Abstract

Four fixed point theorems for nonlinear set-valued contractive mappings in complete metric spaces are proved. The results presented in this paper are extensions of a few well-known fixed point theorems. Two examples are also provided to illustrate our results.

1. Introduction and Preliminaries

The existence of fixed points for various set-valued contractive mappings had been researched by many authors under different conditions, see, for example, [1–9] and the references cited therein. In 1969, Nadler [7] proved a well-known fixed point theorem for the set-valued contraction mapping  (1.1) below.

Theorem 1.1 (see [7]). Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπ΅(𝑋) be a set-valued mapping such that 𝐻(𝑇π‘₯,𝑇𝑦)β‰€π‘Ÿπ‘‘(π‘₯,𝑦),βˆ€π‘₯,π‘¦βˆˆπ‘‹,(1.1) where π‘Ÿβˆˆ(0,1) is a constant. Then 𝑇 has a fixed point.

In 1972, Reich [8] extended Nadler's result and established an interesting fixed point theorem for the set-valued contraction mapping (1.2) below.

Theorem 1.2 (see [8]). Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆ(𝑋) satisfy that 𝐻(𝑇π‘₯,𝑇𝑦)β‰€πœ‘(𝑑(π‘₯,𝑦))𝑑(π‘₯,𝑦),βˆ€π‘₯,π‘¦βˆˆπ‘‹,(1.2) where [πœ‘βˆΆ(0,+∞)⟢0,1)π‘€π‘–π‘‘β„Žlimsupπ‘Ÿβ†’π‘‘+πœ‘(π‘Ÿ)<1,βˆ€π‘‘βˆˆ(0,+∞).(1.3) Then 𝑇 has a fixed point.

In [8] Reich posed the question whether Theorem 1.2 is also true for the set-valued contractive mapping π‘‡βˆΆπ‘‹β†’πΆπ΅(𝑋) with (1.2). The affirmative answer under the hypothesis of limsupπ‘Ÿβ†’π‘‘+πœ‘(π‘Ÿ)<1, for  all π‘‘βˆˆ[0,+∞) was given by Mizoguchi and Takahashi in [6]. They deduced the following fixed point theorem which is a generalization of the Nadler fixed point theorem.

Theorem 1.3 (see [6]). Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπ΅(𝑋) satisfy (1.2), where [πœ‘βˆΆ(0,+∞)⟢0,1)π‘€π‘–π‘‘β„Žlimsupπ‘Ÿβ†’π‘‘+[πœ‘(π‘Ÿ)<1,βˆ€π‘‘βˆˆ0,+∞).(1.4) Then 𝑇 has a fixed point.

Remark 1.4. It is clear that the mappings 𝑇 in Theorems 1.1–1.3 are continuous on 𝑋.

Remark 1.5. Each of Theorems 1.2 and 1.3 ensures that 𝑇 has a fixed point π‘Žβˆˆπ‘‡π‘ŽβŠ†π‘‹, which together with (1.2) implies that πœ‘(0)=πœ‘(𝑑(π‘Ž,π‘Ž)), that is, πœ‘ is defined at 0. Thus the domain of πœ‘ in each of (1.3) and (1.4) should be [0,+∞) but not (0,+∞).
The aim of this paper is to present four fixed point theorems for some nonlinear set-valued contractive mappings. Our results extend, improve, and unify the corresponding results in [6–8]. Two nontrivial examples are given to show that our results are genuine generalizations or different from these results in [6–8].
Throughout this paper, we assume that ℝ=(βˆ’βˆž,+∞),ℝ+=[0,+∞), β„• and β„•0 denote the sets of all positive integers and nonnegative integers, respectively, and ξ€½Ξ˜=πœƒβˆΆπœƒβˆΆβ„+βŸΆβ„+ξ€Ύsatisfies(a)βˆ’(d),(1.5) where(a)πœƒis nondecreasing on ℝ+;(b)πœƒ(𝑑)>0, for  all π‘‘βˆˆ(0,+∞);(c)πœƒ is subadditive in (0,+∞), that is, πœƒξ€·π‘‘1+𝑑2ξ€Έξ€·π‘‘β‰€πœƒ1𝑑+πœƒ2ξ€Έ,βˆ€π‘‘1,𝑑2∈(0,+∞);(1.6)(d)πœƒ(ℝ+)=ℝ+. Clearly (a)–(d) imply that(e)πœƒ is strictly inverse on ℝ+, that is, if there exist 𝑑,π‘ βˆˆβ„+ satisfying πœƒ(𝑑)<πœƒ(𝑠), then 𝑑<𝑠.
Let (𝑋,𝑑) be a metric space, 𝐢𝐿(𝑋), 𝐢𝐡(𝑋), and 𝐢(𝑋) denote the families of all nonempty closed, all nonempty bounded closed, and all nonempty compact subsets of 𝑋. For π‘₯βˆˆπ‘‹ and 𝐴,𝐡∈𝐢𝐿(𝑋), put 𝑑(π‘₯,𝐴)=inf{𝑑(π‘₯,𝑦)βˆΆπ‘¦βˆˆπ΄} and ⎧βŽͺ⎨βŽͺβŽ©ξƒ―π»(𝐴,𝐡)=maxsupπ‘₯βˆˆπ΄π‘‘(π‘₯,𝐡),supπ‘¦βˆˆπ΅ξƒ°π‘‘(𝑦,𝐴),ifthemaximumexists+∞,otherwise.(1.7) Such a mapping 𝐻 is called a generalized Hausdorff metric induced b 𝑦𝑑 in 𝐢𝐿(𝑋). It is well known that 𝐻 is a metric on 𝐢𝐡(𝑋). Let π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) be a set-valued mapping, π‘₯0βˆˆπ‘‹ and π‘“βˆΆπ‘‹β†’β„+ be defined by 𝑓(π‘₯)=𝑑(π‘₯,𝑇π‘₯),βˆ€π‘₯βˆˆπ‘‹.(1.8) A sequence {π‘₯𝑛}π‘›βˆˆβ„•0 is said to be an orbit o 𝑓𝑇 if it satisfies that {π‘₯𝑛}π‘›βˆˆβ„•0βŠ‚π‘‹ and π‘₯π‘›βˆˆπ‘‡π‘₯π‘›βˆ’1 for each π‘›βˆˆβ„•0. The function π‘“βˆΆπ‘‹β†’β„+ is said to be π‘‡βˆ’π‘œπ‘Ÿπ‘π‘–π‘‘π‘Žπ‘™π‘™π‘¦π‘™π‘œπ‘€π‘’π‘Ÿπ‘ π‘’π‘šπ‘–π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘œπ‘’π‘ π‘Žπ‘‘π‘§βˆˆπ‘‹ if for each orbit {π‘₯𝑛}π‘›βˆˆβ„•0βŠ‚π‘‹ of 𝑇 with limπ‘›β†’βˆžπ‘₯𝑛=𝑧, we have that 𝑓(𝑧)≀liminfπ‘›β†’βˆžπ‘“(π‘₯𝑛).

