Abstract

Inspired by the very recent results of Wang and Xu (2010), we study properties of the approximating curve with 1-norm regularization method for the split feasibility problem (SFP). The concept of the minimum-norm solution set of SFP in the sense of 1-norm is proposed, and the relationship between the approximating curve and the minimum-norm solution set is obtained.

1. Introduction

Let 𝐢 and 𝑄 be nonempty closed convex subsets of real Hilbert spaces 𝐻1 and 𝐻2, respectively. The problem under consideration in this paper is formulated as finding a point π‘₯ satisfying the property: π‘₯∈𝐢,𝐴π‘₯βˆˆπ‘„,(1.1) where 𝐴∢𝐻1→𝐻2 is a bounded linear operator. Problem (1.1), referred to by Censor and Elfving [1] as the split feasibility problem (SFP), attracts many authors’ attention due to its application in signal processing [1]. Various algorithms have been invented to solve it (see [2–13] and references therein).

Using the idea of Tikhonov's regularization, Wang and Xu [14] studied the properties of the approximating curve for the SFP. They gave the concept of the minimum-norm solution of the SFP (1.1) and proved that the approximating curve converges strongly to the minimum-norm solution of the SFP (1.1). Together with some properties of this approximating curve, they introduced a modification of Byrne’s CQ algorithm [2] so that strong convergence is guaranteed and its limit is the minimum-norm solution of SFP (1.1).

In the practical application, 𝐻1 and 𝐻2 are often ℝ𝑁 and ℝ𝑀, respectively. Moreover, scientists and engineers are more willing to use 1-norm regularization method in the calculation process (see, e.g., [15–18]). Inspired by the above results of Wang and Xu [14], we study properties of the approximating curve with 1-norm regularization method. We also define the concept of the minimum-norm solution set of SFP (1.1) in the sense of 1-norm. The relationship between the approximating curve and the minimum-norm solution set is obtained.

2. Preliminaries

Let 𝑋 be a normed linear space with norm β€–β‹…β€–, and let π‘‹βˆ— be the dual space of 𝑋. We use the notation ⟨π‘₯,π‘“βŸ© to denote the value of π‘“βˆˆπ‘‹βˆ— at π‘₯βˆˆπ‘‹. In particular, if 𝑋 is a Hilbert space, we will denote it by 𝐻, and βŸ¨β‹…,β‹…βŸ© and β€–β‹…β€– are the inner product and its induced norm, respectively.

We recall some definitions and facts that are needed in our study.

Let 𝑃𝐢 denote the projection from 𝐻 onto a nonempty closed convex subset 𝐢 of 𝐻; that is, 𝑃𝐢π‘₯=argminπ‘¦βˆˆπΆβ€–π‘₯βˆ’π‘¦β€–,π‘₯∈𝐻.(2.1) It is well known that 𝑃𝐢π‘₯ is characterized by the inequality ⟨π‘₯βˆ’π‘ƒπΆπ‘₯,π‘¦βˆ’π‘ƒπΆπ‘₯βŸ©β‰€0,βˆ€π‘¦βˆˆπΆ.(2.2)

Definition 2.1. Let πœ‘βˆΆπ‘‹β†’β„βˆͺ{+∞} be a convex functional, π‘₯0∈dom(πœ‘)={π‘₯βˆˆπ‘‹βˆΆπœ‘(π‘₯)<+∞}. Set ξ€·π‘₯πœ•πœ‘0ξ€Έ=ξ€½πœ‰βˆˆπ‘‹βˆ—ξ€·π‘₯βˆΆπœ‘(π‘₯)β‰₯πœ‘0ξ€Έ+⟨π‘₯βˆ’π‘₯0ξ€Ύ,πœ‰βŸ©,βˆ€π‘₯βˆˆπ‘‹.(2.3) If πœ•πœ‘(π‘₯0)β‰ βˆ…, πœ‘ is said to be subdifferentiable at π‘₯0 and πœ•πœ‘(π‘₯0) is called the subdifferential of πœ‘ at π‘₯0. For any πœ‰βˆˆπœ•πœ‘(π‘₯0), we say πœ‰ is a subgradient of πœ‘ at π‘₯0.

