๐‘ฆ(๐‘ฃ)๐œ•๐œˆ๐’œโˆ’๐œ•๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโŽžโŽŸโŽ ๐‘‘ฮ“๐‘‘๐‘กโˆ’๎€œ๐‘‡0๎€œฮ“๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก.(4.15) Using the boundary condition (3.2), one can transform the second integral on the right-hand side of (4.15) into the form: ๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธโŽ›โŽœโŽ๐œ•๐‘ฆ(๐‘ฃ)๐œ•๐œˆ๐’œโˆ’๐œ•๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโŽžโŽŸโŽ ๐‘‘ฮ“๐‘‘๐‘ก=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡0๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๐‘๐‘ (๐‘ฅ,๐‘ก)ร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก๐‘‘๐‘˜๐‘ +๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘ก=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡โˆ’๐‘˜๐‘ โˆ’๐‘˜๐‘ ๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘ก=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ0โˆ’๐‘˜๐‘ ๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡โˆ’ฮ”0๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡โˆ’๐‘˜๐‘ ๐‘‡โˆ’ฮ”๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘ก=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ0โˆ’๐‘˜๐‘ ๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡โˆ’ฮ”0๐‘๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก๎…ž+๐‘˜๐‘ ๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๎…ž๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡๐‘‡โˆ’ฮ”+๐‘˜๐‘ ๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๐‘๐‘ (๐‘ฅ,๐‘ก)ร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“๐‘‘๐‘˜๐‘ +๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘ก.(4.16)

The last component in (4.15) can be rewritten as ๎€œ๐‘‡0๎€œฮ“๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก=๎€œ๐‘‡โˆ’ฮ”0๎€œฮ“๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก+๎€œ๐‘‡๐‘‡โˆ’ฮ”๎€œฮ“๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก.(4.17) Substituting (4.16) and (4.17) into (4.15) and then the results into (4.13), we obtain ๐œ†1๎€œ๐‘„๎€ท๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก=๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโˆ’๎€œ๐‘„๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ0โˆ’โ„Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–โˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’ฮ”0๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–+๎€œ๐‘„๐‘๎€ท๐‘ฃโˆ—๎€ธ๐’œ(๐‘ก)๎€บ๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡๐‘‡โˆ’ฮ”+โ„Ž๐‘–๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๐‘๐‘–(๐‘ฅ,๐‘ก)ร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–+๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ0โˆ’๐‘˜๐‘ ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“๐‘‘๐‘˜๐‘ โˆ’๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡โˆ’ฮ”0๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“๐‘‘๐‘˜๐‘ โˆ’๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๎€œฮ“๎€œ๐‘‡๐‘‡โˆ’ฮ”+๐‘˜๐‘ ๐‘๐‘ (๐‘ฅ,๐‘ก)๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃ๎€ธโˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“๐‘‘๐‘˜๐‘ โˆ’๎€œฮ“๎€œ๐‘‡โˆ’ฮ”0๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—ร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“โˆ’๎€œฮ“๎€œ๐‘‡๐‘‡โˆ’ฮ”๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—ร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘ฮ“+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๎€œฮฉ๎€œ๐‘‡โˆ’ฮ”0๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธร—๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ป๐‘‘๐‘ก๐‘‘๐‘ฅ๐‘‘โ„Ž๐‘–.(4.18)

Afterwards, using the facts that ๐‘ฆ(๐‘ฅ,๐‘ก,๐‘ฃ)=๐‘ฆ(๐‘ฅ,๐‘ก,๐‘ฃโˆ—)=ฮฆ0(๐‘ฅ,๐‘ก) for ๐‘ฅโˆˆฮฉ and ๐‘กโˆˆ[โˆ’ฮ”,0) and ๐‘ฆ(๐‘ฅ,๐‘ก,๐‘ฃ)=๐‘ฆ(๐‘ฅ,๐‘ก,๐‘ฃโˆ—)=ฮจ0(๐‘ฅ,๐‘ก) for ๐‘ฅโˆˆฮ“ and ๐‘กโˆˆ[โˆ’ฮ”,0), ๐‘|ฮฉ(๐‘ฅ,๐‘ก;๐‘ฃโˆ—)=0 and consequently ๐‘|ฮ“(๐‘ฅ,๐‘ก;๐‘ฃโˆ—)=0 for ๐‘กโˆˆ[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡), we obtain ๐œ†1๎€œ๐‘„๎€บ๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ปร—๎€ท๐‘ฆ(๐‘ฃ)โˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธ๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘ก=๎€œ๐‘‡0๎€œฮ“๐‘๎€ท๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘ก.(4.19)

Substituting (4.19) into (4.5) gives ๎€œ๐‘‡0๎€œฮ“๎€ท๐‘๎€ท๐‘ฃโˆ—๎€ธ+๐œ†2๐‘๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.20)

The foregoing result is now summarized.

Theorem 4.2. For the problem (3.1)โ€“(3.5), with the performance functional (4.1) with ๐‘ง๐‘‘โˆˆ๐ฟ2(๐‘„) and ๐œ†2>0 and with constraints on controls (4.2), there exists a unique optimal control ๐‘ฃโˆ— which satisfies the maximum condition (4.20).

4.1. Mathematical Examples

Example 4.3. Consider now the particular case where ๐‘ˆad=๐‘ˆ=๐ฟ2(ฮฃ) (no constraints case). Thus the maximum condition (4.20) is satisfied when ๐‘ฃโˆ—=โˆ’๐œ†2๐‘โˆ’1๐‘๎€ท๐‘ฃโˆ—๎€ธ.(4.21) If ๐‘ is the identity operator on ๐ฟ2(ฮฃ), then from Lemma 4.1 it follows that ๐‘ฃโˆ—โˆˆ๐‘Šโˆž,1(๐‘„).

