Abstract

This paper is concerned with delay-dependent stability for continuous systems with two additive time-varying delay components. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.

1. Introduction

Robust stability of dynamic interval systems covering interval matrices and interval polynomials has attracted considerable attention over last decades. Reference [1] presents some necessary and sufficient conditions for the quadratic stability and stabilization of dynamic interval systems. It is well known that time delay frequently occurs in many industrial and engineering systems, such as manufacturing systems, telecommunication, and economic systems, and is a major cause of instability and poor performance. Over the past decades, much efforts have been invested in the stability analysis of time-delay systems [2–16]. Reference [2] deals with the problem of quadratic stability analysis and quadratic stabilization for uncertain linear discrete time systems with state delay. Reference [3] deals with the quadratic stability and linear state-feedback and output-feedback stabilization of switched delayed linear dynamic systems. However, almost all the reported results mentioned above on time-delay systems are based on the following basic mathematical model:Μ‡π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐴𝑑π‘₯(π‘‘βˆ’π‘‘(𝑑)),(1.1) where 𝑑(𝑑) is a time delay in the state π‘₯(𝑑), which is often assumed to be either constant or time-varying satisfying certain conditions, for example,0⩽𝑑(𝑑)⩽̇𝑑<∞,𝑑(𝑑)⩽𝜏<∞.(1.2)

Sometimes in practical situations, however, signals transmitted from one point to another may experience a few segments of networks, which can possibly induce successive delays with different properties due to the variable network transmission conditions. Thus, in recent papers [15, 16], a new model for time-delay systems with multiple additive time-varying delay components has been proposed: Μ‡π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐴𝑑π‘₯ξ‚΅π‘‘βˆ’π‘›βˆ‘π‘–=1𝑑𝑖(ξ‚Ά,𝑑)(1.3)0⩽𝑑𝑖(𝑑)⩽𝑑𝑖̇𝑑<∞,𝑖(𝑑)β©½πœπ‘–<∞.(1.4) To make the stability analysis simpler, we proceed by considering the system (1.3) with two additive delay components as follows: Μ‡π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐴𝑑π‘₯ξ€·π‘‘βˆ’π‘‘1(𝑑)βˆ’π‘‘2ξ€Έ,[].(𝑑)π‘₯(𝑑)=πœ™(𝑑),π‘‘βˆˆβˆ’π‘‘,0(1.5) Here, π‘₯(𝑑)βˆˆβ„π‘› is the state vector; 𝑑1(𝑑) and 𝑑2(𝑑) represent the two delay components in the state, and we denote 𝑑(𝑑)=𝑑1(𝑑)+𝑑2(𝑑); 𝐴, 𝐴𝑑 are system matrices with appropriate dimensions. It is assumed that0⩽𝑑1(𝑑)⩽𝑑1̇𝑑<∞,1(𝑑)⩽𝜏1<∞,0⩽𝑑2(𝑑)⩽𝑑2̇𝑑<∞,2(𝑑)⩽𝜏2<∞,(1.6) and 𝑑=𝑑1+𝑑2, 𝜏=𝜏1+𝜏2. πœ™(𝑑) is the initial condition on the segment [βˆ’π‘‘,0].

The purpose of our paper is to derive new stability conditions under which system (1.5) is asymptotically stable for all delays 𝑑1(𝑑) and 𝑑2(𝑑) satisfying (1.6). One possible approach to check the stability of this system is to simply combine 𝑑1(𝑑) and 𝑑2(𝑑) into one delay 𝑑(𝑑) with0⩽𝑑(𝑑)⩽𝑑1+𝑑2Μ‡<∞,𝑑(𝑑)⩽𝜏1+𝜏2<∞.(1.7) Then, the system (1.5) becomes Μ‡π‘₯(𝑑)=𝐴π‘₯(𝑑)+𝐴𝑑π‘₯[].π‘₯(π‘‘βˆ’π‘‘(𝑑)),(𝑑)=πœ™(𝑑),π‘‘βˆˆβˆ’π‘‘,0(1.8) By using some existing stability conditions, the stability of system (1.8) can be readily checked. As discussed in [15, 16], however, since this approach does not make full use of the information on 𝑑1(𝑑) and 𝑑2(𝑑), it would be inevitably conservative for some situations. Recently, some new delay-dependent stability criteria have been obtained for system (1.5) in [15, 16], by making full use of the information on 𝑑1(𝑑) and 𝑑2(𝑑). However, the stability result is conservative because of overly bounding some integrals appearing in the derivative of the Lyapunov functional. On the one hand, the integral βˆ’βˆ«π‘‘π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 in [15] was enlarged as βˆ’βˆ«π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠, with βˆ’βˆ«π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 discarded. On the other hand, some integrals were estimated conservatively. Take βˆ’βˆ«π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 as an example, by introducing0=2πœπ‘‡π‘†ξ‚Έξ€·π‘₯(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘1(ξ€Έβˆ’ξ€œπ‘‘)π‘‘π‘‘βˆ’π‘‘1(𝑑)ξ‚ΉΜ‡π‘₯(𝑠)𝑑𝑠(1.9) with an appropriate vector 𝜁(𝑑) and a matrix 𝑆, respectively, it was estimated as2πœπ‘‡ξ€Ίξ€·(𝑑)𝑆π‘₯(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘1(𝑑)ξ€Έξ€»+πœπ‘‡(𝑑)𝑑1𝑆𝑍1βˆ’1π‘†π‘‡πœ(𝑑)(1.10) with 𝑑1(𝑑)𝑆𝑍1βˆ’1𝑆𝑇 enlarged as 𝑑1𝑆𝑍1βˆ’1𝑆𝑇.

