Abstract

We study pursuit and evasion differential game problems described by infinite number of first-order differential equations with function coefficients in Hilbert space l2. Problems involving integral, geometric, and mix constraints to the control functions of the players are considered. In each case, we give sufficient conditions for completion of pursuit and for which evasion is possible. Consequently, strategy of the pursuer and control function of the evader are constructed in an explicit form for every problem considered.

1. Introduction

The books by Friedman [1], Isaacs [2], KrasovskiΔ­ and Subbotin [3], Lewin [4], Petrosyan [5], and Pontryagin [6] among others are fundamental to the study of differential games.

Many works are devoted to differential game problems described by both ordinary differential equations in 𝑅𝑛 and partial differential equations. In particular, pursuit and evasion differential game problems involving distributed parameter systems are of increasing interest (see, e.g., [7–14]).

Satimov and Tukhtasinov [10, 11] studied pursuit and evasion problems described by the parabolic equation π‘§π‘‘βˆ’π΄π‘§=βˆ’π‘’+𝑣,𝑧|𝑑=0=𝑧0(π‘₯),𝑧|𝑆𝑇=0,(1.1) where 𝑧=𝑧(𝑑,π‘₯) is unknown function; π‘₯=(π‘₯1,π‘₯2,…,π‘₯𝑛)βˆˆΞ©βŠ‚π‘…π‘›,𝑛β‰₯1 is parameter in a bounded domain Ξ©; π‘‘βˆˆ[0,𝑇],𝑇>0; 𝑒=𝑒(𝑑,π‘₯),𝑣=𝑣(𝑑,π‘₯) are control functions of the players; 𝑆𝑇={(π‘₯,𝑑)|π‘₯βˆˆπœ•Ξ©,π‘‘βˆˆ(0,𝑇)}, 𝐴 is a differential operator defined in the space 𝐿2(Ξ©). In this problem, the authors used the fact in [15] that under certain conditions, the problem (1.1) has a unique generalized (in the sense of distribution) solution of the form 𝑧(𝑑,π‘₯)=βˆžξ“π‘˜=1π‘§π‘˜(𝑑)πœ“π‘˜(π‘₯),(1.2) where the functions π‘§π‘˜(𝑑), 0≀𝑑≀𝑇, π‘˜=1,2,…, constitute the solution of the Cauchy problem for the following infinite system of differential equations and initial conditions: Μ‡π‘§π‘˜+πœ†π‘˜π‘§π‘˜=βˆ’π‘’π‘˜(𝑑)+π‘£π‘˜(𝑑),π‘§π‘˜(0)=𝑧0π‘˜,π‘˜=1,2,…,(1.3) and πœ†π‘˜, π‘˜=1,2,…, satisfying the condition that 0<πœ†1β‰€πœ†2β‰€β‹―β†’βˆž, are eigenvalues of the operator 𝐴, the functions πœ“π‘˜(π‘₯),π‘˜=1,2,…, constitute an orthonormal and complete system of eigenfunctions of the operator 𝐴, π‘’π‘˜(𝑑),π‘£π‘˜(𝑑), and 𝑧0π‘˜ are the Fourier coefficients in the expansion of 𝑒(𝑑,π‘₯),𝑣(𝑑,π‘₯), and 𝑧0(π‘₯), respectively, in the system {πœ“π‘˜(π‘₯)}.

The work above shows the significant relationship between differential game problems described by (1.1) in one side and those described by (1.3) in the other side. Therefore, it is logical to study the latter in an independent frame work (see, e.g., [16, 17]).

In the present paper, we solve pursuit and evasion problems described by system (1.3), with function coefficients πœ†π‘˜,π‘˜=1,2,… instead of constants coefficients considered in the previous study. Different forms of constraints on the controls of the players are considered.

2. Statement of the Problem

Let 𝑙2=𝛼𝛼=1,𝛼2ξ€ΈβˆΆ,β€¦βˆžξ“π‘˜=1𝛼2π‘˜ξƒ°,<∞(2.1) with inner product and norm βŸ¨π›Ό,π›½βŸ©=βˆžξ“π‘˜=1π›Όπ‘˜π›½π‘˜,𝛼,π›½βˆˆπ‘™2,‖𝛼‖=βˆžξ“π‘˜=1𝛼2π‘˜ξƒͺ1/2,‖𝑀(β‹…)‖𝐿2(0,𝑇,𝑙2)=ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0𝑀2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2.(2.2)

Let 𝐿2ξ€·0,𝑇,𝑙2ξ€Έ=𝑀𝑀(𝑑)=1(𝑑),𝑀2ξ€Έβ€–(𝑑),β€¦βˆΆβ€–π‘€(β‹…)𝐿2(0,𝑇,𝑙2)<∞,π‘€π‘˜(β‹…)∈𝐿2ξ€Ύ,(0,𝑇)(2.3) where 𝑇,𝑇>0, is a given number.