Example 4.4. We can also consider an analogous optimal control problem where the performance functional is given by: ๐ผ(๐‘ฃ)=๐œ†1๎€œฮฃ๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ฃ)โˆฃฮฃโˆ’๐‘ง๐‘‘๎€ป2๐‘‘ฮ“๐‘‘๐‘ก+๐œ†2๎€œฮฃ(๐‘๐‘ฃ)๐‘ฃ๐‘‘ฮ“๐‘‘๐‘ก,(4.22) where ๐‘ง๐‘‘โˆˆ๐ฟ2(ฮฃ).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each ๐‘ฃโˆˆ๐ฟ2(ฮฃ), there exists a unique solution ๐‘ฆ(๐‘ฃ)โˆˆ๐‘Šโˆž,1(๐‘„) with ๐‘ฆโˆฃฮฃโˆˆ๐ฟ2(ฮฃ). Thus, ๐ผ(๐‘ฃ) is well defined. Then, the optimal control ๐‘ฃโˆ— is characterized by: ๐œ†1๎€œฮฃ๎€ท๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆฃฮฃโˆ’๐‘ง๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ฃ)โˆฃฮฃโˆ’๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆฃฮฃ๎€ป๐‘‘ฮ“๐‘‘๐‘ก+๐œ†2๎€œฮฃ๐‘๐‘ฃโˆ—๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.23) We define the adjoint variable ๐‘=๐‘(๐‘ฃโˆ—)=๐‘(๐‘ฅ,๐‘ก;๐‘ฃโˆ—) as the solution of the equations: โˆ’๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ฃโˆ—๎€ธ+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃโˆ—๎€ธ๐‘‘โ„Ž๐‘–=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,โˆ’๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ฃโˆ—๎€ธ=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),๐‘๎€ท๐‘ฅ,๐‘‡;๐‘ฃโˆ—๎€ธ=0,๐‘ฅโˆˆฮฉ,๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡),๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃโˆ—๎€ธ๐‘‘๐‘˜๐‘ +๐œ†1๎€ท๐‘ฆ๐‘ฃโˆ—โˆฃฮฃโˆ’๐‘งฮฃ๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”(๐‘‡)),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘๎€ท๐‘ฃโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=๐œ†1๎€ท๐‘ฆ๎€ท๐‘ฃโˆ—๎€ธโˆฃฮฃโˆ’๐‘งฮฃ๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(๐‘‡โˆ’ฮ”(๐‘‡),๐‘‡).(4.24) As in the above section, we have the following result.

Lemma 4.5. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given ๐‘งฮฃ๐‘‘โˆˆ๐ฟ2(ฮฃ) and any ๐‘ฃโˆˆ๐ฟ2(ฮฃ), there exists a unique solution ๐‘(๐‘ฃโˆ—)โˆˆ๐‘Šโˆž,1(๐‘„) to the adjoint problem (4.24).

Using the adjoint equations (4.24)in this case, the condition (4.23) can also be written in the following form: ๎€œ๐‘‡0๎€œฮ“๎€ท๐‘๎€ท๐‘ฃโˆ—๎€ธ+๐œ†2๐‘๐‘ฃโˆ—๎€ธ๎€ท๐‘ฃโˆ’๐‘ฃโˆ—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃโˆˆ๐‘ˆad.(4.25) The following result is now summarized.

Theorem 4.6. For the problem (3.1)โ€“(3.5) with the performance function (4.22) with ๐‘งฮฃ๐‘‘โˆˆ๐ฟ2(ฮฃ) and ๐œ†2>0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal control ๐‘ฃโˆ— which satisfies the maximum condition (4.25).

Example 4.7 (๐‘ขโˆˆ๐ฟ2(๐‘„)). We can also consider an analogous optimal control problem where the performance functional is given by: ๐ผ(๐‘ข)=๐œ†1๎€œ๐‘„๎€บ๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ข)โˆ’๐‘ง๐‘‘๎€ป2๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œ๐‘„(๐‘๐‘ข)๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘ก,(4.26) where ๐‘ง๐‘‘โˆˆ๐ฟ2(๐‘„).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each ๐‘ขโˆˆ๐ฟ2(๐‘„), there exists a unique solution ๐‘ฆ(๐‘ข)โˆˆ๐‘Šโˆž,1(๐‘„). Thus, ๐ผ is well defined. Then, the optimal control ๐‘ขโˆ— is characterized by: ๐œ†1๎€œ๐‘„๎€ท๐‘ฆ๎€ท๐‘ขโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ข)โˆ’๐‘ฆ๎€ท๐‘ขโˆ—๎€ธ๎€ป๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œ๐‘„๐‘๐‘ขโˆ—๎€ท๐‘ขโˆ’๐‘ขโˆ—๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ขโˆˆ๐‘ˆad.(4.27) We define the adjoint variable ๐‘=๐‘(๐‘ขโˆ—)=๐‘(๐‘ฅ,๐‘ก;๐‘ขโˆ—) as the solution of the equations: โˆ’๐œ•๐‘๎€ท๐‘ขโˆ—๎€ธ๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ขโˆ—๎€ธ+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ขโˆ—๎€ธ๐‘‘โ„Ž๐‘–=๐œ†1๎€ท๐‘ฆ๎€ท๐‘ขโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,โˆ’๐œ•๐‘๎€ท๐‘ขโˆ—๎€ธ๐œ•๐‘ก+๐’œโˆ—(๐‘ก)๐‘๎€ท๐‘ขโˆ—๎€ธ=๐œ†1๎€ท๐‘ฆ๎€ท๐‘ขโˆ—๎€ธโˆ’๐‘ง๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),๐‘๎€ท๐‘ฅ,๐‘‡;๐‘ขโˆ—๎€ธ=0,๐‘ฅโˆˆฮฉ,๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ขโˆ—๎€ธ=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡),๐œ•๐‘๎€ท๐‘ขโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ขโˆ—๎€ธ๐‘‘๐‘˜๐‘ ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”(๐‘‡)),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘๎€ท๐‘ขโˆ—๎€ธ๐œ•๐œˆ๐’œโˆ—(๐‘ฅ,๐‘ก)=0,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(๐‘‡โˆ’ฮ”(๐‘‡),๐‘‡).(4.28) As in the above section, we have the following result.