Lemma 2.2. There holds the following property: ξ‚»ξ€½π‘₯πœ•(β€–π‘₯β€–)=βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—β€–=1,⟨π‘₯,π‘₯βˆ—ξ€Ύξ€½π‘₯⟩=β€–π‘₯β€–,π‘₯β‰ 0,βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—ξ€Ύβ€–β‰€1,π‘₯=0,(2.4) where πœ•(β€–π‘₯β€–) denotes the subdifferential of the functional β€–π‘₯β€– at π‘₯βˆˆπ‘‹.

Proof. The process of the proof will be divided into two parts.
Case  1. In the case of π‘₯=0, for any π‘₯βˆ—βˆˆπ‘‹βˆ— such that β€–π‘₯βˆ—β€–β‰€1 and any π‘¦βˆˆπ‘‹, there holds the inequality ‖𝑦‖β‰₯βŸ¨π‘¦,π‘₯βˆ—βŸ©=β€–π‘₯β€–+βŸ¨π‘¦βˆ’π‘₯,π‘₯βˆ—βŸ©,(2.5) so we have π‘₯βˆ—βˆˆπœ•(β€–π‘₯β€–), and thus, ξ€½π‘₯βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—ξ€Ύβ€–β‰€1βŠ‚πœ•(β€–π‘₯β€–).(2.6) Conversely, for any π‘₯βˆ—βˆˆπœ•(β€–π‘₯β€–), we have from the definition of subdifferential that ‖𝑦‖β‰₯β€–π‘₯β€–+βŸ¨π‘¦βˆ’π‘₯,π‘₯βˆ—βŸ©=βŸ¨π‘¦,π‘₯βˆ—βŸ©,βˆ€π‘¦βˆˆπ‘‹,‖𝑦‖=β€–βˆ’π‘¦β€–β‰₯βŸ¨βˆ’π‘¦,π‘₯βˆ—βŸ©=βˆ’βŸ¨π‘¦,π‘₯βˆ—βŸ©.(2.7) Consequently, ||βŸ¨π‘¦,π‘₯βˆ—βŸ©||≀‖𝑦‖,βˆ€π‘¦βˆˆπ‘‹,(2.8) and this implies that β€–π‘₯βˆ—β€–β‰€1. Thus, we have verified that πœ•ξ€½π‘₯(β€–π‘₯β€–)βŠ‚βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—ξ€Ύβ€–β‰€1.(2.9) Combining (2.6) and (2.9), we immediately obtain πœ•ξ€½π‘₯(β€–π‘₯β€–)=βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—ξ€Ύβ€–β‰€1.(2.10)
Case  2. If π‘₯β‰ 0, for any π‘₯βˆ—βˆˆ{π‘₯βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—β€–=1,⟨π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–}, we obviously have βŸ¨π‘¦βˆ’π‘₯,π‘₯βˆ—βŸ©=βŸ¨π‘¦,π‘₯βˆ—βŸ©βˆ’β€–π‘₯β€–β‰€β€–π‘¦β€–βˆ’β€–π‘₯β€–,βˆ€π‘¦βˆˆπ‘‹,(2.11) which means that π‘₯βˆ—βˆˆπœ•(β€–π‘₯β€–), and thus, ξ€½π‘₯βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—β€–=1,⟨π‘₯,π‘₯βˆ—ξ€ΎβŸ©=β€–π‘₯β€–βŠ‚πœ•(β€–π‘₯β€–).(2.12) Conversely, if π‘₯βˆ—βˆˆπœ•(β€–π‘₯β€–), we have βŸ¨βˆ’π‘₯,π‘₯βˆ—βŸ©β‰€0βˆ’β€–π‘₯β€–=βˆ’β€–π‘₯β€–,⟨π‘₯,π‘₯βˆ—βŸ©β‰€2β€–π‘₯β€–βˆ’β€–π‘₯β€–=β€–π‘₯β€–;(2.13) hence, ⟨π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–.(2.14) On the other hand, using (2.14), we get ‖𝑦‖β‰₯β€–π‘₯β€–+βŸ¨π‘¦βˆ’π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–+βŸ¨π‘¦,π‘₯βˆ—βŸ©βˆ’βŸ¨π‘₯,π‘₯βˆ—βŸ©=βŸ¨π‘¦,π‘₯βˆ—βŸ©,βˆ€π‘¦βˆˆπ‘‹,(2.15) and consequently, ‖𝑦‖=β€–βˆ’π‘¦β€–β‰₯β€–π‘₯β€–+βŸ¨βˆ’π‘¦βˆ’π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–βˆ’βŸ¨π‘¦,π‘₯βˆ—βŸ©βˆ’βŸ¨π‘₯,π‘₯βˆ—βŸ©=βˆ’βŸ¨π‘¦,π‘₯βˆ—βŸ©;(2.16) that is, βˆ’β€–π‘¦β€–β‰€βŸ¨π‘¦,π‘₯βˆ—βŸ©.(2.17) Equation (2.17) together with (2.15) implies that ||βŸ¨π‘¦,π‘₯βˆ—βŸ©||≀‖𝑦‖,βˆ€π‘¦βˆˆπ‘‹;(2.18) hence, β€–π‘₯βˆ—β€–β‰€1. Note that (2.14) implies that β€–π‘₯βˆ—β€–β‰₯⟨π‘₯,π‘₯βˆ—βŸ©/β€–π‘₯β€–=1; we assert that β€–π‘₯βˆ—β€–=1.(2.19) Thus we have from (2.14) and (2.19) that ξ€½π‘₯βˆ—βˆˆπ‘‹βˆ—βˆΆβ€–π‘₯βˆ—β€–=1,⟨π‘₯,π‘₯βˆ—ξ€ΎβŸ©=β€–π‘₯β€–βŠƒπœ•(β€–π‘₯β€–).(2.20) The proof is finished by combining (2.12) and (2.20).