2. Main Results

The following lemmas play important roles in this paper.

Lemma 2.1. Let (𝑋,𝑑) be a metric space and 𝐡∈𝐢𝐿(𝑋). Then for each π‘₯βˆˆπ‘‹ and πœ€>0 there exists π‘βˆˆπ΅ satisfying 𝑑(π‘₯,𝑏)≀𝑑(π‘₯,𝐡)+πœ€.

Proof. Suppose that there exist π‘₯0βˆˆπ‘‹ and πœ€0>0 such that 𝑑π‘₯0ξ€Έξ€·π‘₯,𝑏>𝑑0ξ€Έ,𝐡+πœ€0,βˆ€π‘βˆˆπ΅,(2.1) which yields that 𝑑π‘₯0ξ€Έ,𝐡=infπ‘βˆˆπ΅π‘‘ξ€·π‘₯0ξ€Έξ€·π‘₯,𝑏β‰₯𝑑0ξ€Έ,𝐡+πœ€0ξ€·π‘₯>𝑑0ξ€Έ,,𝐡(2.2) which is a contradiction. This completes the proof.

Lemma 2.2. Let (𝑋,𝑑) be a metric space, 𝐡∈𝐢𝐿(𝑋) and πœƒβˆˆΞ˜. Then for each π‘₯βˆˆπ‘‹ and π‘ž>1 there exists π‘βˆˆπ΅ such that πœƒ(𝑑(π‘₯,𝑏))β‰€π‘žπœƒ(𝑑(π‘₯,𝐡)).(2.3)

Proof. Let π‘₯βˆˆπ‘‹ and π‘ž>1. Now we consider two possible cases as follows.
Case  1. Suppose that πœƒ(𝑑(π‘₯,𝐡))=0. It follows from (b) and (d) that 𝑑(π‘₯,𝐡)=0. Since 𝐡 is a closed subset of 𝑋, it follows that π‘₯∈𝐡. Put 𝑏=π‘₯. Clearly (2.3) holds.
Case  2. Suppose that πœƒ(𝑑(π‘₯,𝐡))>0. Note that (b) and (d) mean that (π‘žβˆ’1)πœƒ(𝑑(π‘₯,𝐡))βˆˆβ„+⧡ℝ{0}=πœƒ+⧡{0}.(2.4) Choose π‘βˆˆπœƒβˆ’1((π‘žβˆ’1)πœƒ(𝑑(π‘₯,𝐡))) and πœ€=𝑝/2>0. Lemma 2.1 ensures that there exists π‘βˆˆπ΅ satisfying 𝑑(π‘₯,𝑏)≀𝑑(π‘₯,𝐡)+πœ€, which together with (a) and (c) gives that ξ€·πœƒπœƒ(𝑑(π‘₯,𝑏))β‰€πœƒ(𝑑(π‘₯,𝐡)+πœ€)β‰€πœƒ(𝑑(π‘₯,𝐡))+πœƒ(πœ€)β‰€πœƒ(𝑑(π‘₯,𝐡))+πœƒβˆ’1ξ€Έ((π‘žβˆ’1)πœƒ(𝑑(π‘₯,𝐡)))=π‘žπœƒ(𝑑(π‘₯,𝐡)).(2.5) That is, (2.3) holds. This completes the proof.