The problem of delay-dependent stability criterion for continuous systems with two additive time-varying delay components has been considered in this paper. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to indicate less conservatism of the stability results.

Definition 1.1. Let Ξ¦1,Ξ¦2,…,Ξ¦π‘βˆΆβ„›π‘šβ†’β„›π‘› be a given finite number of functions such that they have positive values in an open subset 𝐷 of β„›π‘š. Then, a reciprocally convex combination of these functions over 𝐷 is a function of the form 1𝛼1Ξ¦1+1𝛼2Ξ¦21+β‹―+π›Όπ‘Ξ¦π‘βˆΆπ·βŸΆπ‘…π‘›,(1.11) where the real numbers 𝛼𝑖 satisfy 𝛼𝑖>0 and βˆ‘π‘–π›Όπ‘–=1.

The following Lemma 1.2 suggests a lower bound for a reciprocally convex combination of scalar positive functions Φ𝑖=𝑓𝑖.

Lemma 1.2 (See [10]). Let 𝑓1,𝑓2,…,π‘“π‘βˆΆβ„›π‘šβ†’β„› have positive values in an open subset 𝐷 of β„›π‘š. Then, the reciprocally convex combination of 𝑓𝑖 over 𝐷 satisfies minξ€½π›Όπ‘–βˆ£π›Όπ‘–βˆ‘>0,𝑖𝛼𝑖=1𝑖1𝛼𝑖𝑓𝑖(𝑑)=𝑖𝑓𝑖(𝑑)+max𝑔𝑖,𝑗(𝑑)𝑖≠𝑗𝑔𝑖,𝑗(𝑑)(1.12) subject to ⎧βŽͺ⎨βŽͺβŽ©π‘”π‘–,π‘—βˆΆπ‘…π‘šβŸΆπ‘…,𝑔𝑗,𝑖(𝑑)Δ𝑔𝑖,π‘—βŽ‘βŽ’βŽ’βŽ£π‘“(𝑑),𝑖(𝑑)𝑔𝑖,𝑗𝑔(𝑑)𝑖,𝑗(𝑑)𝑓𝑗(⎀βŽ₯βŽ₯⎦⎫βŽͺ⎬βŽͺβŽ­π‘‘)β©Ύ0.(1.13) In the following, we present a new stability criterion by a convex polyhedron method and Lemma 1.2.

2. Main Results

Theorem 2.1. System (1.5) with delays 𝑑1(𝑑) and 𝑑2(𝑑) satisfying (1.6) is asymptotically stable if there exist symmetric positive definite matrices𝑃,𝑄1,𝑄2,𝑄3,𝑄4,𝑄5,𝑄6, 𝑍,𝑍1,𝑍2 and any matrices𝑆12,𝑁,𝑀,𝐿,𝑆,𝑃1,𝑃2 with appropriate dimensions, such that the following LMIs hold: βŽ‘βŽ’βŽ’βŽ£π‘π‘†12⎀βŽ₯βŽ₯βŽ¦βˆ—π‘β©Ύ0,(2.1)𝐸13=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘βˆ’π‘‘2πΏβˆ—βˆ’π‘‘1𝑍10βˆ—βˆ—βˆ’π‘‘2𝑍2⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(2.2)𝐸14=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘βˆ’π‘‘2π‘†βˆ—βˆ’π‘‘1𝑍10βˆ—βˆ—βˆ’π‘‘2𝑍2⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(2.3)𝐸23=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘€βˆ’π‘‘2πΏβˆ—βˆ’π‘‘1𝑍10βˆ—βˆ—βˆ’π‘‘2𝑍2⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(2.4)𝐸24=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘€βˆ’π‘‘2π‘†βˆ—βˆ’π‘‘1𝑍10βˆ—βˆ—βˆ’π‘‘2𝑍2⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦<0,(2.5) where ⎑⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎒⎣EE=11E12𝑆𝑇120000E18βˆ—E22E230000𝐴𝑇𝑑𝑃𝑇2βˆ—βˆ—E3300000βˆ—βˆ—βˆ—E440000βˆ—βˆ—βˆ—βˆ—βˆ’π‘„4000βˆ—βˆ—βˆ—βˆ—βˆ—E6600βˆ—βˆ—βˆ—βˆ—βˆ—βˆ—βˆ’π‘„60βˆ—βˆ—βˆ—βˆ—βˆ—βˆ—βˆ—E88⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦++𝑁+𝐿00π‘€βˆ’π‘βˆ’π‘€π‘†βˆ’πΏβˆ’π‘†0𝑁+𝐿00π‘€βˆ’π‘βˆ’π‘€π‘†βˆ’πΏβˆ’π‘†0𝑇,𝐸11=𝑄1+𝑄2+𝑄3+𝑄4+𝑄5+𝑄6βˆ’π‘+𝑃1𝐴+𝐴𝑇𝑃𝑇1,𝐸12=βˆ’π‘†π‘‡12+𝑍+𝑃1𝐴𝑑,𝐸18=π‘ƒβˆ’π‘ƒ1+𝐴𝑇𝑃𝑇2,𝐸22=βˆ’(1βˆ’πœ)𝑄1βˆ’2𝑍+𝑆12+𝑆𝑇12,𝐸23=βˆ’π‘†π‘‡12𝐸+𝑍,33=βˆ’π‘„2βˆ’π‘,𝐸44ξ€·=βˆ’1βˆ’πœ1𝑄3,𝐸66ξ€·=βˆ’1βˆ’πœ2𝑄5,𝐸88=𝑑2𝑍+𝑑1𝑍1+𝑑2𝑍2βˆ’π‘ƒ2βˆ’π‘ƒπ‘‡2.(2.6)