We examine a pursuit and evasion differential game problems described by the following infinite system of differential equations Μ‡π‘§π‘˜(𝑑)+πœ†π‘˜(𝑑)π‘§π‘˜(𝑑)=βˆ’π‘’π‘˜(𝑑)+π‘£π‘˜(𝑑),π‘§π‘˜(0)=π‘§π‘˜0,π‘˜=1,2,…,(2.4) where π‘§π‘˜,π‘’π‘˜,π‘£π‘˜βˆˆπ‘…1,π‘˜=1,2,…,𝑧0=(𝑧10,𝑧20,…)βˆˆπ‘™2,π‘’π‘˜,π‘£π‘˜,…, are control parameters of pursuer and evader respectively, πœ†π‘˜(𝑑),π‘˜=1,2,…, are bounded, non-negative continuous functions on the interval [0,𝑇] such that πœ†π‘˜(0)=0,π‘˜=1,2,….

Definition 2.1. A function 𝑀(β‹…),π‘€βˆΆ[0,𝑇]→𝑙2, with measurable coordinates π‘€π‘˜(𝑑),0≀𝑑≀𝑇,π‘˜=1,2,…, subject to βˆžξ“π‘˜=1ξ€œπ‘‡0𝑀2π‘˜(𝑠)π‘‘π‘ β‰€πœŒ2ξƒ©βˆžξ“π‘˜=1𝑀2π‘˜(𝑑)β‰€πœŒ2[]ξƒͺ,,π‘‘βˆˆ0,𝑇(2.5) where 𝜌 is a positive number, is referred to as an admissible control subject to integral constraint (resp., geometric constraint).

We denote the set of all admissible controls with respect to integral constraint by 𝑆1(𝜌) and with respect to geometric constraint by 𝑆2(𝜌).

The control 𝑒(β‹…)=(𝑒1(β‹…),𝑒2(β‹…),…) of the pursuer and 𝑣(β‹…)=(𝑣1(β‹…),𝑣2(β‹…),…) of the evader are said to be admissible if they satisfy one of the following conditions ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0𝑒2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2ξƒ©β‰€πœŒ,βˆžξ“π‘˜=1ξ€œπ‘‡0𝑣2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2ξƒ©β‰€πœŽ,(2.6)βˆžξ“π‘˜=1𝑒2π‘˜ξƒͺ(𝑑)1/2[],ξƒ©β‰€πœŒ,π‘‘βˆˆ0,π‘‡βˆžξ“π‘˜=1𝑣2π‘˜ξƒͺ(𝑑)1/2[],ξƒ©β‰€πœŽ,π‘‘βˆˆ0,𝑇(2.7)βˆžξ“π‘˜=1ξ€œπ‘‡0𝑒2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2ξƒ©β‰€πœŒ,βˆžξ“π‘˜=1𝑣2π‘˜ξƒͺ(𝑑)1/2[],ξƒ©β‰€πœŽ,π‘‘βˆˆ0,𝑇(2.8)βˆžξ“π‘˜=1𝑒2π‘˜ξƒͺ(𝑑)1/2[],ξƒ©β‰€πœŒ,π‘‘βˆˆ0,π‘‡βˆžξ“π‘˜=1ξ€œπ‘‡0𝑣2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2β‰€πœŽ,(2.9) where 𝜌 and 𝜎 are positive constants. We will call the system (2.4) in which 𝑒(β‹…) and 𝑣(β‹…) satisfy inequalities (2.6) (resp., (2.7), (2.8), and (2.9)), game 𝐺1 (resp., 𝐺2,𝐺3,𝐺4).

Definition 2.2. A function 𝑧(𝑑)=(𝑧1(𝑑),𝑧2(𝑑),…),0≀𝑑≀𝑇, is called the solution of the system (2.4) if each coordinate π‘§π‘˜(𝑑)(i)is absolutely continuous and almost everywhere on [0,𝑇] satisfies (2.4),(ii)𝑧(β‹…)∈𝐢(0,𝑇;𝑙2).