Now we prove four fixed point theorems for the nonlinear set-valued contractive mappings (2.6), (2.25), (2.26), and (2.36) below in complete metric spaces.

Theorem 2.3. Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) satisfy that πœƒ(𝑑(𝑦,𝑇𝑦))β‰€πœ‘(𝑑(π‘₯,𝑦))πœƒ(𝑑(π‘₯,𝑦)),βˆ€(π‘₯,𝑦)βˆˆπ‘‹Γ—π‘‡π‘₯,(2.6) where πœƒβˆˆΞ˜ and πœ‘βˆΆβ„+⟢[0,1)π‘€π‘–π‘‘β„Žlimsupπ‘Ÿβ†’π‘‘+πœ‘(π‘Ÿ)<1,βˆ€π‘‘βˆˆβ„+.(2.7) Then for each π‘₯0βˆˆπ‘‹, there exists an orbit {π‘₯𝑛}π‘›βˆˆβ„•0 of 𝑇 and π‘§βˆˆπ‘‹ such that limπ‘›β†’βˆžπ‘₯𝑛=𝑧. Furthermore, π‘§βˆˆπ‘‹ is fixed point of 𝑇 if and only if the function 𝑓 defined by (1.8) is 𝑇 orbitally lower semicontinuous at 𝑧.