Proof. Construct a new Lyapunov functional candidate as 𝑉(π‘₯(𝑑))=𝑉1(π‘₯(𝑑))+𝑉2(π‘₯(𝑑))+𝑉3(π‘₯(𝑑))+𝑉4𝑉(π‘₯(𝑑)),1(π‘₯(𝑑))=π‘₯𝑇𝑉(𝑑)𝑃π‘₯(𝑑),2ξ€œ(π‘₯(𝑑))=π‘‘π‘‘βˆ’π‘‘(𝑑)π‘₯𝑇(𝑠)𝑄1ξ€œπ‘₯(𝑠)𝑑𝑠+π‘‘π‘‘βˆ’π‘‘π‘₯𝑇(𝑠)𝑄2ξ€œπ‘₯(𝑠)𝑑𝑠+π‘‘π‘‘βˆ’π‘‘1(𝑑)π‘₯𝑇(𝑠)𝑄3+ξ€œπ‘₯(𝑠)π‘‘π‘ π‘‘π‘‘βˆ’π‘‘1π‘₯𝑇(𝑠)𝑄4π‘₯ξ€œ(𝑠)𝑑𝑠+π‘‘π‘‘βˆ’π‘‘2(𝑑)π‘₯𝑇(𝑠)𝑄5π‘₯ξ€œ(𝑠)𝑑𝑠+π‘‘π‘‘βˆ’π‘‘2π‘₯𝑇(𝑠)𝑄6π‘₯𝑉(𝑠)𝑑𝑠,3ξ€œ(π‘₯(𝑑))=𝑑0βˆ’π‘‘ξ€œπ‘‘π‘‘+πœƒΜ‡π‘₯𝑇𝑉(𝑠)𝑍̇π‘₯(𝑠)π‘‘π‘ π‘‘πœƒ,4ξ€œ(π‘₯(𝑑))=0βˆ’π‘‘1ξ€œπ‘‘π‘‘+πœƒΜ‡π‘₯𝑇(𝑠)𝑍1ξ€œΜ‡π‘₯(𝑠)π‘‘π‘ π‘‘πœƒ+0βˆ’π‘‘2ξ€œπ‘‘π‘‘+πœƒΜ‡π‘₯𝑇(𝑠)𝑍2Μ‡π‘₯(𝑠)π‘‘π‘ π‘‘πœƒ.(2.7)

