Abstract

We consider the Hyers-Ulam stability problems for the Jensen-type functional equations in general restricted domains. The main purpose of this paper is to find the restricted domains for which the functional inequality satisfied in those domains extends to the inequality for whole domain. As consequences of the results we obtain asymptotic behavior of the equations.

1. Introduction

The Hyers-Ulam stability problems of functional equations was originated by Ulam in 1960 when he proposed the following question [1].

Let 𝑓 be a mapping from a group 𝐺1 to a metric group 𝐺2 with metric 𝑑(β‹…,β‹…) such that 𝑑(𝑓(π‘₯𝑦),𝑓(π‘₯)𝑓(𝑦))β‰€πœ€.(1.1)Then does there exist a group homomorphism β„Ž and π›Ώπœ–>0 such that 𝑑(𝑓(π‘₯),β„Ž(π‘₯))β‰€π›Ώπœ–(1.2)for all π‘₯∈𝐺1?

One of the first assertions to be obtained is the following result, essentially due to Hyers [2], that gives an answer for the question of Ulam.

Theorem 1.1. Suppose that 𝑆 is an additive semigroup, π‘Œ is a Banach space, πœ–β‰₯0, and π‘“βˆΆπ‘†β†’π‘Œ satisfies the inequality ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)β€–β‰€πœ–(1.3) for all π‘₯,π‘¦βˆˆπ‘†. Then there exists a unique function π΄βˆΆπ‘†β†’π‘Œ satisfying 𝐴(π‘₯+𝑦)=𝐴(π‘₯)+𝐴(𝑦)(1.4) for which ‖𝑓(π‘₯)βˆ’π΄(π‘₯)β€–β‰€πœ–(1.5) for all π‘₯βˆˆπ‘†.

We call the functions satisfying (1.4) additive functions. Perhaps Aoki in 1950 was the first author treating the generalized version of Hyers’ theorem [3]. Generalizing Hyers’ result he proved that if a mapping π‘“βˆΆπ‘‹β†’π‘Œ between two Banach spaces satisfies ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)‖≀Φ(π‘₯,𝑦)forπ‘₯,π‘¦βˆˆπ‘‹(1.6) with Ξ¦(π‘₯,𝑦)=πœ–(β€–π‘₯‖𝑝+‖𝑦‖𝑝)(πœ–β‰₯0,0≀𝑝<1), then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀2πœ–β€–π‘₯‖𝑝/(2βˆ’2𝑝) for all π‘₯βˆˆπ‘‹. In 1951 Bourgin [4, 5] stated that if Ξ¦ is symmetric in β€–π‘₯β€– and ‖𝑦‖ with βˆ‘βˆžπ‘—=1Ξ¦(2𝑗π‘₯,2𝑗π‘₯)/2𝑗<∞ for each π‘₯βˆˆπ‘‹, then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that βˆ‘β€–π‘“(π‘₯)βˆ’π΄(π‘₯)β€–β‰€βˆžπ‘—=1Ξ¦(2𝑗π‘₯,2𝑗π‘₯)/2𝑗 for all π‘₯βˆˆπ‘‹. Unfortunately, there was no use of these results until 1978 when Rassias [6] dealt with the inequality of Aoki [3]. Following Rassias’ result, a great number of papers on the subject have been published concerning numerous functional equations in various directions [6–15]. Among the results, stability problem in a restricted domain was investigated by Skof, who proved the stability problem of inequality (1.3) in a restricted domain [16, 17]. Developing this result, Jung, Rassias, and M. J. Rassias considered the stability problems in restricted domains for some functional equations including the Jensen functional equation [9] and Jensen-type functional equations [13]. We also refer the reader to [18–27] for some related results on Hyers-Ulam stabilities in restricted conditions. The results can be summarized as follows. Let 𝑋 and π‘Œ be a real normed space and a real Banach space, respectively. For fixed 𝑑β‰₯0, if π‘“βˆΆπ‘‹β†’π‘Œ satisfies the functional inequalities (such as that of Cauchy, quadratic, Jensen, and Jensen type) for all π‘₯,π‘¦βˆˆπ‘‹ with β€–π‘₯β€–+‖𝑦‖β‰₯𝑑 (which is the case where the inequalities are given by two indeterminate variables π‘₯ and 𝑦), the inequalities hold for all π‘₯,π‘¦βˆˆπ‘‹. Following the approach in [28] we consider the Jensen-type equation in various restricted domains in an Abelian group. As applications, we obtain the stability problems for the above equations in more general restricted domains than that of the form {(π‘₯,𝑦)βˆˆπ‘‹βˆΆβ€–π‘₯β€–+‖𝑦‖β‰₯𝑑}, which generalizes and refines the stability theorems in [13]. As an application we obtain asymptotic behaviors of the equations.