Definition 2.3. A function []π‘ˆ(𝑑,𝑣),π‘ˆβˆΆ0,𝑇×𝑙2→𝑙2(2.10) is referred to as the strategy of the pursuer with respect to integral constraint if:(1)for any admissible control of the evader 𝑣=𝑣(𝑑),π‘‘βˆˆ[0,𝑇], the system (2.4) has a unique solution at 𝑒=𝑒(𝑑,𝑣1(𝑑),𝑣2(𝑑),…),(2)π‘ˆ(β‹…,𝑣(β‹…))βˆˆπ‘†1(𝜌).

In a similar way, we define strategy of the pursuer with respect to geometric constraint.

Definition 2.4. One will say that pursuit can be completed in the game 𝐺1 (resp., 𝐺2,𝐺3) from an initial position 𝑧0, if there exists a strategy of the pursuer to ensure that 𝑧(𝑑)=0 for some π‘‘βˆˆ[0,𝑇] and for any admissible control of the evader 𝑣(β‹…), where 𝑧(𝑑) is the solution to (2.4).

Definition 2.5. One will say that pursuit can be completed in the game 𝐺4 from an initial position 𝑧0, if for arbitrary πœ€>0, there exists a strategy of the pursuer to ensure that ‖𝑧(𝑑)β€–β‰€πœ€ for some π‘‘βˆˆ[0,𝑇] and for any admissible control of the evader 𝑣(β‹…), where 𝑧(𝑑) is the solution to (2.4).

Definition 2.6. One will say that evasion is possible in the game 𝐺1 (resp., 𝐺2,𝐺3,𝐺4) from the initial position 𝑧0β‰ 0, if there exists a function 𝑣(𝑑)βˆˆπ‘†1(𝜎) (𝑣(𝑑)βˆˆπ‘†2(𝜎),𝑣(𝑑)βˆˆπ‘†2(𝜎),𝑣(𝑑)βˆˆπ‘†1(𝜎)) such that, for arbitrary function 𝑒0(𝑑)βˆˆπ‘†1(𝜌) (𝑒0(𝑑)βˆˆπ‘†2(𝜌),𝑒0(𝑑)βˆˆπ‘†1(𝜌),𝑒0(𝑑)βˆˆπ‘†2(𝜌)), the solution 𝑧(𝑑) of (2.4) does not vanish, that is, 𝑧(𝑑)β‰ 0 for any π‘‘βˆˆ[0,𝑇].
The problem is to find (1)conditions on the initial state 𝑧0 for which pursuit can be completed for a finite time; (2)conditions for which evasion is possible from any initial position 𝑧0β‰ 0 in the differential game 𝐺𝑖, for 𝑖=1,2,3,4.In problems 1 and 2, different forms of constraints on the controls of the players are to be considered.

3. Differential Game Problem

The kth equation in (2.4) has a unique solution of the form π‘§π‘˜(𝑑)=π‘’βˆ’π›Όπ‘˜(𝑑)ξ‚΅π‘§π‘˜0βˆ’ξ€œπ‘‘0π‘’π‘˜(𝑠)π‘’π›Όπ‘˜(𝑠)ξ€œπ‘‘π‘ +𝑑0π‘£π‘˜(𝑠)π‘’π›Όπ‘˜(𝑠)ξ‚Ά,𝑑𝑠(3.1) where π›Όπ‘˜βˆ«(𝑑)=𝑑0πœ†π‘˜(𝑠)𝑑𝑠.

It has been proven in [18] that the solution 𝑧(𝑑)=(𝑧1(𝑑),𝑧2(𝑑),…) of (2.4), where π‘§π‘˜,π‘˜=1,2,… defined by (3.1), belongs to the space 𝐢(0,𝑇;𝑙2).

Let ξ‚»π‘§π‘Œ=0=𝑧10,𝑧20ξ€Έ,β€¦βˆ£βˆƒπ‘˜=π‘—βˆΆπ‘§2𝑗0β‰€πœŒ24,𝐴𝑗,π‘Œ(𝑑)β‰₯11𝑧(𝑇)=0=𝑧10,𝑧20ξ€Έβˆ£,β€¦βˆžξ“π‘˜=1𝑧2π‘˜0π΄π‘˜(𝑇)≀(πœŒβˆ’πœŽ)2ξƒ°,π‘Œ2ξƒ―z(𝑇)=0=𝑧10,𝑧20ξ€Έβˆ£,β€¦βˆžξ“π‘˜=1𝑧2π‘˜0𝐡2π‘˜(𝑇)≀(πœŒβˆ’πœŽ)2ξƒ°,π‘Œ3(𝑧𝑇)=0=𝑧10,𝑧20ξ€Έβˆ£β€–β€–π‘§,…0β€–β€–+𝜎2πœ€supπ‘˜π΄π‘˜(ξ‚Ό,𝑇)β‰€πœŒπ‘‡,πœ€>0(3.2) where π΄π‘˜βˆ«(𝑇)=𝑇0𝑒2π›Όπ‘˜(𝑠)𝑑𝑠 and π΅π‘˜βˆ«(𝑇)=𝑇0π‘’π›Όπ‘˜(𝑠)𝑑𝑠.