β€–β‹…β€–βˆž and β€–β‹…β€–1 will stand for ∞-norm and 1-norm of any Euclidean space; respectively, that is, for any π‘₯=(π‘₯1,π‘₯2,…,π‘₯𝑙)βˆˆβ„π‘™, we have β€–π‘₯β€–βˆž=max1≀𝑗≀𝑙||π‘₯𝑗||,β€–π‘₯β€–1=𝑙𝑗=1||π‘₯𝑗||.(2.21)

Corollary 2.3. In l-dimensional Euclidean space ℝ𝑙, there holds the following result: πœ•ξ€·β€–π‘₯β€–1ξ€Έ=ξ‚»ξ€½πœ‰βˆˆβ„π‘™βˆΆβ€–πœ‰β€–βˆž=1,⟨π‘₯,πœ‰βŸ©=β€–π‘₯β€–1ξ€Ύξ€½,π‘₯β‰ 0,πœ‰βˆˆβ„π‘™βˆΆβ€–πœ‰β€–βˆžξ€Ύ=⎧βŽͺ⎨βŽͺβŽ©ξ‚»β‰€1,π‘₯=0,πœ‰βˆˆβ„π‘™βˆΆπœ‰π‘–=π‘₯𝑖||π‘₯𝑖||,ifπ‘₯𝑖≠0;πœ‰π‘–βˆˆ[]βˆ’1,1,ifπ‘₯𝑖=0,π‘₯β‰ 0,πœ‰βˆˆβ„π‘™βˆΆβ€–πœ‰β€–βˆžξ€Ύβ‰€1,π‘₯=0.(2.22) Let 𝐻 be a Hilbert space and π‘“βˆΆπ»β†’β„ a functional. Recall that (i)𝑓is convex if 𝑓(πœ†π‘₯+(1βˆ’πœ†)𝑦)β‰€πœ†π‘“(π‘₯)+(1βˆ’πœ†)𝑓(𝑦), for all 0<πœ†<1, for all π‘₯,π‘¦βˆˆπ»;(ii)𝑓 is strictly convex if 𝑓(πœ†π‘₯+(1βˆ’πœ†)𝑦)<πœ†π‘“(π‘₯)+(1βˆ’πœ†)𝑓(𝑦), for all 0<πœ†<1, for all π‘₯,π‘¦βˆˆπ» with π‘₯≠𝑦;(iii)𝑓 is coercive if 𝑓(π‘₯)β†’βˆž whenever β€–π‘₯β€–β†’βˆž. See [19] for more details about convex functions.