Proof. Let π‘₯0βˆˆπ‘‹ be any initial point and choose π‘₯1βˆˆπ‘‡π‘₯0. It follows from (2.6), (2.7) and Lemma 2.2 that for π‘ž1√=1/max{πœ‘(𝑑(π‘₯0,π‘₯1)),1/2}>1 there exists π‘₯2βˆˆπ‘‡π‘₯1 satisfying πœƒξ€·π‘‘ξ€·π‘₯1,π‘₯2β‰€πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,𝑇π‘₯1maxπœ‘ξ€·π‘‘ξ€·π‘₯0,π‘₯1ξ‚Όβ‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,1/20,π‘₯1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ0,π‘₯1maxπœ‘ξ€·π‘‘ξ€·π‘₯0,π‘₯1≀,1/2πœ‘ξ€·π‘‘ξ€·π‘₯0,π‘₯1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ0,π‘₯1,ξ€Έξ€Έ(2.8) and for π‘ž2√=1/max{πœ‘(𝑑(π‘₯1,π‘₯2)),1/3}>1 there exists π‘₯3βˆˆπ‘‡π‘₯2 satisfying πœƒξ€·π‘‘ξ€·π‘₯2,π‘₯3β‰€πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ2,𝑇π‘₯2maxπœ‘ξ€·π‘‘ξ€·π‘₯1,π‘₯2ξ‚Όβ‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,1/31,π‘₯2πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,π‘₯2maxπœ‘ξ€·π‘‘ξ€·π‘₯1,π‘₯2≀,1/3πœ‘ξ€·π‘‘ξ€·π‘₯1,π‘₯2πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,π‘₯2.ξ€Έξ€Έ(2.9) Repeating the above argument we obtain a sequence {π‘₯𝑛}π‘›βˆˆβ„•0βŠ‚π‘‹ such that π‘₯π‘˜βˆˆπ‘‡π‘₯π‘˜βˆ’1 for 1β‰€π‘˜β‰€π‘› and for π‘žπ‘›βˆš=1/max{πœ‘(𝑑(π‘₯π‘›βˆ’1,π‘₯𝑛)),1/(𝑛+1)}>1, there exists π‘₯𝑛+1βˆˆπ‘‡π‘₯𝑛 satisfying πœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1β‰€πœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛maxπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯π‘›ξ‚Όβ‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,1/(𝑛+1)π‘›βˆ’1,π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯𝑛maxπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛≀,1/(𝑛+1)πœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯𝑛,βˆ€π‘›β‰₯1.(2.10)
Suppose that there exists some 𝑛0βˆˆβ„•0 satisfying π‘₯𝑛0=π‘₯𝑛0+1βˆˆπ‘‡π‘₯𝑛0. It follows from (a), (b), and (2.10) that π‘₯𝑛=π‘₯𝑛0 for all 𝑛β‰₯𝑛0+1. It is clear the conclusion of Theorem 2.3 holds.
Suppose that π‘₯𝑛+1βˆˆπ‘‡π‘₯𝑛⧡{π‘₯𝑛} for any π‘›βˆˆβ„•0. It follows that 𝑑(π‘₯𝑛,π‘₯𝑛+1)>0 for each π‘›βˆˆβ„•0. Note that (b), (2.7), and (2.10) give that {πœƒ(𝑑(π‘₯𝑛,π‘₯𝑛+1))}π‘›βˆˆβ„•0 is a positive and decreasing sequence. It follows from (e) that {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•0 is decreasing. Therefore, there exist constants 𝑝 and π‘ž satisfying limπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ=𝑝β‰₯0,limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έ=π‘žβ‰₯0.(2.11) Notice that (2.7) implies that there exists a constant π‘Ÿ satisfying limsupπ‘›β†’βˆžπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,π‘₯π‘›βˆ’1≀limsupπ‘‘β†’π‘ž+πœ‘[(𝑑)=π‘Ÿβˆˆ0,1).(2.12) Taking upper limits in (2.10) and by (2.11) and (2.12) we get that 𝑝≀limsupπ‘›β†’βˆžπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯𝑛limsupπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯π‘›β‰€βˆšξ€Έξ€Έπ‘Ÿπ‘,(2.13) which implies that 𝑝=0.
Next we assert that π‘ž=0. Since {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•0 is a decreasing sequence, it follows from (a) and (2.11) that 𝑑π‘₯0β‰€πœƒ(π‘ž)<πœƒπ‘›,π‘₯𝑛+1ξ€Έξ€ΈβŸΆπ‘=0asπ‘›βŸΆβˆž,(2.14) that is, πœƒ(π‘ž)=0, which together with (b) and (d) yields that π‘ž=0.
Put 𝑐=(1+π‘Ÿ)/2. It follows from (2.12) that π‘βˆˆ(π‘Ÿ,1)βŠ‚[0,1), which gives that 𝑐2∈(π‘Ÿ,1). Notice that (2.11), (2.12), and π‘ž=0 ensure that there exist 𝛿>0 and π‘βˆˆβ„• satisfying πœ‘(𝑑)<𝑐2ξ€·π‘₯,βˆ€π‘‘βˆˆ(0,𝛿),𝑑𝑛,π‘₯𝑛+1ξ€Έ<𝛿,βˆ€π‘›β‰₯𝑁,(2.15) which implies that πœ‘ξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ<𝑐2,βˆ€π‘›β‰₯𝑁.(2.16) Note that (2.10) and (2.16) mean that πœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1β‰€ξ€Έξ€Έπ‘›βˆ’1ξ‘π‘˜=π‘ξ”πœ‘ξ€·π‘‘ξ€·π‘₯π‘˜,π‘₯π‘˜+1πœƒξ€·π‘‘ξ€·π‘₯𝑁,π‘₯𝑁+1ξ€Έξ€Έβ‰€π‘π‘›βˆ’π‘πœƒξ€·π‘‘ξ€·π‘₯𝑁,π‘₯𝑁+1ξ€Έξ€Έ,βˆ€π‘›β‰₯𝑁.(2.17) Given πœ€>0. Since limπ‘›β†’βˆžπ‘π‘›βˆ’π‘πœƒ(𝑑(π‘₯𝑁,π‘₯𝑁+1))=0, it follows from (b) that there exists 𝑁1>𝑁 satisfying π‘π‘›βˆ’π‘πœƒξ€·π‘‘ξ€·π‘₯1βˆ’π‘π‘,π‘₯𝑁+1ξ€Έξ€Έ<πœƒ(πœ€),βˆ€π‘›β‰₯𝑁1,(2.18) which together with (2.17), (a), and (c) gives that πœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯π‘šξƒ©ξ€Έξ€Έβ‰€πœƒπ‘šβˆ’1ξ“π‘˜=𝑛𝑑π‘₯π‘˜,π‘₯π‘˜+1ξ€Έξƒͺβ‰€π‘šβˆ’1ξ“π‘˜=π‘›πœƒξ€·π‘‘ξ€·π‘₯π‘˜,π‘₯π‘˜+1β‰€ξ€Έξ€Έπ‘šβˆ’1ξ“π‘˜=π‘›π‘π‘˜βˆ’π‘πœƒξ€·π‘‘ξ€·π‘₯𝑁,π‘₯𝑁+1β‰€π‘ξ€Έξ€Έπ‘›βˆ’π‘πœƒξ€·π‘‘ξ€·π‘₯1βˆ’π‘π‘,π‘₯𝑁+1ξ€Έξ€Έ<πœƒ(πœ€),βˆ€π‘š>𝑛β‰₯𝑁1.(2.19) In view of (e) and (2.19), we deduce that 𝑑(π‘₯𝑛,π‘₯π‘š)<πœ€, for all π‘š>𝑛β‰₯𝑁1, which means that {π‘₯𝑛}π‘›βˆˆβ„•0 is a Cauchy sequence. Hence there exists π‘§βˆˆπ‘‹ such that limπ‘›β†’βˆžπ‘₯𝑛=𝑧 by completeness of 𝑋.
Suppose that 𝑓 is 𝑇 orbitally lower semicontinuous at 𝑧. Since {π‘₯𝑛}𝑛β‰₯0 is an orbit of 𝑇 with limπ‘›β†’βˆžπ‘₯𝑛=𝑧, it follows that 𝑓(𝑧)≀liminfπ‘›β†’βˆžπ‘“ξ€·π‘₯𝑛.(2.20) Using (2.6) and (2.7), we infer that πœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛𝑑π‘₯ξ€Έξ€Έβ‰€πœ‘π‘›βˆ’1,π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯𝑛𝑑π‘₯ξ€Έξ€Έ<πœƒπ‘›βˆ’1,π‘₯𝑛,βˆ€π‘›βˆˆβ„•,(2.21) which together with (e), (2.11), and π‘ž=0 implies that ξ€·π‘₯0<𝑑𝑛,𝑇π‘₯𝑛π‘₯<π‘‘π‘›βˆ’1,π‘₯π‘›ξ€ΈβŸΆ0asπ‘›βŸΆβˆž,(2.22) that is, limπ‘›β†’βˆžπ‘‘(π‘₯𝑛,𝑇π‘₯𝑛)=0, which together with (2.20) yields that 0≀𝑑(𝑧,𝑇𝑧)=𝑓(𝑧)≀liminfπ‘›β†’βˆžπ‘“ξ€·π‘₯𝑛=limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛=0,(2.23) which gives that 𝑑(𝑧,𝑇𝑧)=0, that is, π‘§βˆˆπ‘‡π‘§.
Conversely, suppose that π‘§βˆˆπ‘‹ is a fixed point of 𝑇. Let {𝑦𝑛}π‘›βˆˆβ„•0βŠ‚π‘‹ be an arbitrarily orbit of 𝑇 with limπ‘›β†’βˆžπ‘¦π‘›=𝑧. It is clear that 𝑓(𝑧)=𝑑(𝑧,𝑇𝑧)=0≀liminfπ‘›β†’βˆžπ‘“ξ€·π‘¦π‘›ξ€Έ,(2.24) which implies that 𝑓 is 𝑇 orbitally lower semicontinuous at 𝑧. This completes the proof.