3.1. Pursuit Differential Game

Theorem 3.1. If 𝜌β‰₯𝜎 then from the initial position 𝑧0βˆˆπ‘Œ1(𝑇), pursuit can be completed in the game 𝐺1.

Proof. Let define the pursuer's strategy as π‘’π‘˜ξ‚»π‘§(𝑑)=π‘˜0Aπ‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑑)+π‘£π‘˜(𝑑),0≀𝑑≀𝑇,0,𝑑>𝑇.(3.3) The admissibility of this strategy follows from the relations ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0𝑒2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2=ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)+π‘£π‘˜||(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0ξ€·||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)||+||π‘£π‘˜||ξ€Έ(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)||2ξƒͺ𝑑𝑠1/2+ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||π‘£π‘˜||(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1𝑧2π‘˜0π΄π‘˜βˆ’1ξƒͺ(𝑇)1/2+𝜎=πœŒβˆ’πœŽ+𝜎=𝜌,(3.4) here we used the Minkowski inequality and the fact that 𝑧0βˆˆπ‘Œ1(𝑇).
Suppose that the pursuer uses the strategy (3.3), one can easily see that for any admissible control of the evader π‘§π‘˜(𝑇)=0,π‘˜=1,2,…, that is, π‘§π‘˜(𝑇)=π‘’βˆ’π›Όπ‘˜(𝑇)ξ‚΅π‘§π‘˜0βˆ’ξ€œπ‘‡0π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)𝑒2π›Όπ‘˜(𝑠)𝑑𝑠=π‘’βˆ’π›Όπ‘˜(𝑇)ξ€·π‘§π‘˜0βˆ’π‘§π‘˜0ξ€Έ=0.(3.5) Therefore, pursuit can be completed in the game 𝐺1. This ends the proof of the theorem.

Theorem 3.2. If 𝜌β‰₯𝜎 then from the initial position 𝑧0βˆˆπ‘Œ2(𝑇), pursuit can be completed in the game 𝐺2.

Proof. We define the pursuer's strategy as π‘’π‘˜ξ‚»π‘§(𝑑)=π‘˜0π΅π‘˜βˆ’1(𝑇)+π‘£π‘˜(𝑑),0≀𝑑≀𝑇,0,𝑑>𝑇.(3.6) The inclusion 𝑒(β‹…)βˆˆπ‘†2(𝜌) follows from the relations ξƒ©βˆžξ“π‘˜=1𝑒2π‘˜ξƒͺ(𝑑)1/2=ξƒ©βˆžξ“π‘˜=1||π‘§π‘˜0π΅π‘˜βˆ’1(𝑇)+π‘£π‘˜||(𝑑)2ξƒͺ1/2β‰€ξƒ©βˆžξ“π‘˜=1ξ€·||π‘§π‘˜0π΅π‘˜βˆ’1||+||𝑣(𝑇)π‘˜||ξ€Έ(𝑑)2ξƒͺ1/2β‰€ξƒ©βˆžξ“π‘˜=1||π‘§π‘˜0π΅π‘˜βˆ’1||(𝑇)2ξƒͺ1/2+ξƒ©βˆžξ“π‘˜=1||π‘£π‘˜||(𝑑)2ξƒͺ1/2=πœŒβˆ’πœŽ+𝜎=𝜌,(3.7) here we used the Minkowski inequality and the fact that 𝑧0βˆˆπ‘Œ2(𝑇).
Suppose that the pursuer uses the strategy (3.6). One can easily see that π‘§π‘˜(𝑇)=0,π‘˜=1,2,…, that is, π‘§π‘˜(𝑇)=π‘’βˆ’π›Όπ‘˜(𝑇)ξ‚΅π‘§π‘˜0βˆ’ξ€œπ‘‡0π‘§π‘˜0π΅π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)𝑑𝑠=π‘’βˆ’π›Όπ‘˜(𝑇)ξ€·π‘§π‘˜0βˆ’π‘§π‘˜0ξ€Έ=0.(3.8) Therefore, pursuit can be completed in the game 𝐺2. This completes the proof of the theorem.

Theorem 3.3. If 𝜌β‰₯𝜎 and 𝑧0βˆˆπ‘Œ1(𝑇) at some π‘‡βˆˆ(0,𝑇], then pursuit can be completed in the game 𝐺3.