Lemma 4.8. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given ๐‘ง๐‘‘โˆˆ๐ฟ2(๐‘„) and any ๐‘ขโˆˆ๐ฟ2(๐‘„), there exists a unique solution ๐‘(๐‘ขโˆ—)โˆˆ๐‘Šโˆž,1(๐‘„) to the adjoint problem (4.28).
Using the adjoint equations (4.28) in this case, the condition (4.27) can also be written in the following form: ๎€œ๐‘„๎€ท๐‘๎€ท๐‘ขโˆ—๎€ธ+๐œ†2๐‘๐‘ขโˆ—๎€ธ๎€ท๐‘ขโˆ’๐‘ขโˆ—๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ขโˆˆ๐‘ˆ๐‘Ž๐‘‘.(4.29) The following result is now summarized.

Theorem 4.9. For the problem (3.1)โ€“(3.5) with the performance function (4.26) with ๐‘ง๐‘‘โˆˆ๐ฟ2(๐‘„) and ๐œ†2>0, and with constraint (4.2), and with adjoint equations (4.28), there exists a unique optimal control ๐‘ขโˆ— which satisfies the maximum condition (4.29).

Example 4.10. We can also consider an analogous optimal control problem where the performance functional is given by: ๐ผ(๐‘ข)=๐œ†1๎€œฮฃ๎€บ๐‘ฆโˆฃฮฃ(๐‘ฅ,๐‘ก;๐‘ข)โˆ’๐‘งฮฃ๐‘‘๎€ป2๐‘‘ฮ“๐‘‘๐‘ก+๐œ†2๎€œ๐‘„(๐‘๐‘ข)๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘ก,(4.30) where ๐‘งฮฃ๐‘‘โˆˆ๐ฟ2(ฮฃ).

From Theorem 3.4 and the Trace Theorem [20, Vol. 2, page 9], for each ๐‘ขโˆˆ๐ฟ2(๐‘„), there exists a unique solution ๐‘ฆ(๐‘ข)โˆˆ๐‘Šโˆž,1(๐‘„) with ๐‘ฆโˆฃฮฃโˆˆ๐ฟ2(ฮฃ). Thus, ๐ผ is well defined. Then, the optimal control ๐‘ขโˆ— is characterized by: ๐œ†1๎€œฮฃ๎€ท๐‘ฆ๎€ท๐‘ขโˆ—๎€ธโˆ’๐‘งฮฃ๐‘‘๎€ธ๎€บ๐‘ฆ(๐‘ข)โˆ’๐‘ฆ๎€ท๐‘ขโˆ—๎€ธ๎€ป๐‘‘ฮ“๐‘‘๐‘ก+๐œ†2๎€œ๐‘„๐‘๐‘ขโˆ—๎€ท๐‘ขโˆ’๐‘ขโˆ—๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ขโˆˆ๐‘ˆad.(4.31)

The above inequality can be simplified by introducing an adjoint equation, the form of which is identical to (4.24). Then using Theorem 3.4 we can establish the existence of a unique solution ๐‘=๐‘(๐‘ขโˆ—)=๐‘(๐‘ฅ,๐‘ก;๐‘ขโˆ—)โˆˆ๐‘Šโˆž,1(๐‘„) for (4.24).

As in the above section, we have the following result.

Lemma 4.11. Let the hypothesis of Theorem 3.4 be satisfied. Then, for given ๐‘งฮฃ๐‘‘โˆˆ๐ฟ2(ฮฃ) and any ๐‘ขโˆˆ๐ฟ2(๐‘„), there exists a unique solution ๐‘(๐‘ขโˆ—)โˆˆ๐‘Šโˆž,1(๐‘„) to the adjoint problem (4.24)โ€“(37).
Using the adjoint equations (4.24)โ€“(37) in this case, the condition (4.31) can also be written in the following form: ๎€œ๐‘„๎€ท๐‘๎€ท๐‘ขโˆ—๎€ธ+๐œ†2๐‘๐‘ขโˆ—๎€ธ๎€ท๐‘ขโˆ’๐‘ขโˆ—๎€ธ๐‘‘๐‘ฅ๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ขโˆˆ๐‘ˆ๐‘Ž๐‘‘.(4.32) The following result is now summarized.

Theorem 4.12. For the problem (3.1)โ€“(3.5) with the performance function (4.30) with ๐‘งฮฃ๐‘‘โˆˆ๐ฟ2(ฮฃ) and ๐œ†2>0, and with constraint (4.2), and with adjoint equations (4.24), there exists a unique optimal control ๐‘ขโˆ— which satisfies the maximum condition (4.32).