The following lemma gives the optimality condition for the minimizer of a convex functional over a closed convex subset.

Lemma 2.4 (see [20]). Let 𝐻 be a Hilbert space and 𝐢 a nonempty closed convex subset of 𝐻. Let π‘“βˆΆπ»β†’β„ be a convex and subdifferentiable functional. Then π‘₯∈𝐢 is a solution of the problem minπ‘₯βˆˆπΆπ‘“(π‘₯)(2.23) if and only if there exists some πœ‰βˆˆπœ•π‘“(π‘₯) satisfying the following optimality condition: βŸ¨πœ‰,π‘£βˆ’π‘₯⟩β‰₯0,βˆ€π‘£βˆˆπΆ.(2.24)

3. Main Results

It is well known that SFP (1.1) is equivalent to the minimization problem minπ‘₯βˆˆπΆβ€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄π‘₯2.(3.1) Using the idea of Tikhonov's regularization method, Wang and Xu [14] studied the minimization problem in Hilbert spaces: minπ‘₯βˆˆπΆβ€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄π‘₯2+𝛼‖π‘₯β€–2,(3.2) where 𝛼>0 is the regularization parameter.

In what follows, 𝐻1 and 𝐻2 in SFP (1.1) are restricted to ℝ𝑁 and ℝ𝑀, respectively, and β€–β‹…β€– will stand for the usual 2-norm of any Euclidean space ℝ𝑙; that is, for any π‘₯=(π‘₯1,π‘₯2,…,π‘₯𝑙)βˆˆβ„π‘™, ‖π‘₯β€–=π‘₯21+β‹―+π‘₯2𝑙.(3.3) Inspired by the above work of Wang and Xu, we study properties of the approximating curve with 1-norm regularization scheme for the SFP, that is, the following minimization problem: minπ‘₯∈𝐢12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄π‘₯2+𝛼‖π‘₯β€–1,(3.4) where 𝛼>0 is the regularization parameter. Let 𝑓𝛼1(π‘₯)=2β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄π‘₯2+𝛼‖π‘₯β€–1.(3.5) It is easy to see that 𝑓𝛼 is convex and coercive, so problem (3.4) has at least one solution. However, the solution of problem (3.4) may not be unique since 𝑓𝛼 is not necessarily strictly convex. Denote by 𝑆𝛼 the solution set of problem (3.4); thus we can assert that 𝑆𝛼 is a nonempty closed convex set but may contain more than one element. The following simple example illustrates this fact.

Example 3.1. Let 𝐢={(π‘₯,𝑦)∢π‘₯+𝑦=1}, 𝑄={(π‘₯,𝑦)∢π‘₯+𝑦=1/2} and βŽ›βŽœβŽœβŽ1𝐴=20012⎞⎟⎟⎠.(3.6) Then π΄βˆΆβ„2→ℝ2 is a bounded linear operator. Obviously, 𝑆𝛼={(π‘₯,𝑦)∢π‘₯+𝑦=1,π‘₯β‰₯0,𝑦β‰₯0} and it contains more than one element.