Proof. Suppose, as contained in the hypothesis of the theorem, that 𝑧0βˆˆπ‘Œ1(𝑇), π‘‡βˆˆ(0,1] and let 𝑣0(𝑑) be an arbitrary admissible control of the evader.
Let the pursuer use the strategy 𝑒(𝑑)=(𝑒1(𝑑),𝑒2(𝑑),…) defined by π‘’π‘˜ξ‚»π‘§(𝑑)=π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑑)+𝑣0π‘˜(𝑑),0≀𝑑≀𝑇,0,𝑑>𝑇.(3.9) Then, using (3.1), we have 𝑧(𝑇)=π‘’βˆ’π›Όπ‘˜(𝑇)ξ‚΅π‘§π‘˜0βˆ’ξ€œπ‘‡0π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)𝑒2π›Όπ‘˜(𝑑)𝑑𝑠=π‘’βˆ’π›Όπ‘˜(𝑇)ξ€·π‘§π‘˜0βˆ’π‘§π‘˜0ξ€Έ=0.(3.10) We now show the admissibility of the strategy used by the pursuer. From the inclusion 𝑣0(𝑑)βˆˆπ‘†2(𝜎) we can deduce that ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0𝑣20π‘˜ξƒͺ(𝑠)𝑑𝑠1/2βˆšβ‰€πœŽξƒ©π‘‡,(3.11)βˆžξ“π‘˜=1ξ€œπ‘‡0𝑒2π‘˜ξƒͺ(𝑠)𝑑𝑠1/2=ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)+𝑣0π‘˜||(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0ξ€·||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)||+||π‘£π‘˜||ξ€Έ(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||π‘§π‘˜0π΄π‘˜βˆ’1(𝑇)π‘’π›Όπ‘˜(𝑠)||2ξƒͺ𝑑𝑠1/2+ξƒ©βˆžξ“π‘˜=1ξ€œπ‘‡0||𝑣0π‘˜||(𝑠)2ξƒͺ𝑑𝑠1/2β‰€ξƒ©βˆžξ“π‘˜=1𝑧2π‘˜0π΄π‘˜βˆ’1ξƒͺ(𝑇)1/2√+πœŽπ‘‡βˆš=πœŒβˆ’πœŽ+πœŽπ‘‡β‰€πœŒ,(3.12) recall that π‘‡βˆˆ(0,1] and (3.11). This completes the proof.

Theorem 3.4. For arbitrary 𝜌>0,𝜎>0 and initial position 𝑧0βˆˆπ‘Œ3(𝑇), pursuit can be completed in the game 𝐺4.