5. Generalization

The optimal control problems presented here can be extended to certain different two cases. Case 1: optimal control for 2ร—2 coupled infinite order parabolic systems with multiple time delays. Case 2: optimal control for ๐‘›ร—๐‘› coupled infinite order parabolic systems with multiple time delays. Such extension can be applied to solving many control problems in mechanical engineering.

Case 1 (optimal control for 2ร—2 coupled infinite order parabolic systems with multiple time delays). We can extend the discussions to study the optimal control for 2ร—2 coupled infinite order parabolic systems with multiple time delays. We consider the case where ๐‘ฃ=(๐‘ฃ1,๐‘ฃ2)โˆˆ๐ฟ2(ฮฃ)ร—๐ฟ2(ฮฃ), the performance functional is given by [15, 16]: ๐ผ(๐‘ฃ)=๐ผ1(๐‘ฃ)+๐ผ2(๐‘ฃ)=2๎“๐‘–=1๎‚ต๐œ†1๎€œ๐‘„๎€บ๐‘ฆ๐‘–(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ง๐‘–๐‘‘๎€ป2๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œฮฃ๎€ท๐‘๐‘–๐‘ฃ๐‘–๎€ธ๐‘ฃ๐‘–๐‘‘๐‘ฅ๐‘‘๐‘ก๎‚ถ,(5.1) where ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘)โˆˆ(๐ฟ2(๐‘„))2.

The following results can now be proved.

Theorem 5.1. Let ๐‘ฆ0, ฮฆ0,ฮจ0, ๐‘ฃ, and ๐‘ข be given with ๐‘ฆ0=(๐‘ฆ0,1,๐‘ฆ0,2)โˆˆ(๐‘Šโˆž{๐›ผ๐›ผ,2}(ฮฉ))2, ฮจ0=(ฮจ0,1,ฮจ0,2)โˆˆ(๐ฟ2(ฮฃ0))2,ฮฆ0=(ฮฆ0,1,ฮฆ0,2)โˆˆ(๐‘Šโˆž,1(๐‘„0))2,๐‘ฃ=(๐‘ฃ1,๐‘ฃ2)โˆˆ(๐ฟ2(ฮฃ))2, and ๐‘ข=(๐‘ข1,๐‘ข2)โˆˆ(๐‘Šโˆ’โˆž,โˆ’1(๐‘„))2. Then, there exists a unique solution ๐‘ฆ=(๐‘ฆ1,๐‘ฆ2)โˆˆ(๐‘Šโˆ’โˆž,1(๐‘„))2 for the following mixed initial-boundary value problem: ๐œ•๐‘ฆ1๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘ฆ1+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–(๐‘ฅ,๐‘ก)๐‘ฆ1๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–๎€ธ๐‘‘โ„Ž๐‘–โˆ’๐‘ฆ2=๐‘ข1,in๐‘„,โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,๐œ•๐‘ฆ2๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘ฆ2+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–(๐‘ฅ,๐‘ก)๐‘ฆ2๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–๎€ธ๐‘‘โ„Ž๐‘–+๐‘ฆ1=๐‘ข2,in๐‘„,โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,๐‘ฆ1๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ข๎€ธ=ฮฆ0,1๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮฉร—[โˆ’ฮ”,0),๐‘ฆ2๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ข๎€ธ=ฮฆ0,2๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮฉร—[โˆ’ฮ”,0),๐‘ฆ1(๐‘ฅ,0;๐‘ข)=๐‘ฆ0,1,๐‘ฅโˆˆฮฉ,๐‘ฆ2(๐‘ฅ,0;๐‘ข)=๐‘ฆ0,2,๐‘ฅโˆˆฮฉ,๐œ•๐‘ฆ1๐œ•๐œˆ๐’œ(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ 1(๐‘ฅ,๐‘ก)๐‘ฆ1๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ๎€ธ๐‘‘๐‘˜๐‘ +๐‘ฃ1,onฮฃ,๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘ฆ2๐œ•๐œˆ๐’œ=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ 2(๐‘ฅ,๐‘ก)๐‘ฆ2๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ๎€ธ๐‘‘๐‘˜๐‘ +๐‘ฃ2,onฮฃ,๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐‘ฆ1๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ข๎€ธ=ฮจ0,1๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮ“ร—[โˆ’ฮ”,0),๐‘ฆ2๎€ท๐‘ฅ,๐‘ก๎…ž;๐‘ข๎€ธ=ฮจ0,2๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,(๐‘ฅ,๐‘กโ€ฒ)โˆˆฮ“ร—[โˆ’ฮ”,0),(5.2) where ๐‘ฆโ‰ก๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ข)=๎€ท๐‘ฆ1(๐‘ฅ,๐‘ก;๐‘ข),๐‘ฆ2(๐‘ฅ,๐‘ก;๐‘ข)๎€ธโˆˆ๎€ท๐‘Šโˆž,1(๐‘„)๎€ธ2,๐‘ขโ‰ก๐‘ข(๐‘ฅ,๐‘ก)=๎€ท๐‘ข1(๐‘ฅ,๐‘ก),๐‘ข2(๐‘ฅ,๐‘ก)๎€ธโˆˆ๎€ท๎€ท๐‘Šโˆž,1(๐‘„)๎€ธ๎…ž๎€ธ2,๐‘ฃโ‰ก๐‘ฃ(๐‘ฅ,๐‘ก)=๎€ท๐‘ฃ1(๐‘ฅ,๐‘ก),๐‘ฃ2(๐‘ฅ,๐‘ก)๎€ธโˆˆ๎€ท๐ฟ2(ฮฃ)๎€ธ2.(5.3)