Proposition 3.2. For any 𝛼>0, π‘₯π›Όβˆˆπ‘†π›Ό if and only if there exists some πœ‰βˆˆπœ•(β€–π‘₯β€–1) satisfying the following inequality: ξ«π΄βˆ—ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼+π›Όπœ‰,π‘£βˆ’π‘₯𝛼β‰₯0,βˆ€π‘£βˆˆπΆ.(3.7)

Proof. Let 1𝑓(π‘₯)=2β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄π‘₯2,(3.8) then 𝑓𝛼(π‘₯)=𝑓(π‘₯)+𝛼‖π‘₯β€–1.(3.9) Since 𝑓 is convex and differentiable with gradient βˆ‡π‘“(π‘₯)=π΄βˆ—ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯,(3.10)𝑓𝛼 is convex, coercive, and subdifferentiable with the subdifferential πœ•π‘“π›Όξ€·(π‘₯)=πœ•π‘“(π‘₯)+π›Όπœ•β€–π‘₯β€–1ξ€Έ;(3.11) that is, πœ•π‘“π›Ό(π‘₯)=π΄βˆ—ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έξ€·π΄π‘₯+π›Όπœ•β€–π‘₯β€–1ξ€Έ.(3.12) By Corollary 2.3 and Lemma 2.4, the proof is finished.

Theorem 3.3. Denote by π‘₯𝛼 an arbitrary element of 𝑆𝛼, then the following assertions hold:(i)β€–π‘₯𝛼‖1 is decreasing for π›Όβˆˆ(0,∞);(ii)β€–(πΌβˆ’π‘ƒπ‘„)𝐴π‘₯𝛼‖ is increasing for π›Όβˆˆ(0,∞).

Proof. Let 𝛼>𝛽>0, for any π‘₯π›Όβˆˆπ‘†π›Ό, π‘₯π›½βˆˆπ‘†π›½. We immediately obtain 12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼‖‖2β€–β€–π‘₯+𝛼𝛼‖‖1≀12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛽‖‖2β€–β€–π‘₯+𝛼𝛽‖‖1,1(3.13)2β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛽‖‖2β€–β€–π‘₯+𝛽𝛽‖‖1≀12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼‖‖2β€–β€–π‘₯+𝛽𝛼‖‖1.(3.14) Adding up (3.13) and (3.14) yields 𝛼‖‖π‘₯𝛼‖‖1β€–β€–π‘₯+𝛽𝛽‖‖1β€–β€–π‘₯≀𝛼𝛽‖‖1β€–β€–π‘₯+𝛽𝛼‖‖1,(3.15) which implies β€–π‘₯𝛼‖1≀‖π‘₯𝛽‖1. Hence (i) holds.
Using (3.14) again, we have 12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛽‖‖2≀12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼‖‖2ξ€·β€–β€–π‘₯+𝛽𝛼‖‖1βˆ’β€–β€–π‘₯𝛽‖‖1ξ€Έ,(3.16) which together with (i) implies β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛽‖‖2β‰€β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼‖‖2,(3.17) and hence (ii) holds.

Let β„±=πΆβˆ©π΄βˆ’1(𝑄), where π΄βˆ’1(𝑄)={π‘₯βˆˆβ„π‘βˆΆπ΄π‘₯βˆˆπ‘„}. In what follows, we assume that β„±β‰ βˆ…; that is, the solution set of SFP (1.1) is nonempty. The fact that β„± is nonempty closed convex set thus allows us to introduce the concept of minimum-norm solution of SFP (1.1) in the sense of norm β€–β‹…β€– (induced by the inner product).

Definition 3.4 (see [14]). An element π‘₯β€ βˆˆβ„± is said to be the minimum-norm solution of SFP (1.1) in the sense of norm β€–β‹…β€– if β€–π‘₯†‖=infπ‘₯βˆˆβ„±β€–π‘₯β€–. In other words, π‘₯† is the projection of the origin onto the solution set β„± of SFP (1.1). Thus there exists only one minimum-norm solution of SFP (1.1) in the sense of norm β€–β‹…β€–, which is always denoted by π‘₯†.
We can also give the concept of minimum-norm solution of SFP (1.1) in other senses.