2. Stability of Jensen-Type Functional Equations

Throughout this section, we denote by 𝐺, 𝑋, and π‘Œ, an Abelian group, a real normed space, and a Banach space, respectively. In this section we consider the Hyers-Ulam stability of the Jensen and Jensen-type functional inequalities for the functions π‘“βˆΆπΊβ†’π‘Œβ€–π‘“(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)β€–β‰€πœ–,(2.1)‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)βˆ’2𝑓(𝑦)β€–β‰€πœ–(2.2) in restricted domains π‘ˆβŠ‚πΊΓ—πΊ.

Inequalities (2.1) and (2.2) were previously treated by J. M. Rassias and M. J. Rassias [13], who proved the Hyers-Ulam stability of the inequalities in the restricted domain π‘ˆ={(π‘₯,𝑦)βˆΆβ€–π‘₯β€–+‖𝑦‖β‰₯𝑑},𝑑β‰₯0, for the functions π‘“βˆΆπ‘‹β†’π‘Œ:

Theorem 2.1. Let 𝑑β‰₯0 and πœ–>0 be fixed. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the inequality ‖𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)β€–β‰€πœ–(2.3) for all π‘₯,π‘¦βˆˆπ‘‹, with β€–π‘₯β€–+‖𝑦‖β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that 5‖𝑓(π‘₯)βˆ’π΄(π‘₯)βˆ’π‘“(0)‖≀2πœ–(2.4) for all π‘₯βˆˆπ‘‹.

Theorem 2.2. Let 𝑑β‰₯0 and πœ–>0 be fixed. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the inequality ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)βˆ’2𝑓(𝑦)β€–β‰€πœ–(2.5) for all π‘₯,π‘¦βˆˆπ‘‹, with β€–π‘₯β€–+‖𝑦‖β‰₯𝑑 and ‖𝑓(π‘₯)+𝑓(βˆ’π‘₯)‖≀3πœ–(2.6) for all π‘₯βˆˆπ‘‹, with β€–π‘₯β€–β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀332πœ–(2.7) for all π‘₯βˆˆπ‘‹.

We use the following usual notations. We denote by 𝐺×𝐺={(π‘Ž1,π‘Ž2)βˆΆπ‘Ž1,π‘Ž2∈𝐺} the product group; that is, for π‘Ž=(π‘Ž1,π‘Ž2),𝑏=(𝑏1,𝑏2)βˆˆπΊΓ—πΊ, we define π‘Ž+𝑏=(π‘Ž1+𝑏1,π‘Ž2+𝑏2),π‘Žβˆ’π‘=(π‘Ž1βˆ’π‘1,π‘Ž2βˆ’π‘2). For a subset 𝐻 of 𝐺×𝐺 and π‘Ž,π‘βˆˆπΊΓ—πΊ, we define π‘Ž+𝐻={π‘Ž+β„ŽβˆΆβ„Žβˆˆπ»}.

For given π‘₯,π‘¦βˆˆπΊ we denote by 𝑃π‘₯,𝑦,𝑄π‘₯,𝑦 the subsets of points of the forms (not necessarily distinct) in 𝐺×𝐺, respectively, 𝑃π‘₯,𝑦𝑄={(0,0),(π‘₯,βˆ’π‘₯),(𝑦,𝑦),(π‘₯+𝑦,βˆ’π‘₯+𝑦)},π‘₯,𝑦={(βˆ’π‘₯,π‘₯),(𝑦,𝑦),(βˆ’π‘₯+𝑦,π‘₯+𝑦)}.(2.8) The set 𝑃π‘₯,𝑦 can be viewed as the vertices of rectangles in 𝐺×𝐺, and 𝑄π‘₯,𝑦 can be viewed as a subset of the vertices of rectangles in 𝐺×𝐺.