Notice that 𝑑(𝑦,𝑇𝑦)≀𝐻(𝑇π‘₯,𝑇𝑦) for each π‘¦βˆˆπ‘‡π‘₯. In light of Theorem 2.3, we have

Theorem 2.4. Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) satisfy that πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))β‰€πœ‘(𝑑(π‘₯,𝑦))πœƒ(𝑑(π‘₯,𝑦)),βˆ€(π‘₯,𝑦)βˆˆπ‘‹Γ—π‘‡π‘₯,(2.25) where πœƒβˆˆΞ˜ and πœ‘ satisfies (2.7). Then for each π‘₯0βˆˆπ‘‹, there exists an orbit {π‘₯𝑛}π‘›βˆˆβ„•0 of𝑇 and π‘§βˆˆπ‘‹ such that limπ‘›β†’βˆžπ‘₯𝑛=𝑧. Furthermore, π‘§βˆˆπ‘‹ is fixed point of 𝑇 if and only if the function 𝑓 defined by (1.8) is 𝑇 orbitally lower semicontinuous at 𝑧.

If πœ‘(𝑑(π‘₯,𝑦)) in (2.6) is replaced by πœ‘(𝑑(π‘₯,𝑇π‘₯)), one has

Theorem 2.5. Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) satisfy that πœƒ(𝑑(𝑦,𝑇𝑦))β‰€πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)),βˆ€(π‘₯,𝑦)βˆˆπ‘‹Γ—π‘‡π‘₯,(2.26) where πœƒβˆˆΞ˜ and πœ‘ satisfies (2.7). Then for each π‘₯0βˆˆπ‘‹, there exists an orbit {π‘₯𝑛}π‘›βˆˆβ„•0 of 𝑇 and π‘§βˆˆπ‘‹ such that limπ‘›β†’βˆžπ‘₯𝑛=𝑧. Furthermore, π‘§βˆˆπ‘‹ is fixed point of 𝑇 if and only if the function 𝑓 defined by (1.8) is 𝑇 orbitally lower semicontinuous at 𝑧.