Definition 3.5. An element Μƒπ‘₯βˆˆβ„± is said to be a minimum-norm solution of SFP (1.1) in the sense π‘œπ‘“ 1-norm if β€–Μƒπ‘₯β€–1=infπ‘₯βˆˆβ„±β€–π‘₯β€–1. We use β„±1 to stand for all minimum-norm solutions of SFP (1.1) in the sense of 1-norm and β„±1 is called the minimum-norm solution set of SFP (1.1) in the sense of 1-norm.
Obviously, β„±1 is a closed convex subset of β„±. Moreover, it is easy to see that β„±1β‰ βˆ…. Indeed, taking a sequence {π‘₯𝑛}βŠ‚β„± such that β€–π‘₯𝑛‖1β†’infπ‘₯βˆˆβ„±β€–π‘₯β€–1 as π‘›β†’βˆž, then {π‘₯𝑛} is bounded. There exists a convergent subsequence {π‘₯π‘›π‘˜} of {π‘₯𝑛}. Set βˆ’π‘₯=limπ‘˜β†’βˆžπ‘₯π‘›π‘˜, then βˆ’π‘₯βˆˆβ„± since β„± is closed. On the other hand, using lower semicontinuity of the norm, we have β€–β€–βˆ’π‘₯‖‖≀limπ‘˜β†’βˆžβ€–β€–π‘₯π‘›π‘˜β€–β€–=infπ‘₯βˆˆβ„±β€–π‘₯β€–1,(3.18) and this implies that βˆ’π‘₯βˆˆβ„±1.
However, β„±1 may contain more than one elements, in general (see Example 3.1, β„±1={(π‘₯,𝑦)∢π‘₯+𝑦=1,π‘₯,𝑦β‰₯0}).

Theorem 3.6. Let 𝛼>0 and π‘₯π›Όβˆˆπ‘†π›Ό. Then πœ”(π‘₯𝛼)βŠ‚β„±1, where πœ”(π‘₯𝛼)={π‘₯βˆΆβˆƒ{π‘₯π›Όπ‘˜}βŠ‚{π‘₯𝛼},π‘₯π›Όπ‘˜β†’π‘₯π‘€π‘’π‘Žπ‘˜π‘™π‘¦}.