Definition 2.3. Let π‘ˆβŠ‚πΊΓ—πΊ. One introduces the following conditions (𝐽1) and (𝐽2) on π‘ˆ. For any π‘₯,π‘¦βˆˆπΊ, there exists a π‘§βˆˆπΊ such that (𝐽1)(0,𝑧)+𝑃π‘₯,𝑦={(0,𝑧),(π‘₯,βˆ’π‘₯+𝑧),(𝑦,𝑦+𝑧),(π‘₯+𝑦,βˆ’π‘₯+𝑦+𝑧)}βŠ‚π‘ˆ,(𝐽2)(𝑧,0)+𝑄π‘₯,𝑦={(βˆ’π‘₯+𝑧,π‘₯),(𝑦+𝑧,𝑦),(βˆ’π‘₯+𝑦+𝑧,π‘₯+𝑦)}βŠ‚π‘ˆ,(2.9) respectively.

The sets (0,𝑧)+𝑃π‘₯,𝑦,(𝑧,0)+𝑄π‘₯,𝑦 can be understood as the translations of 𝑃π‘₯,𝑦 and 𝑄π‘₯,𝑦 by (0,𝑧) and (𝑧,0), respectively.

There are many interesting examples of the sets π‘ˆ satisfying some of the conditions (𝐽1) and (𝐽2). We start with some trivial examples.

Example 2.4. Let 𝐺 be a real normed space. For 𝑑β‰₯0,π‘₯0,𝑦0∈𝐺, let π‘ˆ={(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆπ‘˜β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑},𝑉={(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆβ€–π‘˜π‘₯+𝑠𝑦‖β‰₯𝑑}.(2.10) Then π‘ˆ satisfies (𝐽1) if 𝑠>0, (𝐽2) if π‘˜>0 and 𝑉 satisfies (𝐽1) if 𝑠≠0, (𝐽2) if π‘˜β‰ 0.

Example 2.5. Let 𝐺 be a real inner product space. For 𝑑β‰₯0,π‘₯0,𝑦0βˆˆπΊξ€½π‘ˆ=(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆβŸ¨π‘₯0,π‘₯⟩+βŸ¨π‘¦0ξ€Ύ,π‘¦βŸ©β‰₯𝑑.(2.11) Then π‘ˆ satisfies (𝐽1) if 𝑦0β‰ 0, (𝐽2) if π‘₯0β‰ 0.

Example 2.6. Let 𝐺 be the group of nonsingular square matrices with the operation of matrix multiplication. For π‘˜,π‘ βˆˆβ„,𝛿,𝑑β‰₯0, let ξ‚†ξ€·π‘ƒπ‘ˆ=1,𝑃2ξ€Έ||βˆˆπΊΓ—πΊβˆΆdet𝑃1||π‘˜||det𝑃2||𝑠,𝑃≀𝛿𝑉=1,𝑃2ξ€Έ||βˆˆπΊΓ—πΊβˆΆdet𝑃1||π‘˜||det𝑃2||𝑠.β‰₯𝑑(2.12) Then both π‘ˆ and 𝑉 satisfy (𝐽1) if 𝑠≠0, (𝐽2) if π‘˜β‰ 0.

In the following one can see that if 𝑃π‘₯,𝑦 and 𝑄π‘₯,𝑦 are replaced by arbitrary subsets of four points (not necessarily distinct) in 𝐺×𝐺, respectively, then the conditions become stronger; that is, there are subsets π‘ˆ1 and π‘ˆ2 which satisfy the conditions (𝐽1) and (𝐽2), respectively, but π‘ˆ1 and π‘ˆ2 fail to fulfill the following conditions (2.13) and (2.14), respectively. For any subset {𝑋1,𝑋2,𝑋3,𝑋4} of points (not necessarily distinct) in 𝐺×𝐺, there exists a π‘§βˆˆπΊ such that 𝑋(0,𝑧)+1,𝑋2,𝑋3,𝑋4ξ€ΎβŠ‚π‘ˆ1(𝑋,(2.13)𝑧,0)+1,𝑋2,𝑋3,𝑋4ξ€ΎβŠ‚π‘ˆ2,(2.14) respectively.

Now we give examples of π‘ˆ1 and π‘ˆ2 which satisfy (𝐽1) and (𝐽2), respectively, but not (2.13) and (2.14), respectively.