Remark 2.2. Our paper fully uses the information about 𝑑(𝑑),𝑑1(𝑑), and 𝑑2(𝑑), but [15, 16] only use the information about 𝑑1(𝑑) and 𝑑2(𝑑), when constructing the Lyapunov functional 𝑉(π‘₯(𝑑)). So the Lyapunov functional in our paper is more general than that in [15, 16], and the stability criteria in our paper may be more applicable.
The time derivative of 𝑉(π‘₯(𝑑)) along the trajectory of system (1.5) is given by ̇𝑉1(π‘₯(𝑑))=2π‘₯𝑇̇𝑉(𝑑)𝑃̇π‘₯(𝑑),(2.8)2(π‘₯(𝑑))=π‘₯𝑇𝑄(𝑑)1+𝑄2+𝑄3+𝑄4+𝑄5+𝑄6ξ€Έπ‘₯(𝑑)βˆ’(1βˆ’πœ)π‘₯𝑇(π‘‘βˆ’π‘‘(𝑑))𝑄1π‘₯(π‘‘βˆ’π‘‘(𝑑))βˆ’π‘₯𝑇(π‘‘βˆ’π‘‘)𝑄2ξ€·π‘₯(π‘‘βˆ’π‘‘)βˆ’1βˆ’πœ1ξ€Έπ‘₯π‘‡ξ€·π‘‘βˆ’π‘‘1𝑄(𝑑)3π‘₯ξ€·π‘‘βˆ’π‘‘1ξ€Έ(𝑑)βˆ’π‘₯π‘‡ξ€·π‘‘βˆ’π‘‘1𝑄4π‘₯ξ€·π‘‘βˆ’π‘‘1ξ€Έβˆ’ξ€·1βˆ’πœ2ξ€Έπ‘₯π‘‡ξ€·π‘‘βˆ’π‘‘2𝑄(𝑑)5π‘₯ξ€·π‘‘βˆ’π‘‘2ξ€Έ(𝑑)βˆ’π‘₯π‘‡ξ€·π‘‘βˆ’π‘‘2𝑄6π‘₯ξ€·π‘‘βˆ’π‘‘2ξ€Έ,̇𝑉(2.9)3(π‘₯(𝑑))=𝑑2Μ‡π‘₯π‘‡ξ€œ(𝑑)𝑍̇π‘₯(𝑑)βˆ’π‘‘π‘‘βˆ’π‘‘(𝑑)π‘‘βˆ’π‘‘Μ‡π‘₯π‘‡ξ€œ(𝑠)𝑍̇π‘₯(𝑠)π‘‘π‘ βˆ’π‘‘π‘‘π‘‘βˆ’π‘‘(𝑑)Μ‡π‘₯𝑇̇𝑉(𝑠)𝑍̇π‘₯(𝑠)𝑑𝑠,(2.10)4(π‘₯(𝑑))=Μ‡π‘₯𝑇𝑑(𝑑)1𝑍1+𝑑2𝑍2ξ€Έξ€œΜ‡π‘₯(𝑑)βˆ’π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1ξ€œΜ‡π‘₯(𝑠)π‘‘π‘ βˆ’π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍1βˆ’ξ€œΜ‡π‘₯(𝑠)π‘‘π‘ π‘‘βˆ’π‘‘2(𝑑)π‘‘βˆ’π‘‘2Μ‡π‘₯𝑇(𝑠)𝑍2ξ€œΜ‡π‘₯(𝑠)π‘‘π‘ βˆ’π‘‘π‘‘βˆ’π‘‘2(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍2Μ‡π‘₯(𝑠)𝑑𝑠.(2.11) The ̇𝑉3(π‘₯(𝑑)) is upper bounded by ̇𝑉3(π‘₯(𝑑))⩽𝑑2Μ‡π‘₯𝑇𝑑(𝑑)𝑍̇π‘₯(𝑑)βˆ’πœπ‘‘βˆ’π‘‘(𝑑)𝑇𝑒(𝑑)2βˆ’π‘’3𝑍𝑒2βˆ’π‘’3ξ€Έπ‘‡βˆ’π‘‘πœ(𝑑)π‘‘πœ(𝑑)𝑇𝑒(𝑑)1βˆ’π‘’2𝑍𝑒1βˆ’π‘’2ξ€Έπ‘‡πœ(𝑑)(2.12)⩽𝑑2Μ‡π‘₯𝑇(𝑑)𝑍̇π‘₯(𝑑)βˆ’πœπ‘‡βŽ‘βŽ’βŽ’βŽ’βŽ£π‘’(𝑑)𝑇2βˆ’π‘’π‘‡3𝑒𝑇1βˆ’π‘’π‘‡2⎀βŽ₯βŽ₯βŽ₯βŽ¦π‘‡βŽ‘βŽ’βŽ’βŽ’βŽ£π‘π‘†12𝑆𝑇12π‘βŽ€βŽ₯βŽ₯βŽ₯βŽ¦βŽ‘βŽ’βŽ’βŽ’βŽ£π‘’π‘‡2βˆ’π‘’π‘‡3𝑒𝑇1βˆ’π‘’π‘‡2⎀βŽ₯βŽ₯βŽ₯⎦𝜁(𝑑),(2.13) where the inequality in (2.12) comes from the Jensen inequality lemma, and that of (2.13) from Lemma 1.2 as βˆ’πœπ‘‡βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£ξ‚™(𝑑)𝛽𝛼𝑒2βˆ’π‘’3ξ€Έπ‘‡βˆ’ξ‚™π›Όπ›½ξ€·π‘’1βˆ’π‘’2ξ€Έπ‘‡βŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ¦π‘‡βŽ‘βŽ’βŽ’βŽ’βŽ£π‘π‘†12𝑆𝑇12π‘βŽ€βŽ₯βŽ₯βŽ₯βŽ¦βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£ξ‚™π›½π›Όξ€·π‘’2βˆ’π‘’3ξ€Έπ‘‡βˆ’ξ‚™π›Όπ›½ξ€·π‘’1βˆ’π‘’2ξ€Έπ‘‡βŽ€βŽ₯βŽ₯βŽ₯βŽ₯⎦𝜁(𝑑)β©½0,(2.14) where πœπ‘‡ξ‚Έπ‘₯(𝑑)=𝑇(𝑑)π‘₯𝑇(π‘‘βˆ’π‘‘(𝑑))π‘₯𝑇π‘₯(π‘‘βˆ’π‘‘)π‘‡ξ€·π‘‘βˆ’π‘‘1(ξ€Έπ‘₯𝑑)π‘‡ξ€·π‘‘βˆ’π‘‘1ξ€Έπ‘₯π‘‡ξ€·π‘‘βˆ’π‘‘2ξ€Έπ‘₯(𝑑)π‘‡ξ€·π‘‘βˆ’π‘‘2ξ€ΈΜ‡π‘₯𝑇,𝑒(𝑑)1=𝐼0000000𝑇,𝑒2=0𝐼000000𝑇,𝑒3=00𝐼00000𝑇,(2.15)𝛼=(π‘‘βˆ’π‘‘(𝑑))/𝑑,  𝛽=𝑑(𝑑)/𝑑. Note that when 𝑑(𝑑)=𝑑 or 𝑑(𝑑)=0, one can obtain πœπ‘‡(𝑑)(𝑒2βˆ’π‘’3)=0 or πœπ‘‡(𝑑)(𝑒1βˆ’π‘’2)=0, respectively. So the relation (2.13) also holds.
By the Jensen inequality lemma, it is easy to obtain βˆ’ξ€œπ‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)π‘‘π‘ β©½βˆ’π‘‘1(𝑑)π‘ˆπ‘‡1𝑍1π‘ˆ1,βˆ’ξ€œπ‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1𝑑̇π‘₯(𝑠)π‘‘π‘ β©½βˆ’1βˆ’π‘‘1ξ€Έπ‘ˆ(𝑑)𝑇2𝑍1π‘ˆ2,βˆ’ξ€œπ‘‘π‘‘βˆ’π‘‘2(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍2Μ‡π‘₯(𝑠)π‘‘π‘ β©½βˆ’π‘‘2(𝑑)π‘ˆπ‘‡3𝑍2π‘ˆ3,βˆ’ξ€œπ‘‘βˆ’π‘‘2(𝑑)π‘‘βˆ’π‘‘2Μ‡π‘₯𝑇(𝑠)𝑍2𝑑̇π‘₯(𝑠)π‘‘π‘ β©½βˆ’2βˆ’π‘‘2ξ€Έπ‘ˆ(𝑑)𝑇4𝑍2π‘ˆ4,(2.16) where π‘ˆ1=1𝑑1ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯(𝑠)𝑑𝑠,π‘ˆ2=1𝑑1βˆ’π‘‘1ξ€œ(𝑑)π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1π‘ˆΜ‡π‘₯(𝑠)𝑑𝑠,3=1𝑑2ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘‘2(𝑑)Μ‡π‘₯(𝑠)𝑑𝑠,π‘ˆ4=1𝑑2βˆ’π‘‘2ξ€œ(𝑑)π‘‘βˆ’π‘‘2(𝑑)π‘‘βˆ’π‘‘2Μ‡π‘₯(𝑠)𝑑𝑠,(2.17)lim𝑑1(𝑑)β†’01𝑑1ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯(𝑠)𝑑𝑠=Μ‡π‘₯(𝑑),lim𝑑1(𝑑)→𝑑11𝑑1βˆ’π‘‘1(ξ€œπ‘‘)π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1ξ€·Μ‡π‘₯(𝑠)𝑑𝑠=Μ‡π‘₯π‘‘βˆ’π‘‘1ξ€Έ,lim𝑑2(𝑑)β†’01𝑑2ξ€œ(𝑑)π‘‘π‘‘βˆ’π‘‘2(𝑑)Μ‡π‘₯(𝑠)𝑑𝑠=Μ‡π‘₯(𝑑),lim𝑑2(𝑑)→𝑑21𝑑2βˆ’π‘‘2ξ€œ(𝑑)π‘‘βˆ’π‘‘2(𝑑)π‘‘βˆ’π‘‘2ξ€·Μ‡π‘₯(𝑠)𝑑𝑠=Μ‡π‘₯π‘‘βˆ’π‘‘2ξ€Έ.(2.18)