Proof. Taking Μƒπ‘₯βˆˆβ„±1 arbitrarily, for any π›Όβˆˆ(0,∞), we always have 12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝛼‖‖2β€–β€–π‘₯+𝛼𝛼‖‖1≀12β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έβ€–β€–π΄Μƒπ‘₯2+𝛼‖̃π‘₯β€–1.(3.19) Since Μƒπ‘₯ is a solution of SFP (1.1), β€–(πΌβˆ’π‘ƒπ‘„)𝐴̃π‘₯β€–=0. This implies that 12β€–β€–(πΌβˆ’π‘ƒπ‘„)𝐴π‘₯𝛼‖‖2β€–β€–π‘₯+𝛼𝛼‖‖1≀𝛼‖̃π‘₯β€–1,(3.20) then, β€–β€–π‘₯𝛼‖‖1≀‖̃π‘₯β€–1;(3.21) thus {π‘₯𝛼} is bounded.
Take πœ”βˆˆπœ”(π‘₯𝛼) arbitrarily, then there exists a sequence {𝛼𝑛} such that 𝛼𝑛→0 and π‘₯π›Όπ‘›β†’πœ” as π‘›β†’βˆž. Put π‘₯𝛼𝑛=π‘₯𝑛. By Proposition 3.2, we deduce that there exists some πœ‰π‘›βˆˆπœ•(β€–π‘₯𝑛‖1) such that ξ«π΄βˆ—ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛+π›Όπ‘›πœ‰π‘›,Μƒπ‘₯βˆ’π‘₯𝑛β‰₯0.(3.22) This implies that ξ«ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛,𝐴̃π‘₯βˆ’π‘₯𝑛β‰₯π›Όπ‘›βŸ¨πœ‰π‘›,π‘₯π‘›βˆ’Μƒπ‘₯⟩.(3.23) Since 𝐴̃π‘₯βˆˆπ‘„, the characterizing inequality (2.2) gives ξ«ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛,𝐴̃π‘₯βˆ’π‘ƒπ‘„ξ€·π΄π‘₯𝑛≀0,(3.24) then, β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛‖‖2β‰€ξ«ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛π‘₯,𝐴𝑛.βˆ’Μƒπ‘₯(3.25) Combining (3.23) and (3.25), we have β€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛‖‖2β‰€π›Όπ‘›βŸ¨πœ‰π‘›,Μƒπ‘₯βˆ’π‘₯π‘›βŸ©β‰€π›Όπ‘›β€–β€–πœ‰π‘›β€–β€–βˆžβ€–β€–Μƒπ‘₯βˆ’π‘₯𝑛‖‖1≀2𝛼𝑛‖̃π‘₯β€–1.(3.26) Consequently, we get limπ‘›β†’βˆžβ€–β€–ξ€·πΌβˆ’π‘ƒπ‘„ξ€Έπ΄π‘₯𝑛‖‖=0.(3.27) Furthermore, noting the fact that π‘₯π‘›β†’πœ” and πΌβˆ’π‘ƒπ‘„ and 𝐴 are all continuous operators, we have (πΌβˆ’π‘ƒπ‘„)π΄πœ”=0; that is, π΄πœ”βˆˆπ‘„; thus, πœ”βˆˆβ„±. Since Μƒπ‘₯ is a minimum-norm solution of SFP (1.1) in the sense of 1-norm, using (3.21) again, we get β€–πœ”β€–1≀liminfπ‘›β†’βˆžβ€–β€–π‘₯𝑛‖‖1≀‖̃π‘₯β€–1ξ€½=minβ€–π‘₯β€–1ξ€Ύ.∢π‘₯βˆˆβ„±(3.28) Thus we can assert that πœ”βˆˆβ„±1 and this completes the proof.

Corollary 3.7. If β„±1 contains only one element Μƒπ‘₯, then π‘₯𝛼→̃π‘₯, (𝛼→0).

Remark 3.8. It is worth noting that the minimum-norm solution of SFP (1.1) in the sense of norm β€–β‹…β€– is very different from the minimum-norm solution of SFP (1.1) in the sense of 1-norm. In fact, π‘₯† may not belong to β„±1! The following simple example shows this fact.

Example 3.9. Let 𝐢={(π‘₯,𝑦)∢π‘₯+2𝑦β‰₯2,π‘₯β‰₯0,𝑦β‰₯0},  𝑄={(π‘₯,𝑦)∢π‘₯+𝑦=1,π‘₯β‰₯0,𝑦β‰₯0}, and βŽ›βŽœβŽœβŽ1𝐴=20⎞⎟⎟⎠01.(3.29) It is not hard to see that π΄βˆΆβ„2→ℝ2 is a bounded linear operator and 𝐴(π‘₯,𝑦)𝑇=((1/2)π‘₯,𝑦)𝑇, for  all (π‘₯,𝑦)∈𝐢. Obviously, β„±={(π‘₯,𝑦)∢π‘₯+2𝑦=2,π‘₯β‰₯0,𝑦β‰₯0}, π‘₯†=(2/5,4/5), but β„±1={(0,1)}. Hence, π‘₯β€ βˆˆβ„±β§΅β„±1.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (ZXH2012K001) and in part by the Foundation of Tianjin Key Lab for Advanced Signal Processing. W. Zhu was also supported by the Postgraduate Science and Technology Innovation Funds (YJSCX12-22).