Example 2.7. Let 𝐺=β„€ be the group of integers. Enumerate π‘Žβ„€Γ—β„€=ξ€½ξ€·1,𝑏1ξ€Έ,ξ€·π‘Ž2,𝑏2ξ€Έξ€·π‘Ž,…,𝑛,𝑏𝑛,β€¦βŠ‚β„2(2.15) such that ||π‘Ž1||+||𝑏1||≀||π‘Ž2||+||𝑏2||||π‘Žβ‰€β‹―β‰€π‘›||+||𝑏𝑛||≀⋯,(2.16) and let 𝑃𝑛={(0,0),(π‘Žπ‘›,βˆ’π‘Žπ‘›),(𝑏𝑛,𝑏𝑛),(π‘Žπ‘›+𝑏𝑛,βˆ’π‘Žπ‘›+𝑏𝑛)},𝑛=1,2,…. Then it is easy to see that β‹ƒπ‘ˆ=βˆžπ‘›=1((0,2𝑛)+𝑃𝑛) satisfies the condition (𝐽1). Now let 𝑃={(𝑝1,π‘ž1),(𝑝2,π‘ž2)}βŠ‚β„€Γ—β„€ with |π‘ž2βˆ’π‘ž1|≀|𝑝2βˆ’π‘1|,𝑝1𝑝2>0. Then (0,𝑧)+𝑃 is not contained in π‘ˆ for all π‘§βˆˆβ„€. Indeed, for any choices of (π‘₯𝑛,𝑦𝑛)βˆˆπ‘ƒπ‘›+(0,2𝑛),𝑛=1,2,…, we have π‘¦π‘šβˆ’π‘¦π‘›>|π‘₯π‘šβˆ’π‘₯𝑛| for all π‘š>𝑛,π‘š,𝑛=1,2,…. Thus, if (0,𝑧)+π‘ƒβŠ‚π‘ˆ for some π‘§βˆˆβ„€, then 𝑃+(0,𝑧)βŠ‚(0,2𝑛)+𝑃𝑛 for some π‘›βˆˆβ„•. Thus, it follows from the condition π‘ž2βˆ’π‘ž1≀|𝑝2βˆ’π‘1| that the line segment joining the points of 𝑃+(βˆ’π‘§,𝑧) intersects the line π‘₯=0 in ℝ2, which contradicts the condition 𝑝1𝑝2>0. Similarly, let 𝑄𝑛={(βˆ’π‘Žπ‘›,π‘Žπ‘›),(𝑏𝑛,𝑏𝑛),(βˆ’π‘Žπ‘›+𝑏𝑛,π‘Žπ‘›+𝑏𝑛)}. Then it is easy to see that β‹ƒπ‘ˆ=βˆžπ‘›=1((2𝑛,0)+𝑄𝑛) satisfies the condition (𝐽2) but not (2.14).

Theorem 2.8. Let π‘ˆβŠ‚πΊΓ—πΊ satisfy the condition (𝐽1) and πœ–β‰₯0. Suppose that π‘“βˆΆπΊβ†’π‘Œ satisfies (2.1) for all (π‘₯,𝑦)βˆˆπ‘ˆ. Then there exists an additive function π΄βˆΆπΊβ†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)βˆ’π‘“(0)‖≀2πœ–(2.17) for all π‘₯∈𝐺.

Proof. For given π‘₯,π‘¦βˆˆπΊ, choose a π‘§βˆˆπΊ such that (0,𝑧)+𝑃π‘₯,π‘¦βŠ‚π‘ˆ. Replacing π‘₯ by π‘₯+𝑦, 𝑦 by βˆ’π‘₯+𝑦+𝑧; π‘₯ by π‘₯, 𝑦 by βˆ’π‘₯+𝑧; π‘₯ by 𝑦, 𝑦 by 𝑦+𝑧; π‘₯ by 0, 𝑦 by 𝑧 in (2.1), respectively, we have β€–(‖𝑓(2𝑦+𝑧)+𝑓(2π‘₯βˆ’π‘§)βˆ’2𝑓(π‘₯+𝑦)β€–β‰€πœ–,‖𝑓(𝑧)+𝑓(2π‘₯βˆ’π‘§)βˆ’2𝑓(π‘₯)β€–β‰€πœ–,𝑓(2𝑦+𝑧)+𝑓(βˆ’π‘§)βˆ’2𝑓(𝑦)β€–β‰€πœ–,‖𝑓𝑧)+𝑓(βˆ’π‘§)βˆ’2𝑓(0)β€–β‰€πœ–.(2.18) From (2.18), using the triangle inequality and dividing the result by 2, we have ||||𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)+𝑓(0)≀2πœ–(2.19) for all π‘₯,π‘¦βˆˆπΊ. From (2.19), using Theorem 1.1, we get the result.