Proof. Let 𝑣0 be an arbitrary admissible control function of the evader. When the pursuer uses the admissible control function π‘’π‘˜(𝑑)=π‘§π‘˜0𝑇1βˆ’1π‘’βˆ’π›Όπ‘˜(𝑑),π‘˜=1,2,…,0≀𝑑≀𝑇1,(3.13) for time 𝑇1=‖𝑧0β€–πœŒβˆ’1, the solution (3.1) of (2.4) becomes π‘§π‘˜ξ€·π‘‡1ξ€Έ=π‘’βˆ’π›Όπ‘˜(𝑇1)ξ€œπ‘‡10𝑣0π‘˜(𝑠)π‘’π›Όπ‘˜(𝑠)𝑑𝑠.(3.14)
Then for arbitrary positive number πœ€, it is obvious that either(1)‖𝑧(𝑇1)β€–β‰€πœ€, or(2)‖𝑧(𝑇1)β€–>πœ€.If (1) is true then the proof is complete. Obviously 𝑇1≀𝑇.
Suppose that (1) is not true then (2) must hold. We now assume that 𝑧0=𝑧(𝑇1) and repeat previous argument by setting π‘’π‘˜(𝑑)=π‘§π‘˜0𝑇1𝑇2βˆ’1π‘’βˆ’π›Όπ‘˜(𝑑),π‘˜=1,2,…,0≀𝑑≀𝑇2,(3.15) with time 𝑇2=‖𝑧(𝑇1)β€–πœŒβˆ’1 (we will later prove that the sum of 𝑇𝑖 is less than or equal to 𝑇). For this step the solution (3.1) becomes π‘§π‘˜ξ€·π‘‡1+𝑇2ξ€Έ=π‘’βˆ’π›Όπ‘˜(𝑇2)ξ€œπ‘‡20𝑣0π‘˜ξ€·π‘‡1𝑒+π‘ π›Όπ‘˜(𝑠)𝑑𝑠.(3.16)
Yet again, we have either of the following cases holding:(1)‖𝑧(𝑇1+𝑇2)β€–β‰€πœ€, or(2)‖𝑧(𝑇1+𝑇2)β€–>πœ€.If (1) holds then the game is completed in the time 𝑇1+𝑇2, else we assume 𝑧0=𝑧0(𝑇1+𝑇2) and repeat the process again and so on.
We now proof a claim that the game will be completed before 𝑛th finite step, where ξƒ‘πœŽπ‘›=2supπ‘˜π΄π‘˜(𝑇)πœ€2ξƒ’.(3.17) Note that the existence of the supreme of the sequence 𝐴1(𝑇),𝐴2(𝑇),…, follows from the fact that πœ†1(𝑑),πœ†2(𝑑),… is a bounded sequence of continuous functions and π‘‘βˆˆ[0,𝑇].
Suppose that it is possible that the game can continue for 𝑛th step. In this case, we must have 𝑛𝑖=1𝜎2π‘–β‰€πœŽ2.(3.18) But in the first instance, we have ||π‘§π‘˜ξ€·π‘‡1ξ€Έ||2β‰€π‘’βˆ’2π›Όπ‘˜(𝑇1)ξ€œπ‘‡10𝑣20π‘˜ξ€œ(𝑠)𝑑𝑠𝑇10𝑒2π›Όπ‘˜(𝑠)𝑑𝑠≀supπ‘˜π΄π‘˜ξ€œ(𝑇)𝑇10𝑣20π‘˜(𝑠)𝑑𝑠,(3.19) here we used (3.14) and Cauchy-Schwarz inequality.
Therefore, ‖‖𝑧(𝑇1)β€–β€–2≀supπ‘˜π΄π‘˜(𝑇)βˆžξ“π‘˜=1ξ€œπ‘‡10𝑣20π‘˜(𝑠)𝑑𝑠=supπ‘˜π΄π‘˜(𝑇)𝜎21,(3.20) and by using the assumption that ‖𝑧(𝑇1)β€–>πœ€, we have 𝜎21>πœ€2supπ‘˜π΄π‘˜.(𝑇)(3.21) Since the right hand side of this inequality is independent of 𝑛, we can conclude that 𝜎2𝑛>πœ€2supπ‘˜π΄π‘˜.(𝑇)(3.22) Using this inequality and definition of 𝑛, we have 𝑛𝑖=1𝜎2𝑖>π‘›πœ€2supπ‘˜π΄π‘˜(𝑇)>𝜎2,(3.23) contradicting (3.18). Hence, pursuit must be completed for the initial position 𝑧0βˆˆπ‘Œ3(𝑇) before the 𝑛th step. Furthermore, the pursuit time is given by 𝑇(𝑧0)=𝑇1+𝑇2+β‹―+π‘‡π‘›βˆ’1, and the inclusion 𝑇(𝑧0)∈[0,𝑇] is satisfied. Indeed (see (3.20), definition of 𝑛 and that 𝑧0βˆˆπ‘Œ3(𝑇)), 𝑇𝑧0ξ€Έ=‖‖𝑧0β€–β€–πœŒ+β€–β€–z𝑇1ξ€Έβ€–β€–πœŒβ€–β€–π‘§ξ€·π‘‡+β‹―+π‘›βˆ’2ξ€Έβ€–β€–πœŒβ‰€1πœŒξƒ©β€–β€–π‘§0β€–β€–+ξ‚™supπ‘˜π΄π‘˜(𝑇)π‘›βˆ’2𝑖=1πœŽπ‘–ξƒͺ≀1πœŒξƒ©β€–β€–π‘§0β€–β€–ξ‚™+𝜎(π‘›βˆ’2)supπ‘˜π΄π‘˜ξƒͺ≀1(𝑇)πœŒξ‚΅β€–β€–π‘§0β€–β€–+𝜎2πœ€supπ‘˜π΄π‘˜(𝑇)≀𝑇.(3.24)
This proves the theorem.

3.2. Evasion Differential Game

Theorem 3.5. If πœŽβˆ’πœŒβ‰₯0 then evasion is possible in the game 𝐺1 from the initial position 𝑧0β‰ 0.