Lemma 5.2. Let the hypothesis of Theorem 5.1 be satisfied. Then for given ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘)โˆˆ(๐ฟ2(๐‘„))2 and any ๐‘ฃ=(๐‘ฃ1,๐‘ฃ2)โˆˆ(๐ฟ2(ฮฃ))2, there exists a unique solution ๐‘(๐‘ฃ)=(๐‘1(๐‘ฃ),๐‘2(๐‘ฃ))โˆˆ(๐‘Šโˆž,1(๐‘„))2 for the adjoint problem: โˆ’๐œ•๐‘1(๐‘ฃ)๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘1(๐‘ฃ)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘1๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃ๎€ธ๐‘‘โ„Ž๐‘–+๐‘2(๐‘ฃ)=๐œ†1๎€ท๐‘ฆ1(๐‘ฃ)โˆ’๐‘ง1๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,โˆ’๐œ•๐‘2(๐‘ฃ)๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘2(๐‘ฃ)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘2๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃ๎€ธ๐‘‘โ„Ž๐‘–โˆ’๐‘1(๐‘ฃ)=๐œ†1๎€ท๐‘ฆ2(๐‘ฃ)โˆ’๐‘ง2๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,๐œ•๐‘1(๐‘ฃ)๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘1(๐‘ฃ)=๐œ†1๎€ท๐‘ฆ1(๐‘ฃ)โˆ’๐‘ง1๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),๐œ•๐‘2(๐‘ฃ)๐œ•๐‘ก+โŽ›โŽœโŽโˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽ ๐‘2(๐‘ฃ)=๐œ†1๎€ท๐‘ฆ2(๐‘ฃ)โˆ’๐‘ง2๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),๐‘1(๐‘ฅ,๐‘‡;๐‘ฃ)=0,๐‘2(๐‘ฅ,๐‘‡;๐‘ฃ)=0,๐‘ฅโˆˆฮฉ,๐‘1(๐‘ฅ,๐‘ก;๐‘ฃ)=0,๐‘2(๐‘ฅ,๐‘ก;๐‘ฃ)=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡),๐œ•๐‘1(๐‘ฅ,๐‘ก;๐‘ฃ)๐œ•๐œˆ๐’œโˆ—=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ 1๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘1๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃ๎€ธ๐‘‘๐‘˜๐‘ ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘2(๐‘ฅ,๐‘ก;๐‘ฃ)๐œ•๐œˆ๐’œโˆ—=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ 2๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘2๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃ๎€ธ๐‘‘๐‘˜๐‘ ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘1(๐‘ฅ,๐‘ก)๐œ•๐œˆ๐’œโˆ—=0,๐œ•๐‘2(๐‘ฅ,๐‘ก)๐œ•๐œˆ๐’œโˆ—=0,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(๐‘‡โˆ’ฮ”(๐‘‡),๐‘‡).(5.4)

Theorem 5.3. The optimal control ๐‘ฃโˆ—โ‰ก๐‘ฃโˆ—(๐‘ฅ,๐‘ก)=(๐‘ฃโˆ—1(๐‘ฅ,๐‘ก),๐‘ฃโˆ—2(๐‘ฅ,๐‘ก))โˆˆ(๐ฟ2(ฮฃ))2 is characterized by the following maximum condition: ๎€œ๐‘‡0๎€œฮ“๎€ท๎€บ๐‘1๎€ท๐‘ฃโˆ—๎€ธ+๐œ†2๐‘1๐‘ฃโˆ—1๎€ป๎€ท๐‘ฃ1โˆ’๐‘ฃโˆ—1๎€ธ+๎€บ๐‘2๎€ท๐‘ฃโˆ—๎€ธ+๐œ†2๐‘2๐‘ฃโˆ—2๎€ป๎€ท๐‘ฃ2โˆ’๐‘ฃโˆ—2๎€ธ๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃ=๎€ท๐‘ฃ1,๐‘ฃ2๎€ธโˆˆ๎€ท๐ฟ2(ฮฃ)๎€ธ2,(5.5) where ๐‘โ‰ก๐‘(๐‘ฅ,๐‘ก;๐‘ฃ)=(๐‘1(๐‘ฅ,๐‘ก;๐‘ฃ),๐‘2(๐‘ฅ,๐‘ก;๐‘ฃ))โˆˆ(๐‘Šโˆž,1(๐‘„))2 is the adjoint state.

The foregoing result is now summarized.

Theorem 5.4. For the problem (5.2) with the performance function (5.1) with ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘)โˆˆ(๐ฟ2(๐‘„))2 and ๐œ†2>0, and with constraint: ๐‘ˆ๐‘Ž๐‘‘ is closed, convex subset of (๐ฟ2(ฮฃ))2, and with adjoint problem (5.4), then there exists a unique optimal control ๐‘ฃโˆ—โ‰ก๐‘ฃโˆ—(๐‘ฅ,๐‘ก)=(๐‘ฃโˆ—1(๐‘ฅ,๐‘ก),๐‘ฃโˆ—2(๐‘ฅ,๐‘ก))โˆˆ(๐ฟ2(ฮฃ))2 which satisfies the maximum condition (5.5).