Let 𝑑β‰₯0,π‘ βˆˆβ„, and let π‘ˆ={(π‘₯,𝑦)βˆΆβ€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑}. Then π‘ˆ satisfies the condition (𝐽1). Thus, as a direct consequence of Theorem 2.8, we obtain the following (cf. Theorem 2.1).

Corollary 2.9. Let 𝑑β‰₯0,π‘ βˆˆβ„. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies inequality (2.1) for all π‘₯,π‘¦βˆˆπ‘‹, with β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)βˆ’π‘“(0)‖≀2πœ–(2.20) for all π‘₯βˆˆπ‘‹.

Theorem 2.10. Let π‘ˆβŠ‚πΊΓ—πΊ satisfy the condition (𝐽2) and πœ–β‰₯0. Suppose that π‘“βˆΆπΊβ†’π‘Œ satisfies (2.2) for all (π‘₯,𝑦)βˆˆπ‘ˆ. Then there exists a unique additive function π΄βˆΆπΊβ†’π‘Œ such that 3‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀2πœ–(2.21) for all π‘₯∈𝐺.

Proof. For given π‘₯,π‘¦βˆˆπΊ, choose a π‘§βˆˆπΊ such that (𝑧,0)+𝑄π‘₯,π‘¦βŠ‚π‘ˆ. Replacing π‘₯ by βˆ’π‘₯+𝑦+𝑧, 𝑦 by π‘₯+𝑦; π‘₯ by βˆ’π‘₯+𝑧, 𝑦 by π‘₯; π‘₯ by 𝑦+𝑧, 𝑦 by 𝑦 in (2.2), respectively, we have ‖‖𝑓(2𝑦+𝑧)βˆ’π‘“(βˆ’2π‘₯+𝑧)βˆ’2𝑓(π‘₯+𝑦)β€–β‰€πœ–,‖𝑓(𝑧)βˆ’π‘“(βˆ’2π‘₯+𝑧)βˆ’2𝑓(π‘₯)β€–β‰€πœ–,𝑓(2𝑦+𝑧)βˆ’π‘“(𝑧)βˆ’2𝑓(𝑦)β€–β‰€πœ–.(2.22) From (2.22), using the triangle inequality and dividing the result by 2, we have ||||≀3𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)2πœ–.(2.23) Now by Theorem 1.1, we get the result.

Let 𝑑β‰₯0,π‘˜βˆˆβ„, and let π‘ˆ={(π‘₯,𝑦)βˆΆπ‘˜β€–π‘₯β€–+‖𝑦‖β‰₯𝑑}. Then π‘ˆ satisfies the condition (J2). Thus, as a direct consequence of Theorem 2.10, we generalize and refine Theorem 2.2 as follows.

Corollary 2.11. Let𝑑β‰₯0,π‘˜βˆˆβ„. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies inequality (2.2) for all π‘₯,𝑦, with π‘˜β€–π‘₯β€–+‖𝑦‖β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that 3‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀2πœ–(2.24) for all π‘₯βˆˆπ‘‹.

Remark 2.12. Corollary 2.11 refines Theorem 2.2 in both the bounds and the condition (2.6).

Now we discuss other possible restricted domains. We assume that 𝐺 is a 2-divisible Abelian group. For given π‘₯,π‘¦βˆˆπΊ, we denote by 𝑅π‘₯,𝑦,𝑆π‘₯,π‘¦βŠ‚πΊΓ—πΊ, 𝑅π‘₯,𝑦=(ξ‚€π‘₯,π‘₯),(π‘₯,𝑦),π‘₯βˆ’π‘¦2,π‘₯βˆ’π‘¦2,ξ‚€π‘₯βˆ’π‘¦2,βˆ’π‘₯+𝑦2,𝑆π‘₯,𝑦=(ξ‚€π‘₯,π‘₯),(𝑦,π‘₯),π‘₯βˆ’π‘¦2,π‘₯βˆ’π‘¦2,ξ‚€βˆ’π‘₯+𝑦2,π‘₯βˆ’π‘¦2.(2.25) One can see that 𝑅π‘₯,𝑦 and 𝑆π‘₯,𝑦 consist of the vertices of parallelograms in 𝐺×𝐺, respectively.