From the Leibniz-Newton formula, the following equations are true for any matrices 𝑁,𝑀, 𝐿,𝑆,𝑃1,𝑃2 with appropriate dimensions 2πœπ‘‡ξ€Ίπ‘₯ξ€·(𝑑)𝑁(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘1ξ€Έ(𝑑)βˆ’π‘‘1(𝑑)π‘ˆ1ξ€»=0,2πœπ‘‡(ξ€Ίπ‘₯𝑑)π‘€π‘‘βˆ’π‘‘1(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘1ξ€Έβˆ’ξ€·π‘‘1βˆ’π‘‘1(ξ€Έπ‘ˆπ‘‘)2ξ€»=0,2πœπ‘‡ξ€Ίπ‘₯ξ€·(𝑑)𝐿(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘2ξ€Έ(𝑑)βˆ’π‘‘2(𝑑)π‘ˆ3ξ€»=0,2πœπ‘‡(ξ€Ίπ‘₯𝑑)π‘†π‘‘βˆ’π‘‘2(𝑑)βˆ’π‘₯π‘‘βˆ’π‘‘2ξ€Έβˆ’ξ€·π‘‘2βˆ’π‘‘2(ξ€Έπ‘ˆπ‘‘)4ξ€»2ξ€Ίπ‘₯=0,𝑇(𝑑)𝑃1+Μ‡π‘₯𝑇(𝑑)𝑃2ξ€»ξ€Ίβˆ’Μ‡π‘₯(𝑑)+𝐴π‘₯(𝑑)+𝐴𝑑π‘₯ξ€»(π‘‘βˆ’π‘‘(𝑑))=0.(2.19) Hence, according to (2.8)–(2.19), we can obtain ̇𝑉(π‘₯(𝑑))β©½πœ‰π‘‡(𝑑)πΈπœ‰(𝑑),(2.20) where πœ‰π‘‡ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡1π‘ˆπ‘‡2π‘ˆπ‘‡3π‘ˆπ‘‡4ξ‚„,⎑⎒⎒⎒⎒⎒⎒⎒⎒⎣𝐸=πΈβˆ’π‘‘1𝑑(𝑑)π‘βˆ’1βˆ’π‘‘1ξ€Έ(𝑑)π‘€βˆ’π‘‘2𝑑(𝑑)πΏβˆ’2βˆ’π‘‘2𝑆(𝑑)βˆ—βˆ’π‘‘1(𝑑)𝑍1𝑑000βˆ—βˆ—βˆ’1βˆ’π‘‘1𝑍(𝑑)100βˆ—βˆ—βˆ—βˆ’π‘‘2(𝑑)𝑍20ξ€·π‘‘βˆ—βˆ—βˆ—βˆ—βˆ’2βˆ’π‘‘2𝑍(𝑑)2⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦.(2.21) If 𝐸<0, then there exists a scalar πœ€>0, such that ̇𝑉(π‘₯(𝑑))β©½πœ‰π‘‡(𝑑)πΈπœ‰(𝑑)β©½βˆ’πœ€πœ‰π‘‡(𝑑)πœ‰(𝑑)β©½βˆ’πœ€π‘₯𝑇(𝑑)π‘₯(𝑑)<0,βˆ€π‘₯(𝑑)β‰ 0.(2.22) The 𝐸<0 leads for 𝑑1(𝑑)→𝑑1 to 𝐸1<0 and leads for 𝑑1(𝑑)β†’0 to 𝐸2<0, where 𝐸1=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘βˆ’π‘‘2𝑑(𝑑)πΏβˆ’2βˆ’π‘‘2𝑆(𝑑)βˆ—βˆ’π‘‘1𝑍100βˆ—βˆ—βˆ’π‘‘2(𝑑)𝑍20ξ€·π‘‘βˆ—βˆ—βˆ—βˆ’2βˆ’π‘‘2𝑍(𝑑)2⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦𝐸<0,(2.23)2=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£πΈβˆ’π‘‘1π‘€βˆ’π‘‘2𝑑(𝑑)πΏβˆ’2βˆ’π‘‘2𝑆(𝑑)βˆ—βˆ’π‘‘1𝑍100βˆ—βˆ—βˆ’π‘‘2(𝑑)𝑍20ξ€·π‘‘βˆ—βˆ—βˆ—βˆ’2βˆ’π‘‘2𝑍(𝑑)2⎀βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦<0.(2.24) It is easy to see that 𝐸1 results from 𝐸|𝑑1(𝑑)=𝑑1, where we deleted the zero row and the zero column. Define πœ‰π‘‡1ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡1π‘ˆπ‘‡3π‘ˆπ‘‡4ξ‚„,πœ‰π‘‡2ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡2π‘ˆπ‘‡3π‘ˆπ‘‡4ξ‚„,(2.25) The LMI (2.23) and (2.24) imply (2.22) because 𝑑1(𝑑)𝑑1πœπ‘‡1(𝑑)𝐸1𝜁1𝑑(𝑑)+1βˆ’π‘‘1(𝑑)𝑑1πœπ‘‡2(𝑑)𝐸2𝜁2(𝑑)=πœ‰π‘‡(𝑑)πΈπœ‰(𝑑)β©½βˆ’πœ€π‘₯𝑇(𝑑)π‘₯(𝑑)(2.26) and 𝐸 is convex in 𝑑1(𝑑)∈[0,𝑑1].
LMI (2.23) leads for 𝑑2(𝑑)→𝑑2 to LMI (2.2) and for 𝑑2(𝑑)β†’0 to LMI (2.3). It is easy to see that 𝐸13 results from 𝐸1|𝑑2(𝑑)=𝑑2, where we deleted the zero row and the zero column. The LMI (2.2) and (2.3) imply (2.23) because 𝑑2(𝑑)𝑑2πœπ‘‡13(𝑑)𝐸13𝜁13𝑑(𝑑)+2βˆ’π‘‘2(𝑑)𝑑2πœπ‘‡14(𝑑)𝐸14𝜁14(𝑑)=πœ‰π‘‡1(𝑑)𝐸1πœ‰1(𝑑)<0(2.27) and 𝐸1is convex in 𝑑2(𝑑)∈[0,𝑑2], where πœ‰π‘‡13ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡1π‘ˆπ‘‡3ξ‚„,πœ‰π‘‡14ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡1π‘ˆπ‘‡4ξ‚„(2.28)𝐸13and 𝐸14 are defined in Theorem 2.1.
Similarly, the LMI (2.4) and (2.5) imply (2.24) because 𝑑2(𝑑)𝑑2πœπ‘‡23(𝑑)𝐸23𝜁23𝑑(𝑑)+2βˆ’π‘‘2(𝑑)𝑑2πœπ‘‡24(𝑑)𝐸24𝜁24(𝑑)=πœ‰π‘‡2(𝑑)𝐸2πœ‰2(𝑑)<0(2.29) and 𝐸2is convex in 𝑑2(𝑑)∈[0,𝑑2], where πœ‰π‘‡23ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡2π‘ˆπ‘‡3ξ‚„,πœ‰π‘‡24ξ‚ƒπœ(𝑑)=𝑇(𝑑)π‘ˆπ‘‡2π‘ˆπ‘‡4ξ‚„.(2.30)𝐸23and 𝐸24are defined in Theorem 2.1. According to the above analysis, one can conclude that the system (1.5) with delays 𝑑1(𝑑) and 𝑑2(𝑑) satisfying (1.6) is asymptotically stable if the LMIs (2.1)–(2.5) hold.
From the proof of Theorem 2.1, one can obtain that 𝐸 is negative definite in the rectangle 0⩽𝑑1(𝑑)⩽𝑑1, 0⩽𝑑2(𝑑)⩽𝑑2, only if it is negative definite at all vertices. We call this method as the convex polyhedron method.