Proof. Let π‘₯0βˆˆπ‘‹ be any initial point and choose π‘₯1βˆˆπ‘‡π‘₯0. It follows from (2.7), (2.26), and Lemma 2.2 that for βˆšπ‘ž=1/max{πœ‘(𝑑(π‘₯0,𝑇π‘₯0√)),πœ‘(𝑑(π‘₯1,𝑇π‘₯1)),1/2}>1 there exists π‘₯2βˆˆπ‘‡π‘₯1 such that πœƒξ€·π‘‘ξ€·π‘₯1,π‘₯2β‰€πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,𝑇π‘₯1maxπœ‘ξ€·π‘‘ξ€·π‘₯0,𝑇π‘₯0,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯1,𝑇π‘₯1ξ‚Όβ‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,1/20,𝑇π‘₯0πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ0,π‘₯1maxπœ‘ξ€·π‘‘ξ€·π‘₯0,𝑇π‘₯0,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯1,𝑇π‘₯1≀,1/2πœ‘ξ€·π‘‘ξ€·π‘₯0,𝑇π‘₯0πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ0,π‘₯1,πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ2,𝑇π‘₯2𝑑π‘₯ξ€Έξ€Έβ‰€πœ‘1,𝑇π‘₯1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,π‘₯2β‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,𝑇π‘₯1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,𝑇π‘₯1maxπœ‘ξ€·π‘‘ξ€·π‘₯0,𝑇π‘₯0,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯1,𝑇π‘₯1≀,1/2πœ‘ξ€·π‘‘ξ€·π‘₯1,𝑇π‘₯1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ1,𝑇π‘₯1.ξ€Έξ€Έ(2.27) Repeating the above argument we obtain a sequence {π‘₯𝑛}π‘›βˆˆβ„•0βŠ‚π‘‹ satisfying π‘₯𝑛+1βˆˆπ‘‡π‘₯𝑛 for each π‘›βˆˆβ„•0, πœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1β‰€πœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛maxπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯π‘›ξ‚Όβ‰€πœ‘ξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,1/(𝑛+1)π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯𝑛maxπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛≀,1/(𝑛+1)πœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έπ‘›βˆ’1,π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯ξ€Έξ€Έ,βˆ€π‘›βˆˆβ„•,(2.28)𝑛+1,𝑇π‘₯𝑛+1𝑑π‘₯ξ€Έξ€Έβ‰€πœ‘π‘›,𝑇π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1β‰€πœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛maxπœ‘ξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,𝑇π‘₯π‘›βˆ’1,ξ”ξ€Έξ€Έπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛≀,1/(𝑛+1)πœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯π‘›πœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛,βˆ€π‘›βˆˆβ„•.(2.29)
Suppose that π‘₯𝑛0βˆˆπ‘‡π‘₯𝑛0 for some 𝑛0βˆˆβ„•0. It is easy to verify that π‘₯𝑛=π‘₯𝑛0 for all 𝑛β‰₯𝑛0 and the conclusion of Theorem 2.5 holds.
Suppose that π‘₯π‘›βˆ‰π‘‡π‘₯𝑛 for each π‘›βˆˆβ„•0. It follows that {𝑑(π‘₯𝑛,𝑇π‘₯𝑛)}π‘›βˆˆβ„•0 and {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•0 are positive sequences. Combining (2.7), (2.28), (2.29), (b) and (e), we infer that {πœƒ(𝑑(π‘₯𝑛,π‘₯𝑛+1))}π‘›βˆˆβ„•0 and {πœƒ(𝑑(π‘₯𝑛,𝑇π‘₯𝑛))}π‘›βˆˆβ„•0 are both positive and decreasing, so do {𝑑(π‘₯𝑛,π‘₯𝑛+1)}π‘›βˆˆβ„•0 and {𝑑(π‘₯𝑛,𝑇π‘₯𝑛)}π‘›βˆˆβ„•0. It follows that there exist constants 𝛼,𝛽,𝑠 and 𝑑 satisfying limπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έξ€Έ=𝛼β‰₯0,limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,π‘₯𝑛+1ξ€Έ=𝛽β‰₯0,limπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛=𝑠β‰₯0,limπ‘›β†’βˆžπ‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛=𝑑β‰₯0.(2.30) Notice that (2.7) implies that there exists a constant π‘Ÿ such that limsupπ‘›β†’βˆžπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛≀limsup𝑙→𝑑+πœ‘[(𝑙)=π‘Ÿβˆˆ0,1).(2.31) Taking upper limits in (2.29) and by (2.30) and (2.31) we get that 𝑠≀limsupπ‘›β†’βˆžπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛limsupπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯π‘›β‰€βˆšξ€Έξ€Έπ‘Ÿπ‘ ,(2.32) which implies that 𝑠=0, which together with (2.30) and (a) ensures that 𝑑π‘₯0β‰€πœƒ(𝑑)<πœƒπ‘›,𝑇π‘₯π‘›ξ€Έξ€ΈβŸΆ0,π‘›βŸΆβˆž,(2.33) that is, πœƒ(𝑑)=0, which gives that 𝑑=0 by (b) and (d). It follows from (2.28), (2.30), and (2.31) that 𝛼≀limsupπ‘›β†’βˆžπœ‘ξ€·π‘‘ξ€·π‘₯𝑛,𝑇π‘₯𝑛limsupπ‘›β†’βˆžπœƒξ€·π‘‘ξ€·π‘₯π‘›βˆ’1,π‘₯π‘›β‰€βˆšξ€Έξ€Έπ‘Ÿπ›Ό,(2.34) which yields that 𝛼=0. Notice that (2.30) and (a) guarantee that 𝑑π‘₯0β‰€πœƒ(𝛽)<πœƒπ‘›,π‘₯𝑛+1ξ€Έξ€ΈβŸΆ0,π‘›βŸΆβˆž,(2.35) which together with (b) and (d) yields that 𝛽=0. The rest of the proof is similar to that of Theorem 2.3 and is omitted. This completes the proof.

The result below follows from Theorem 2.5.

Theorem 2.6. Let (𝑋,𝑑) be a complete metric space and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) satisfy that πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))β‰€πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)),βˆ€(π‘₯,𝑦)βˆˆπ‘‹Γ—π‘‡π‘₯,(2.36) where πœƒβˆˆΞ˜ and πœ‘ satisfies (2.7). Then for each π‘₯0βˆˆπ‘‹, there exists an orbit {π‘₯𝑛}π‘›βˆˆβ„•0 of𝑇 and π‘§βˆˆπ‘‹ such that limπ‘›β†’βˆžπ‘₯𝑛=𝑧. Furthermore, π‘§βˆˆπ‘‹ is fixed point of  𝑇 if and only if the function 𝑓 defined by (1.8) is 𝑇 orbitally lower semicontinuous at 𝑧.

3. Comparisons and Examples

Now we construct two examples to compare the results in Section 2 with the corresponding results in [6–8].