Case 2 (optimal control for (๐‘›ร—๐‘›) coupled infinite order parabolic systems with multiple time delays). We will extend the discussion to (๐‘›ร—๐‘›) coupled infinite order parabolic systems. We consider the case where ๐‘ฃ=(๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›)โˆˆ((๐ฟ2(ฮฃ))๐‘›, the performance functional is given by [15, 16]: ๐ผ(๐‘ฃ)=๐‘›๎“๐‘—=1๎‚ต๐œ†1๎€œ๐‘„๎€บ๐‘ฆ๐‘—(๐‘ฅ,๐‘ก;๐‘ฃ)โˆ’๐‘ง๐‘—๐‘‘๎€ป2๐‘‘๐‘ฅ๐‘‘๐‘ก+๐œ†2๎€œฮฃ๎€ท๐‘๐‘—๐‘ฃ๐‘—๎€ธ๐‘ฃ๐‘—๐‘‘๐‘ฅ๐‘‘๐‘ก๎‚ถ,(5.6) where ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘,โ€ฆ,๐‘ง๐‘›๐‘‘)โˆˆ(๐ฟ2(๐‘„))๐‘›.

The following results can now be proved.

Theorem 5.5. Let ๐‘ฆ0, ฮฆ0, ฮจ0, ๐‘ฃ, and ๐‘ข be given with ๐‘ฆ๐‘=(๐‘ฆ๐‘,1,๐‘ฆ๐‘,2,โ€ฆ,๐‘ฆ๐‘,๐‘›)โˆˆ(๐‘Šโˆž{๐‘Ž๐›ผ,2}(ฮฉ))๐‘›, ฮฆ0=(ฮฆ0,1,ฮฆ0,2,โ€ฆ,ฮฆ0,๐‘›)โˆˆ(๐‘Šโˆž,1(๐‘„0))๐‘›, ฮจ0=(ฮจ0,1,ฮจ0,2,โ€ฆ,ฮจ0,๐‘›)โˆˆ(๐ฟ2(ฮฃ0))๐‘›, ๐‘ฃ=(๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›)โˆˆ(๐ฟ2(ฮฃ0))๐‘›, and ๐‘ข=(๐‘ข1,๐‘ข2,โ€ฆ,๐‘ข๐‘›)โˆˆ(๐‘Šโˆ’โˆž,โˆ’1(๐‘„))๐‘›. Then, there exists a unique solution ๐‘ฆ=(๐‘ฆ1,๐‘ฆ2,โ€ฆ,๐‘ฆ๐‘›)โˆˆ(๐‘Šโˆž,1(๐‘„0))๐‘› for the following mixed initial-boundary value problem: forall๐‘—,๐‘—=1,2,โ€ฆ,๐‘› one has ๐œ•๐‘ฆ๐‘—๐œ•๐‘ก+๐’ฎ(๐‘ก)๐‘ฆ๐‘—(๐‘ฅ,๐‘ก)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–(๐‘ฅ,๐‘ก)๐‘ฆ๐‘—๎€ท๐‘ฅ,๐‘กโˆ’โ„Ž๐‘–๎€ธ๐‘‘โ„Ž๐‘–=๐‘ข๐‘—,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,๐‘ฆ๐‘—(๐‘ฅ,๐‘กโ€ฒ)=ฮฆ0,๐‘—๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮฉร—[โˆ’ฮ”,0),๐‘ฆ๐‘—(๐‘ฅ,0)=๐‘ฆ0,๐‘—(๐‘ฅ),๐‘ฅโˆˆฮฉ,๐œ•๐‘ฆ๐‘—๐œ•๐œˆ๐’ฎ(๐‘ฅ,๐‘ก)=๐‘™๎“๐’ฎ=1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ (๐‘ฅ,๐‘ก)๐‘ฆ๐‘—๎€ท๐‘ฅ,๐‘กโˆ’๐‘˜๐‘ ๎€ธ๐‘‘๐‘˜๐‘ +๐‘ฃ๐‘—,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐‘ฆ๐‘—๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ=ฮจ0,๐‘—๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธ,๎€ท๐‘ฅ,๐‘ก๎…ž๎€ธโˆˆฮ“ร—[โˆ’ฮ”,0),(5.7) where ๐‘ฆโ‰ก๐‘ฆ(๐‘ฅ,๐‘ก;๐‘ข)=๎€ท๐‘ฆ1(๐‘ฅ,๐‘ก;๐‘ข),๐‘ฆ2(๐‘ฅ,๐‘ก;๐‘ข),โ€ฆ,๐‘ฆ๐‘›(๐‘ฅ,๐‘ก;๐‘ข)๎€ธโˆˆ๎€ท๐‘Šโˆž,1(๐‘„)๎€ธ๐‘›,๐‘ขโ‰ก๐‘ข(๐‘ฅ,๐‘ก)=๎€ท๐‘ข1(๐‘ฅ,๐‘ก),๐‘ข2(๐‘ฅ,๐‘ก),โ€ฆ,๐‘ข๐‘›(๐‘ฅ,๐‘ก)๎€ธโˆˆ๎€ท๐‘Šโˆ’โˆž,โˆ’1(๐‘„)๎€ธ๐‘›,๐‘ฃโ‰ก๐‘ฃ(๐‘ฅ,๐‘ก)=๎€ท๐‘ฃ1(๐‘ฅ,๐‘ก),๐‘ฃ2(๐‘ฅ,๐‘ก),โ€ฆ,๐‘ฃ๐‘›(๐‘ฅ,๐‘ก)๎€ธโˆˆ๎€ท๐ฟ2(ฮฃ)๎€ธ๐‘›.(5.8) The operator ๐’ฎ(๐‘ก) is an ๐‘›ร—๐‘› matrix takes the form [15, 16, 18, 22]: ๐’ฎ(๐‘ก)=โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽโˆžโˆ‘|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โˆ’1โ‹…โ‹…โˆ’11โˆžโˆ‘|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โ‹…โ‹…โˆ’1โ‹…โ‹…โ‹…โ‹…โ‹…โ‹…โ‹…โ‹…โ‹…โ‹…11โ‹…โ‹…โˆžโˆ‘|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ+1โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘›ร—๐‘›,(5.9) that is ๐’ฎ(๐‘ก)๐‘ฆ๐‘—(๐‘ฅ)=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ๐‘ฆ๐‘—(๐‘ฅ)+๐‘›๎“๐‘Ÿ=1๐ต๐‘—๐‘Ÿ๐‘ฆ๐‘—(๐‘ฅ),โˆ€๐‘—,๐‘—=1,2,โ€ฆ,๐‘›,(5.10) where ๐ต๐‘—๐‘Ÿ=๎‚ป1,if๐‘—โ‰ฅ๐‘Ÿ,โˆ’1,if๐‘—<๐‘Ÿ.(5.11)