Proof. Suppose that πœŽβˆ’πœŒβ‰₯0,(3.25) and let 𝑒0(𝑑) be an arbitrary control of the pursuer subjected to integral constraint. We construct the control function of the evader as follows: π‘£π‘˜ξ‚»π΄(𝑑)=π‘—βˆ’1/2(𝑇)πœŒπ‘’π›Όπ‘—(𝑑),π‘˜=𝑗,0,π‘˜β‰ π‘—.(3.26) This control function belongs to 𝑆1(𝜎). Indeed, βˆžξ“π‘˜=1ξ€œπ‘‡0𝑣2π‘˜(𝑠)𝑑𝑠=π΄π‘—βˆ’1(𝑇)𝜌2𝐴𝑗(𝑇)β‰€πœŽ2(3.27) we have used (3.26) and (3.25).
Our goal now is to show that 𝑧𝑗(𝑑)β‰ 0 for any π‘‘βˆˆ[0,𝑇] as defined by (3.1). Substituting (3.26) into (3.1) and using the Cauchy-Schwartz inequality, we have 𝑧𝑗(𝑑)β‰₯π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0+πœŒπ΄π‘—ξ”(𝑑)βˆ’πœŒπ΄π‘—ξ‚(𝑑)=𝑧𝑗0π‘’βˆ’π›Όπ‘—(𝑑)>0,(3.28) for any π‘‘βˆˆ[0,𝑇]. It follows that 𝑧(𝑑)β‰ 0 on the interval [0,𝑇]. Hence, evasion is possible in the game 𝐺1 from the given initial position 𝑧0β‰ 0. The proof of the theorem is complete.

Theorem 3.6. Suppose that 𝜎β‰₯𝜌 or there exists a number π‘˜=𝑗 such that 𝑧0𝑗>0 and βˆšπœŽβˆ’πœŒπ΄π‘—(𝑇)β‰₯0. Then from the initial position 𝑧0β‰ 0, evasion is possible in the game 𝐺2.

Proof. Suppose that 𝜎β‰₯𝜌 and that 𝑧0β‰ 0. The later condition means that π‘§π‘˜0β‰ 0 for some π‘˜=𝑗. We construct the control function of the evader as follows: π‘£π‘˜ξ‚»(𝑑)=𝜌,π‘˜=𝑗,0,π‘˜β‰ π‘—.(3.29) It is obvious that this control belongs to the set 𝑆2(𝜎).
To be definite, let 𝑧𝑗0>0. Using (3.29) and (3.1), we have 𝑧𝑗(𝑑)>π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0ξ€œ+πœŒπ‘‘0𝑒𝛼𝑗(𝑠)ξ€œπ‘‘π‘ βˆ’πœŒπ‘‘0𝑒𝛼𝑗(𝑠)𝑑𝑠=π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0>0.(3.30) This means that evasion is possible from the initial position 𝑧0β‰ 0 in the game 𝐺2.
We now prove the theorem with the alternative condition. Suppose that there exists a number π‘˜=𝑗 such that 𝑧0𝑗>0 and βˆšπœŽβˆ’πœŒπ΄π‘—(𝑇)β‰₯0. Let the control of the evader be as follows: π‘£π‘˜βŽ§βŽͺ⎨βŽͺ⎩√(𝑑)=𝑇𝐴𝑗(𝑇)𝑑+𝑒+π‘‡πœŒπ‘’βˆ’π›Όπ‘—(𝑑),π‘˜=𝑗,0,π‘˜β‰ π‘—.(3.31) We show that this control satisfies the geometric constraint: βˆžξ“π‘˜=1𝑣2π‘˜(𝑑)=𝑇𝐴𝑗(𝑇)(𝑑+𝑒+𝑇)2𝜌2π‘’βˆ’2𝛼𝑗(𝑑)β‰€πœŒ2𝐴𝑗(𝑇)β‰€πœŽ2.(3.32)
When the evader uses the control (3.31), the non-vanishing of 𝑧𝑗(𝑑) in the interval [0,𝑇] for any admissible control of the pursuer 𝑒𝑖0, can be seen from the following (see (3.1)) 𝑧𝑗(𝑑)β‰₯π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0+πœŒπ‘‡π΄π‘—ξ”(𝑇)ln(𝑑+𝑒+𝑇)βˆ’πœŒπ‘‡π΄π‘—ξ‚(𝑇)>0,(3.33) we use the fact that ln(𝑑+𝑒+𝑇)>1 for any π‘‘βˆˆ[0,𝑇].
Therefore, 𝑧(𝑑)β‰ 0,π‘‘βˆˆ[0,𝑇]. This completes the proof of the theorem.

Theorem 3.7. If βˆšπœŽβˆ’πœŒπ‘‡β‰₯0 then evasion is possible from the initial position 𝑧0β‰ 0 in the game 𝐺4.