Definition 2.13. Let π‘ˆβŠ‚πΊΓ—πΊ. One introduces the following conditions (𝐽3),(𝐽4) on π‘ˆ. For any π‘₯,π‘¦βˆˆπΊ, there exists a π‘§βˆˆπΊ such that (𝐽3)(𝑧,βˆ’π‘§)+𝑅π‘₯,𝑦=(π‘₯+𝑧,π‘₯βˆ’π‘§),(π‘₯+𝑧,π‘¦βˆ’π‘§),π‘₯βˆ’π‘¦2+𝑧,π‘₯βˆ’π‘¦2,ξ‚€βˆ’π‘§π‘₯βˆ’π‘¦2+𝑧,βˆ’π‘₯+𝑦2βˆ’π‘§ξ‚ξ‚‡βŠ‚π‘ˆ,(𝐽4)(𝑧,βˆ’π‘§)+𝑆π‘₯,𝑦=(π‘₯+𝑧,π‘₯βˆ’π‘§),(𝑦+𝑧,π‘₯βˆ’π‘§),π‘₯βˆ’π‘¦2+𝑧,π‘₯βˆ’π‘¦2,ξ‚€βˆ’π‘§βˆ’π‘₯+𝑦2+𝑧,π‘₯βˆ’π‘¦2βˆ’π‘§ξ‚ξ‚‡βŠ‚π‘ˆ,(2.26) respectively.

Example 2.14. Let 𝐺 be a real normed space. For π‘˜,𝑠,π‘‘βˆˆβ„, let π‘ˆ={(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆπ‘˜β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑},𝑉={(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆβ€–π‘˜π‘₯+𝑠𝑦‖β‰₯𝑑}.(2.27) Then π‘ˆ satisfies (𝐽3) and (𝐽4) if π‘˜+𝑠>0, and 𝑉 satisfies (𝐽3) and (𝐽4) if π‘˜β‰ π‘ .

Example 2.15. Let 𝐺 be a real inner product space. For 𝑑β‰₯0,π‘₯0,𝑦0∈𝐺, ξ€½π‘ˆ=(π‘₯,𝑦)βˆˆπΊΓ—πΊβˆΆβŸ¨π‘₯0,π‘₯⟩+βŸ¨π‘¦0ξ€Ύ,π‘¦βŸ©β‰₯𝑑.(2.28) Then π‘ˆ satisfies (𝐽3),(𝐽4) if π‘₯0≠𝑦0.

Example 2.16. Let 𝐺 be the group of nonsingular square matrices with the operation of matrix multiplication. For π‘˜,π‘ βˆˆβ„,𝛿,𝑑β‰₯0, let ξ‚†ξ€·π‘ƒπ‘ˆ=1,𝑃2ξ€Έ||βˆˆπΊΓ—πΊβˆΆdet𝑃1||π‘˜||det𝑃2||𝑠,𝑃≀𝛿𝑉=1,𝑃2ξ€Έ||βˆˆπΊΓ—πΊβˆΆdet𝑃1||π‘˜||det𝑃2||𝑠.β‰₯𝑑(2.29) Then π‘ˆ and 𝑉 satisfy both (𝐽3) and (𝐽4) if π‘˜β‰ π‘ .

From now on, we assume that 𝐺 is a 2-divisible Abelian group.

Theorem 2.17. Let π‘ˆβŠ‚πΊΓ—πΊ satisfy the condition (𝐽3) and πœ–β‰₯0. Suppose that π‘“βˆΆπΊβ†’π‘Œ satisfies (2.1) for all (π‘₯,𝑦)βˆˆπ‘ˆ. Then there exists a unique additive function π΄βˆΆπΊβ†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)βˆ’π‘“(0)‖≀4πœ–(2.30) for all π‘₯∈𝐺.