Lemma 5.6. Let the hypothesis of Theorem 5.5 be satisfied. Then for given ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘,โ€ฆ,๐‘ง๐‘›๐‘‘)โˆˆ(๐ฟ2(๐‘„))๐‘› and any ๐‘ฃ(๐‘ฅ,๐‘ก)=(๐‘ฃ1(๐‘ฅ,๐‘ก),๐‘ฃ2(๐‘ฅ,๐‘ก),โ€ฆ,๐‘ฃ๐‘›(๐‘ฅ,๐‘ก))โˆˆ(๐ฟ2(ฮฃ))๐‘›, there exists a unique solution ๐‘(๐‘ฃ)โ‰ก๐‘(๐‘ฅ,๐‘ก;๐‘ฃ)=๎€ท๐‘1(๐‘ฅ,๐‘ก;๐‘ฃ),๐‘1(๐‘ฅ,๐‘ก;๐‘ฃ),โ€ฆ,๐‘๐‘›(๐‘ฅ,๐‘ก;๐‘ฃ)๎€ธโˆˆ๎€ท๐‘Šโˆž,1(๐‘„)๎€ธ๐‘›,(5.12) for the adjoint problem: forall๐‘—,๐‘—=1,2,โ€ฆ,๐‘›, one has โˆ’๐œ•๐‘๐‘—(๐‘ฃ)๐œ•๐‘ก+๐’ฎโˆ—(๐‘ก)๐‘๐‘—(๐‘ฃ)+๐‘š๎“๐‘–=1๎€œ๐‘๐‘–๐‘Ž๐‘–๐‘๐‘–๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–๎€ธ๐‘๐‘—๎€ท๐‘ฅ,๐‘ก+โ„Ž๐‘–;๐‘ฃ๎€ธ๐‘‘โ„Ž๐‘–=๐œ†1๎€ท๐‘ฆ๐‘—(๐‘ฃ)โˆ’๐‘ง๐‘—๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(0,๐‘‡โˆ’ฮ”),โ„Ž๐‘–โˆˆ๎€ท๐‘Ž๐‘–,๐‘๐‘–๎€ธ,๐œ•๐‘๐‘—(๐‘ฃ)๐œ•๐‘ก+๐’ฎโˆ—(๐‘ก)๐‘๐‘—(๐‘ฃ)=๐œ†๐‘—๎€ท๐‘ฆ๐‘—(๐‘ฃ)โˆ’๐‘ง๐‘—๐‘‘๎€ธ,(๐‘ฅ,๐‘ก)โˆˆฮฉร—(๐‘‡โˆ’ฮ”,๐‘‡),๐‘๐‘—(๐‘ฅ,๐‘‡,๐‘ฃ)=0,๐‘ฅโˆˆฮฉ,๐‘(๐‘ฅ,๐‘ก;๐‘ฃ)=0,(๐‘ฅ,๐‘ก)โˆˆฮฉร—[๐‘‡โˆ’ฮ”+๐œ†,๐‘‡),๐œ•๐‘๐‘—(๐‘ฃ)๐œ•๐œˆ๐’ฎโˆ—(๐‘ฅ,๐‘ก)=๐‘™๎“๐‘ =1๎€œ๐‘‘๐‘ ๐‘๐‘ ๐‘๐‘ ๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ๎€ธ๐‘๐‘—๎€ท๐‘ฅ,๐‘ก+๐‘˜๐‘ ;๐‘ฃ๎€ธ๐‘‘๐‘˜๐‘ ,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(0,๐‘‡โˆ’ฮ”),๐‘˜๐‘ โˆˆ๎€ท๐‘๐‘ ,๐‘‘๐‘ ๎€ธ,๐œ•๐‘๐‘—(๐‘ฃ)๐œ•๐œˆ๐’ฎโˆ—(๐‘ฅ,๐‘ก)=0,(๐‘ฅ,๐‘ก)โˆˆฮ“ร—(๐‘‡โˆ’ฮ”,๐‘‡),(5.13) where ๐’ฎโˆ—(๐‘ก)๐‘๐‘—(๐‘ฅ)=โˆž๎“|๐›ผ|=0(โˆ’1)|๐›ผ|๐‘Ž๐›ผ๐ท2๐›ผ๐‘๐‘—(๐‘ฅ)+๐‘›๎“๐‘Ÿ=1๐ต๐‘Ÿ๐‘—๐‘๐‘—(๐‘ฅ),โˆ€๐‘—,๐‘—=1,2,โ€ฆ,๐‘›,(5.14)๐ต๐‘Ÿ๐‘— are the transpose of ๐ต๐‘—๐‘Ÿ.