Remark 2.3. To avoid the emergence of the reciprocally convex combination in (2.12), similar to [9], the integral terms in (2.10) can be upper bounded by ξ€œβˆ’π‘‘π‘‘π‘‘βˆ’π‘‘Μ‡π‘₯𝑇([]𝑠)𝑍̇π‘₯(𝑠)π‘‘π‘ β©½βˆ’π‘₯(π‘‘βˆ’πœ(𝑑))βˆ’π‘₯(π‘‘βˆ’π‘‘)𝑇𝑍[]βˆ’[]π‘₯(π‘‘βˆ’πœ(𝑑))βˆ’π‘₯(π‘‘βˆ’π‘‘)π‘₯(𝑑)βˆ’π‘₯(π‘‘βˆ’πœ(𝑑))𝑇𝑍[][]π‘₯(𝑑)βˆ’π‘§(π‘‘βˆ’πœ(𝑑))βˆ’(1βˆ’π›Ύ)π‘₯(π‘‘βˆ’πœ(𝑑))βˆ’π‘₯(π‘‘βˆ’π‘‘)𝑇𝑍[][]π‘₯(π‘‘βˆ’πœ(𝑑))βˆ’π‘₯(π‘‘βˆ’π‘‘)βˆ’π›Ύπ‘₯(𝑑)βˆ’π‘₯(π‘‘βˆ’πœ(𝑑))𝑇𝑍[]π‘₯(𝑑)βˆ’π‘₯(π‘‘βˆ’πœ(𝑑))(2.31) which results in a convex combination on 𝛾. However, Theorem 2.1 directly handles the inversely weighted convex combination of quadratic terms of integral quantities by utilizing the result of Lemma 1.2, which achieves performance behavior identical to the approaches based on the integral inequality lemma but with much less decision variables, comparable to those based on the Jensen inequality lemma.