Proof. For given π‘₯,π‘¦βˆˆπΊ, choose a π‘§βˆˆπΊ such that (𝑧,βˆ’π‘§)+𝑅π‘₯,π‘¦βŠ‚π‘ˆ. Replacing π‘₯ by π‘₯+𝑧, 𝑦 by π‘₯βˆ’π‘§; π‘₯ by π‘₯+𝑧, 𝑦 by π‘¦βˆ’π‘§; π‘₯ by (π‘₯βˆ’π‘¦)/2+𝑧, 𝑦 by (π‘₯βˆ’π‘¦)/2βˆ’π‘§; π‘₯ by (π‘₯βˆ’π‘¦)/2+𝑧, 𝑦 by (βˆ’π‘₯+𝑦)/2βˆ’π‘§ in (2.1), respectively, we have ‖‖‖‖𝑓(2π‘₯)+𝑓(2𝑧)βˆ’2𝑓(π‘₯+𝑧)β€–β‰€πœ–,‖𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦+2𝑧)βˆ’2𝑓(π‘₯+𝑧)β€–β‰€πœ–,𝑓(π‘₯βˆ’π‘¦)+𝑓(2𝑧)βˆ’2𝑓π‘₯βˆ’π‘¦2‖‖‖‖‖‖+π‘§β‰€πœ–,𝑓(0)+𝑓(π‘₯βˆ’π‘¦+2𝑧)βˆ’2𝑓π‘₯βˆ’π‘¦2‖‖‖+π‘§β‰€πœ–.(2.31) From (2.31), using the triangle inequality, we have ||||𝑓(2π‘₯)βˆ’π‘“(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)+𝑓(0)≀4πœ–(2.32) for all π‘₯,π‘¦βˆˆπΊ. Replacing π‘₯ by (π‘₯+𝑦/2), 𝑦 by (π‘₯βˆ’π‘¦/2) in (2.32), we have ||||𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯)βˆ’π‘“(𝑦)+𝑓(0)≀4πœ–(2.33) for all π‘₯,π‘¦βˆˆπΊ. From (2.33), using Theorem 1.1, we get the result.

Let 𝑑β‰₯0,π‘˜,π‘ βˆˆβ„ with π‘˜+𝑠>0, and let π‘ˆ={(π‘₯,𝑦)βˆΆπ‘˜β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑}. Then π‘ˆ satisfies the conditions (𝐽3) and (𝐽4). Thus, as a direct consequence of Theorem 2.17 we generalize Theorem 2.1 as follows.

Corollary 2.18. Let𝑑β‰₯0,π‘˜,π‘ βˆˆβ„ with π‘˜+𝑠>0. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the inequality (2.1) for all π‘₯,𝑦, with π‘˜β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)βˆ’π‘“(0)‖≀4πœ–(2.34) for all π‘₯βˆˆπ‘‹.

Theorem 2.19. Let π‘ˆβŠ‚πΊΓ—πΊ satisfy the condition (𝐽4) and πœ–β‰₯0. Suppose that π‘“βˆΆπΊβ†’π‘Œ satisfies (2.2) for all (π‘₯,𝑦)βˆˆπ‘ˆ. Then there exists a unique additive function π΄βˆΆπΊβ†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀4πœ–(2.35) for all π‘₯∈𝐺.

Proof. For given π‘₯,π‘¦βˆˆπΊ, choose a π‘§βˆˆπΊ such that (𝑧,βˆ’π‘§)+𝑆π‘₯,π‘¦βŠ‚π‘ˆ. Replacing π‘₯ by π‘₯+𝑧, 𝑦 by π‘₯βˆ’π‘§; π‘₯ by 𝑦+𝑧, 𝑦 by π‘₯βˆ’π‘§; π‘₯ by (π‘₯βˆ’π‘¦)/2+𝑧, 𝑦 by (π‘₯βˆ’π‘¦)/2βˆ’π‘§; π‘₯ by (βˆ’π‘₯+𝑦)/2+𝑧, 𝑦 by (π‘₯βˆ’π‘¦)/2βˆ’π‘§ in (2.2), respectively, we have ‖‖‖𝑓‖𝑓(2π‘₯)βˆ’π‘“(2𝑧)βˆ’2𝑓(π‘₯βˆ’π‘§)β€–β‰€πœ–,‖𝑓(π‘₯+𝑦)βˆ’π‘“(βˆ’π‘₯+𝑦+2𝑧)βˆ’2𝑓(π‘₯βˆ’π‘§)β€–β‰€πœ–,(π‘₯βˆ’π‘¦)βˆ’π‘“(2𝑧)βˆ’2𝑓π‘₯βˆ’π‘¦2‖‖‖‖‖‖+π‘§β‰€πœ–,𝑓(0)βˆ’π‘“(βˆ’π‘₯+𝑦+2𝑧)βˆ’2𝑓π‘₯βˆ’π‘¦2‖‖‖+π‘§β‰€πœ–.(2.36) From (2.36), using the triangle inequality, we have ||||𝑓(2π‘₯)βˆ’π‘“(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)+𝑓(0)≀4πœ–(2.37) for all π‘₯,π‘¦βˆˆπΊ. Replacing π‘₯ by (π‘₯+𝑦)/2, 𝑦 by (π‘₯βˆ’π‘¦)/2 in (2.37) and using Theorem 1.1, we get the result.

As a direct consequence of Theorem 2.19, we have the following.