Proof. Suppose that 𝑧0β‰ 0 and that βˆšπœŽβˆ’πœŒπ‘‡β‰₯0. We construct the control function of the evader as follows: π‘£π‘˜βŽ§βŽͺ⎨βŽͺβŽ©πœŒξƒŽ(𝑑)=𝑇𝐴𝑗𝑒(𝑇)𝛼𝑗(𝑑),π‘˜=𝑗,0,π‘˜β‰ π‘—.(3.34) We now show that this control satisfies the integral constraint βˆžξ“π‘˜=1ξ€œπ‘‡0𝑣2π‘˜(𝑠)𝑑𝑠=𝜌2π‘‡π΄π‘—ξ€œ(𝑇)𝑇0𝑒2𝛼𝑗(𝑠)π‘‘π‘ β‰€πœŒ2π‘‡β‰€πœŽ2.(3.35)
When the evader uses the control (3.34), our task is to show that 𝑧𝑗(𝑑) does not vanish in the interval [0,𝑇] for any admissible control of the pursuer 𝑒𝑖0.
For definiteness let 𝑧𝑗0>0. Substituting (3.34) into (3.1), we have 𝑧𝑗(𝑑)β‰₯π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0ξƒŽ+πœŒπ‘‡π΄π‘—π΄(𝑇)𝑗(𝑇)βˆ’πœŒπ‘‡π΄π‘—ξƒͺ(𝑇)=π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0>0.(3.36) Therefore, 𝑧(𝑑)β‰ 0,π‘‘βˆˆ[0,𝑇]. This means that evasion is possible from initial position 𝑧0β‰ 0 in game 𝐺4. This ends the proof of the theorem.

Theorem 3.8. If 𝑧0βˆˆπ‘Œ and 𝜎β‰₯2πœŒπ‘’π›Όπ‘—(𝑇) for some π‘˜=𝑗, then from the initial position 𝑧0β‰ 0 evasion is possible in the game 𝐺3.

Proof. Suppose that 𝑧0βˆˆπ‘Œ and that there exists π‘˜=𝑗 such that 𝜎β‰₯2πœŒπ‘’π›Όπ‘—(𝑇).(3.37) We construct the control function of the evader as follows: π‘£π‘˜ξ‚»ξ€·(𝑑)=2𝑧𝑗0𝑒+πœŒπ›Όπ‘—(𝑑),π‘˜=𝑗,0,π‘˜β‰ π‘—.(3.38) The inclusion 𝑣(β‹…)βˆˆπ‘†2(𝜎) follows from the following βˆžξ“π‘˜=1𝑣2π‘˜(𝑑)=ξ€Ίξ€·2𝑧𝑗0𝑒+πœŒπ›Όπ‘—(𝑑)ξ€»2≀8𝑧2𝑗0𝑒2𝛼𝑗(𝑑)+2𝜌2𝑒2𝛼𝑗(𝑑)≀2𝜌2𝑒2𝛼𝑗(𝑑)+2𝜌2𝑒2𝛼𝑗(𝑑)≀4𝜌2𝑒2𝛼𝑗(𝑇)β‰€πœŽ2.(3.39) we used (3.34); (3.37) and the inequality (π‘Ž+𝑏)2≀2π‘Ž2+2𝑏2.
Let the evader use the control (3.34) and for definiteness let 𝑧𝑗0>0. Using (3.1) and the Cauchy-Schwartz inequality, we have 𝑧𝑗(𝑑)β‰₯π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0ξ”βˆ’πœŒπ΄π‘—(𝑑)+2𝑧𝑗0𝐴𝑗(𝑑)+πœŒπ΄π‘—ξ‚(𝑑)=π‘’βˆ’π›Όπ‘—(𝑑)𝑧𝑗0+2𝑧𝑗0A𝑗(𝑑)>0.(3.40) Therefore, we have 𝑧𝑗(𝑑)>0,0≀𝑑≀𝑇, that is, evasion is possible in the game 𝐺3. This ends the proof of the theorem.

4. Conclusion

This paper is closely related to [10, 11]. However, the game model considered in this paper is a better generalization to the one in the last cited papers. The constant coefficients of the game model considered in the cited papers are specific to function coefficients considered in this papers. Sufficient conditions for which pursuit can be completed and for which evasion is possible with various form of constraints on the control of the players have been established.

For future works, optimal pursuit and multiplayers game problems described by the model considered in this paper can be investigated. As there are four different possible combinations of geometric and integral constraints on the control functions of the two players of the game, there would be four different problems to be studied.

Acknowledgment

The authors wish to express the deepest appreciation to the reviewers for their valuable comments and observations. This research was partially supported by the Research Grant (RUGS) of the Universiti Putra Malaysia, no. 05-04-10-1005RU.