Remark 3.1. Theorems 2.3 and 2.4 extend Theorems 1.1–1.3, and Theorems 2.5 and 2.6 are different from Theorems 1.1–1.3, respectively, in the following ways:(1)the ranges 𝐢𝐿(𝑋) of the nonlinear set-valued contractive mappings 𝑇 in Theorems 2.3–2.6 are more general than the ranges 𝐢(𝑋) and 𝐢𝐡(𝑋) of the set-valued contraction mappings 𝑇 in Theorems 1.1–1.3, respectively;(2)the 𝑇 orbit lower semicontinuity at some π‘§βˆˆπ‘‹ of the functions 𝑓(π‘₯)=𝑑(π‘₯,𝑇π‘₯) in Theorems 2.3 and 2.4 is weaker than the continuity of the set-valued contraction mappings 𝑇 in 𝑋 in Theorems 1.1–1.3, respectively;(3)the set-valued contraction mappings (1.1) and (1.2) are special cases of the nonlinear set-valued contractive mapping (2.6) with πœƒβ‰‘1 because 𝑑(𝑦,𝑇𝑦)≀𝐻(𝑇π‘₯,𝑇𝑦),βˆ€(π‘₯,𝑦)βˆˆπ‘‹Γ—π‘‡π‘₯.(3.1)
Example 3.2 below shows that Theorems 2.3 and 2.4 extend substantively Theorems 1.1–1.3, respectively.

Example 3.2. Let 𝑋=(βˆ’βˆž,3/10] and 𝑑 be the standard metric in 𝑋. Let πœƒβˆΆβ„+→ℝ+, πœ‘βˆΆβ„+β†’[0,1) and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) be defined by πœƒ(𝑑)=𝑑1/22√,πœ‘(𝑑)=65,βˆ€π‘‘βˆˆβ„+⎧βŽͺ⎨βŽͺβŽ©ξ‚€1,𝑇π‘₯=βˆ’βˆž,4π‘₯ξ‚„ξ€Ί,βˆ€π‘₯∈(βˆ’βˆž,0),0,2π‘₯23,βˆ€π‘₯∈0,ξ‚„,10(3.2) respectively. It is clear that πœƒβˆˆΞ˜, πœ‘ satisfies (2.7) and 𝑓(π‘₯)=𝑑(π‘₯,𝑇π‘₯)=0,βˆ€π‘₯∈(βˆ’βˆž,0)π‘₯βˆ’2π‘₯23,βˆ€π‘₯∈0,ξ‚„10(3.3) is 𝑇 orbitally lower semicontinuous in 𝑋. In order to prove (2.6) holds, we consider two possible cases.
Case  1. Let π‘₯∈(βˆ’βˆž,0) and π‘¦βˆˆπ‘‡π‘₯=(βˆ’βˆž,(1/4)π‘₯]. It is clear that1πœƒ(𝑑(𝑦,𝑇𝑦))β‰€πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))=2πœƒ(𝑑(π‘₯,𝑦))β‰€πœ‘(𝑑(π‘₯,𝑦))πœƒ(𝑑(π‘₯,𝑦)).(3.4)
Case  2. Let π‘₯∈[0,3/10] and π‘¦βˆˆπ‘‡π‘₯=[0,2π‘₯2]. It follows that βˆšπœƒ(𝑑(𝑦,𝑇𝑦))β‰€πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))=2||||π‘₯+𝑦1/2β‰€βˆšπœƒ(𝑑(π‘₯,𝑦))2ξ‚€3+910501/2πœƒ(𝑑(π‘₯,𝑦))=πœ‘(𝑑(π‘₯,𝑦))πœƒ(𝑑(π‘₯,𝑦)),(3.5) that is, (2.6) holds. Therefore all assumptions of Theorems 2.3 and 2.4 are satisfied. It follows from each of Theorems 2.3 and 2.4 that 𝑇 has a fixed point in 𝑋. However, we cannot invoke any one of Theorems 1.1–1.3 to show the existence of fixed points for the mapping 𝑇 in 𝑋. Indeed, taking π‘₯0=3/10 and 𝑦0=1/5, we get that 𝐻𝑇π‘₯0,𝑇𝑦0ξ€Έξ‚΅2ξ‚€3=𝑑102ξ‚€1,252ξ‚Ά=1β‰°π‘Ÿ10ξ€·π‘₯10=π‘Ÿπ‘‘0,𝑦0ξ€Έ,(3.6) for any π‘Ÿβˆˆ(0,1) and 𝐻𝑇π‘₯0,𝑇𝑦0ξ€Έξ‚΅2ξ‚€3=𝑑102ξ‚€1,252ξ‚Ά=1β‰°110πœ‘ξ‚€110𝑑π‘₯10=πœ‘0,𝑦0𝑑π‘₯ξ€Έξ€Έ0,𝑦0ξ€Έ,(3.7) for any mapping πœ‘βˆΆβ„+β†’[0,1) with each of (1.3) and (1.4).
Next we construct an example to explain Theorems 2.5 and 2.6.