Remark 2.4. Compared to some existing ones, the estimation of ̇𝑉(π‘₯(𝑑)) in the proof of Theorem 2.1 is less conservative due to the convex polyhedron method is employed. More specifically, βˆ’βˆ«π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 is retained, while βˆ’βˆ«π‘‘π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 is divided into βˆ’βˆ«π‘‘π‘‘βˆ’π‘‘1(𝑑)Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠 and βˆ’βˆ«π‘‘βˆ’π‘‘1(𝑑)π‘‘βˆ’π‘‘1Μ‡π‘₯𝑇(𝑠)𝑍1Μ‡π‘₯(𝑠)𝑑𝑠. When the two integrals together with others are handled by using free weighting matrix method, instead of enlarging some term 𝑑1(𝑑)𝑆𝑍1βˆ’1𝑆𝑇 as 𝑑1𝑆𝑍1βˆ’1𝑆𝑇. The convex polyhedron method is employed to verify the negative definiteness of ̇𝑉(π‘₯(𝑑)). Therefore, Theorem 2.1 is expected to be less conservative than some results in the literature.

Remark 2.5. The case in which only two additive time-varying delay components appear in the state has been considered, and the idea in this paper can be easily extended to the system (1.3) with multiple additive delay components satisfying (1.4). Choose the Lyapunov functional as 𝑉(π‘₯(𝑑))=𝑉1(π‘₯(𝑑))+𝑉2(π‘₯(𝑑))+𝑉3(π‘₯(𝑑))+𝑉4𝑉(π‘₯(𝑑)),1(π‘₯(𝑑))=π‘₯𝑇𝑉(𝑑)𝑃π‘₯(𝑑),2ξ€œ(π‘₯(𝑑))=π‘‘π‘‘βˆ’π‘‘(𝑑)π‘₯𝑇(𝑠)𝑄1ξ€œπ‘₯(𝑠)𝑑𝑠+π‘‘π‘‘βˆ’π‘‘π‘₯𝑇(𝑠)𝑄2π‘₯(𝑠)𝑑𝑠+𝑛𝑖=1ξ€œπ‘‘π‘‘βˆ’π‘‘π‘–(𝑑)π‘₯𝑇(𝑠)𝑄3𝑖+π‘₯(𝑠)𝑑𝑠𝑛𝑖=1ξ€œπ‘‘π‘‘βˆ’π‘‘π‘–π‘₯𝑇(𝑠)𝑄4𝑖π‘₯𝑉(𝑠)𝑑𝑠,3ξ€œ(π‘₯(𝑑))=𝑑0βˆ’π‘‘ξ€œπ‘‘π‘‘+πœƒΜ‡π‘₯𝑇𝑉(𝑠)𝑍̇π‘₯(𝑠)π‘‘π‘ π‘‘πœƒ,4(π‘₯(𝑑))=𝑛𝑖=1ξ€œ0βˆ’π‘‘π‘–ξ€œπ‘‘π‘‘+πœƒΜ‡π‘₯𝑇(𝑠)𝑍𝑖̇π‘₯(𝑠)π‘‘π‘ π‘‘πœƒ.(2.32) Then, the corresponding stability result can be easily derived similar to the proof of Theorem 2.1. The result is omitted due to complicated notation.