Corollary 2.20. Let 𝑑β‰₯0,π‘˜,π‘ βˆˆβ„ with π‘˜+𝑠>0. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the inequality (2.2) for all π‘₯,𝑦, with π‘˜β€–π‘₯β€–+𝑠‖𝑦‖β‰₯𝑑. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that ‖𝑓(π‘₯)βˆ’π΄(π‘₯)‖≀4πœ–(2.38) for all π‘₯βˆˆπ‘‹.

3. Asymptotic Behavior of the Equations

In this section we discuss asymptotic behaviors of the equations which gives refined versions of the results in [13].

Using Theorems 2.8 and 2.17, we have the following (cf. [13]).

Theorem 3.1. Let π‘ˆ satisfy (𝐽1) or (𝐽3). Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the asymptotic condition ‖𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)β€–βŸΆ0(3.1) as β€–π‘₯β€–+β€–π‘¦β€–β†’βˆž,(π‘₯,𝑦)βˆˆπ‘ˆ. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that 𝑓(π‘₯)=𝐴(π‘₯)+𝑓(0)(3.2) for all π‘₯βˆˆπ‘‹.

Proof. By the condition (3.1), for each π‘›βˆˆβ„•, there exists 𝑑𝑛>0 such that 1‖𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)‖≀𝑛(3.3) for all (π‘₯,𝑦)βˆˆπ‘ˆ with β€–π‘₯β€–+‖𝑦‖β‰₯𝑑𝑛. Let π‘ˆ0=π‘ˆβˆ©{(π‘₯,𝑦)βˆΆβ€–π‘₯β€–+‖𝑦‖β‰₯𝑑𝑛}. Then π‘ˆ0 satisfies both the conditions (𝐽1) and (𝐽3). By Theorems 2.8 and 2.17, there exists a unique additive function π΄π‘›βˆΆπ‘‹β†’π‘Œ such that ‖‖𝑓(π‘₯)βˆ’π΄π‘›β€–β€–β‰€2(π‘₯)βˆ’π‘“(0)𝑛4or𝑛(3.4) for all π‘₯βˆˆπ‘‹. Putting 𝑛=π‘š in (3.4) and using the triangle inequality, we have ‖‖𝐴𝑛(π‘₯)βˆ’π΄π‘šβ€–β€–(π‘₯)≀8(3.5) for all π‘₯βˆˆπ‘‹. Using the additivity of 𝐴𝑛,π΄π‘š, we have 𝐴𝑛=π΄π‘š for all 𝑛,π‘šβˆˆβ„•. Letting π‘›β†’βˆž in (3.4), we get the result.

Corollary 3.2. Let π‘˜,π‘ βˆˆβ„ satisfy one of the conditions: 𝑠>0,π‘˜+𝑠>0. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the condition ‖𝑓(π‘₯+𝑦)+𝑓(π‘₯βˆ’π‘¦)βˆ’2𝑓(π‘₯)β€–βŸΆ0(3.6) as π‘˜β€–π‘₯β€–+π‘ β€–π‘¦β€–β†’βˆž. Then there exists a unique additive function π΄βˆΆπ‘‹β†’π‘Œ such that 𝑓(π‘₯)=𝐴(π‘₯)+𝑓(0)(3.7) for all π‘₯βˆˆπ‘‹.

Using Theorems 2.10 and 2.19, we have the following (cf. [13]).

Theorem 3.3. Let π‘ˆ satisfy (𝐽2) or (𝐽4). Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the condition ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)βˆ’2𝑓(𝑦)β€–βŸΆ0(3.8) as β€–π‘₯β€–+β€–π‘¦β€–β†’βˆž,(π‘₯,𝑦)βˆˆπ‘ˆ. Then 𝑓 is an additive function.

Corollary 3.4. Let π‘˜,π‘ βˆˆβ„ satisfy one of the conditions: π‘˜>0,π‘˜+𝑠>0. Suppose that π‘“βˆΆπ‘‹β†’π‘Œ satisfies the condition ‖𝑓(π‘₯+𝑦)βˆ’π‘“(π‘₯βˆ’π‘¦)βˆ’2𝑓(𝑦)β€–βŸΆ0(3.9) as π‘˜β€–π‘₯β€–+π‘ β€–π‘¦β€–β†’βˆž. Then 𝑓 is an additive function.

Acknowledgments

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (no. 2011-0003898), and the second author was partially supported by the Research Institute of Mathematics, Seoul National University.