Example 3.3. Let 𝑋=[βˆ’3/10,+∞) and 𝑑 be the standard metric in 𝑋. Define πœƒβˆΆβ„+→ℝ+, πœ‘βˆΆβ„+β†’[0,1) and π‘‡βˆΆπ‘‹β†’πΆπΏ(𝑋) by πœƒ(𝑑)=𝑑1/2,βˆ€π‘‘βˆˆβ„+⎧βŽͺ⎨βŽͺ⎩2√,πœ‘(𝑑)=2𝑑1/2ξ‚€1,βˆ€π‘‘βˆˆ0,8,2√651,βˆ€π‘‘βˆˆ{0}βˆͺ8,⎧βŽͺ⎨βŽͺβŽ©ξ‚Έπ‘₯,+βˆžπ‘‡π‘₯=ξ‚Άξ€Ί4(1+π‘₯),+∞,βˆ€π‘₯∈(0,+∞),βˆ’2π‘₯2ξ€»ξ‚ƒβˆ’3,0,βˆ€π‘₯βˆˆξ‚„,10,0(3.8) respectively. It is easy to see that (2.7) holds and 𝑓(π‘₯)=𝑑(π‘₯,𝑇π‘₯)=0,βˆ€π‘₯∈(0,+∞),βˆ’2π‘₯2ξ‚ƒβˆ’3βˆ’π‘₯,βˆ€π‘₯βˆˆξ‚„10,0(3.9) is 𝑇 orbitally lower semicontinuous in 𝑋. In order to check (2.26), we have to consider two cases as follows.
Case  1. Let π‘₯∈(0,+∞) and π‘¦βˆˆπ‘‡π‘₯=[π‘₯/4(1+π‘₯),+∞). It is clear that ||||π‘₯πœƒ(𝑑(𝑦,𝑇𝑦))=0β‰€πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))=βˆ’π‘¦4(1+π‘₯)||||4(1+𝑦)1/2=πœƒ(𝑑(π‘₯,𝑦))2(1+π‘₯)1/2(1+𝑦)1/2β‰€πœƒ(𝑑(π‘₯,𝑦))2(1+π‘₯)1/2(1+π‘₯/4(1+π‘₯))1/2=πœƒ(𝑑(π‘₯,𝑦))(5π‘₯+4)1/2β‰€πœƒ(𝑑(π‘₯,𝑦))2≀2√65πœƒ(𝑑(π‘₯,𝑦))=πœ‘(0)πœƒ(𝑑(π‘₯,𝑦))=πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)).(3.10)
Case  2. Let π‘₯∈[βˆ’3/10,0] and π‘¦βˆˆπ‘‡π‘₯=[βˆ’2π‘₯2,0]. It follows that βˆšπœƒ(𝑑(𝑦,𝑇𝑦))β‰€πœƒ(𝐻(𝑇π‘₯,𝑇𝑦))=2||||π‘₯+𝑦1/2βˆšπœƒ(𝑑(π‘₯,𝑦))≀2||π‘₯βˆ’2π‘₯2||1/2πœƒ(𝑑(π‘₯,𝑦)).(3.11) For π‘₯=0, we have √2||π‘₯βˆ’2π‘₯2||1/2πœƒ(𝑑(π‘₯,𝑦))=0β‰€πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)).(3.12) For π‘₯∈[βˆ’3/10,βˆ’1/4)βˆͺ(βˆ’1/4,0), we infer that √2||π‘₯βˆ’2π‘₯2||1/2βˆšπœƒ(𝑑(π‘₯,𝑦))≀22ξ€·βˆ’2π‘₯2ξ€Έβˆ’π‘₯1/2πœƒ(𝑑(π‘₯,𝑦))=πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)).(3.13) For π‘₯=βˆ’1/4, we get that √2||π‘₯βˆ’2π‘₯2||1/2βˆšπœƒ(𝑑(π‘₯,𝑦))=32ξ‚€1πœƒ(𝑑(π‘₯,𝑦))β‰€πœ‘8ξ‚πœƒ(𝑑(π‘₯,𝑦))=πœ‘(𝑑(π‘₯,𝑇π‘₯))πœƒ(𝑑(π‘₯,𝑦)).(3.14) Hence (2.26) holds. Thus all assumptions of Theorems 2.5 and 2.6 are satisfied. It follows from each of Theorems 2.5 and 2.6 that 𝑇 has a fixed point in 𝑋.
Taking π‘₯0=1 and 𝑦0=βˆ’3/10, we deduce that 𝐻𝑇π‘₯0,𝑇𝑦0ξ€Έ1=𝐻8,ξ‚ƒβˆ’9,+∞50,0=+βˆžβ‰°13π‘Ÿξ€·π‘₯10=π‘Ÿπ‘‘0,𝑦0ξ€Έ,(3.15) for any π‘Ÿβˆˆ(0,1), and 𝐻𝑇π‘₯0,𝑇𝑦0ξ€Έ2√=+βˆžβ‰°65β‹…13𝑑π‘₯10=πœ‘0,𝑦0𝑑π‘₯ξ€Έξ€Έ0,𝑦0ξ€Έ,(3.16) for any mapping πœ‘βˆΆβ„+β†’[0,1) with each of (1.3) and (1.4). That is, Theorems 1.1–1.3 are inapplicable in proving the existence of fixed points for the nonlinear set-valued contractive mapping 𝑇.