Theorem 5.7. The optimal control ๐‘ฃโˆ—โ‰ก๐‘ฃโˆ—(๐‘ฅ,๐‘ก)=(๐‘ฃโˆ—1(๐‘ฅ,๐‘ก),๐‘ฃโˆ—2(๐‘ฅ,๐‘ก),โ€ฆ,๐‘ฃโˆ—๐‘›(๐‘ฅ,๐‘ก))โˆˆ(๐ฟ2(ฮฃ))๐‘› is characterized by the following maximum condition: ๐‘›๎“๐‘—=1๎€œฮฃ๎€บ๐‘๐‘—๎€ท๐‘ฃโˆ—๎€ธ+๐œ†2๐‘๐‘—๐‘ฃโˆ—๐‘—๎€ป๎€ท๐‘ฃ๐‘—โˆ’๐‘ฃโˆ—๐‘—๎€ธ๐‘‘ฮ“๐‘‘๐‘กโ‰ฅ0,โˆ€๐‘ฃ=๎€ท๐‘ฃ1,๐‘ฃ2,โ€ฆ,๐‘ฃ๐‘›๎€ธโˆˆ๎€ท๐‘ˆ๐‘Ž๐‘‘๎€ธ๐‘›,(5.15) where ๐‘๎€ท๐‘ฃโˆ—๎€ธโ‰ก๐‘๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ=๎€ท๐‘1๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ,๐‘1๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ,โ€ฆ,๐‘๐‘›๎€ท๐‘ฅ,๐‘ก;๐‘ฃโˆ—๎€ธ๎€ธโˆˆ๎€ท๐‘Šโˆž,1(๐‘„)๎€ธ๐‘›(5.16) is the adjoint state.

The foregoing result is now summarized.

Theorem 5.8. For the problem (5.7) with the performance function (5.6) with ๐‘ง๐‘‘=(๐‘ง1๐‘‘,๐‘ง2๐‘‘,โ€ฆ,๐‘ง๐‘›๐‘‘)โˆˆ(๐ฟ2(๐‘„))๐‘› and ๐œ†2>0, and with constraint: ๐‘ˆ๐‘Ž๐‘‘ is closed, convex subset of (๐ฟ2(ฮฃ))๐‘›, and with adjoint equations (5.13), then there exists a unique optimal control ๐‘ฃโˆ—โ‰ก๐‘ฃโˆ—(๐‘ฅ,๐‘ก)=(๐‘ฃโˆ—1(๐‘ฅ,๐‘ก),๐‘ฃโˆ—2(๐‘ฅ,๐‘ก),โ€ฆ,๐‘ฃโˆ—๐‘›(๐‘ฅ,๐‘ก))โˆˆ(๐ฟ2(ฮฃ))๐‘› which satisfies the maximum condition (5.15).

In the case of performance functionals (4.1), (4.22), (4.26), (4.30), (5.1), and (5.6) with ๐œ†1>0 and ๐œ†2=0, the optimal control problem reduces to minimization of the functional on a closed and convex subset in a Hilbert space. Then, the optimization problem is equivalent to a quadratic programming one, which can be solved by the use of the well-known Gilbert algorithm.

6. Conclusions

The optimization problem presented in the paper constitutes a generalization of the optimal boundary control problem for second-order parabolic systems with Neumann boundary condition involving constant time lag appearing in the state and in the boundary conditions considered in [1, 5โ€“9, 14โ€“16, 18, 21, 32].

Moreover, the results obtained in this paper (Theorems 4.2, 4.6, 5.4, and 5.8) can be treated as a generalization of the optimization theorems proved by [8โ€“10]. Also the main result of the paper contains necessary and sufficient conditions of optimality for (๐‘›ร—๐‘›) infinite order parabolic systems with multiple time delays given in integral form both in the state equation and in the Neumann boundary condition that give characterization of optimal control (Theorem 5.8). But it is easily seen that obtaining analytical formulas for optimal control are very difficult. This results from the fact that state equations (5.7), adjoint equations (5.13), and maximum condition (5.15) are mutually connected that cause that the usage of derived conditions is difficult. Therefore we must resign from the exact determination of the optimal control and therefore we are forced to use approximation methods.

Also it is evident that by modifying:(i)the boundary conditions, (Dirichlet, Neumann, mixed, etc.),(ii)the nature of the control (distributed, boundary, etc.),(iii)the nature of the observation (distributed, boundary, etc.),(iv)the initial differential system,(v)the time delays (constant time delays, time-varying delays, multiple time-varying delays, time delays given in the integral form, etc.),(vi)the number of variables (finite number of variables, infinite number of variables systems, etc.),(vii)the type of equation (elliptic, parabolic, hyperbolic, etc.),(viii)the order of equation (second order, Schrรถdinger, infinite order, etc.),(ix)the type of control ( optimal control problem, time-optimal control problem, etc.),

an infinity of variations on the above problems are possible to study with the help of [19] and Dubovitskii-Milyutin formalisms [22โ€“27]. Those problems need further investigations and form tasks for future research. These ideas mentioned above will be developed in forthcoming papers.

Acknowledgments

The research presented here was carried out within the research programme of the Taibah University-Dean of Scientific Research under Project no. 806/1433. The author would like to express his gratitude to the anonymous reviewers for their very valuable remarks.