Remark 2.6. The stability condition presented in Theorem 2.1 is for the nominal system. However, it is easy to further extend Theorem 2.1 to uncertain systems, where the system matrices 𝐴 and 𝐴𝑑 contain parameter uncertainties either in norm-bounded or polytopic uncertain forms. The reason why we consider the simplest case is to make our idea more lucid and to avoid complicated notations.

3. Illustrative Example

Example 3.1. Consider system (1.5) with the following parameters: ⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦𝐴=βˆ’200βˆ’0.9,𝐴𝑑=⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦Μ‡π‘‘βˆ’10βˆ’1βˆ’1,assuming1̇𝑑(𝑑)β©½0.1,2(𝑑)β©½0.8.(3.1)
Our purpose is to calculate the upper bound 𝑑1 of delay 𝑑1(𝑑), or 𝑑2 of delay 𝑑2(𝑑), when the other is known, below which the system is asymptotically stable. By combining the two delay components together, some existing stability results can be applied to this system. The calculation results obtained by Theorem 2.1, in this paper, Theorem  1 in [6, 12, 15, 16], [14, Theorem  2] for different cases are listed in Table 1. It can be seen from the Table 1 that Theorem 2.1, in this paper, yields the least conservative stability test than other results.

Example 3.2. Consider system (1.5) with the following parameters: ⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦𝐴=0.01.0βˆ’1.0βˆ’2.0,𝐴𝑑=⎑⎒⎒⎣⎀βŽ₯βŽ₯⎦0.00.0βˆ’1.01.0.(3.2) We assume condition 1: ̇𝑑1(𝑑)β©½0.2, ̇𝑑2(𝑑)β©½0.5; condition 2: ̇𝑑1(𝑑)β©½0.2, ̇𝑑2(𝑑)β©½0.3, and under the two cases above, respectively. Table 2 lists the corresponding upper bounds of 𝑑2 for given 𝑑1. This numerical illustrates the effectiveness of the derived results.

4. Conclusions

This paper has investigated the stability problem for continuous systems with two additive time-varying delay components. By constructing a new class of Lyapunov functional and using a new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. The obtained stability criterion is less conservative than some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.

Acknowledgments

The authors would like to thank the editors and the reviewers for their valuable suggestions and comments which have led to a much improved paper. This work was supported by research on the model and method of parameter identification in reservoir simulation under Grant PLN1121.