Abstract

We introduce the new generalized mixed equilibrium problem with respect to relaxed semimonotone mappings. Using the KKM technique, we obtain the existence of solutions for the generalized mixed equilibrium problem in Banach spaces. Furthermore, we also introduce a hybrid projection algorithm for finding a common element in the solution set of a generalized mixed equilibrium problem and the fixed point set of an asymptotically nonexpansive mapping. The strong convergence theorem of the proposed sequence is obtained in a Banach space setting. The main results extend various results existing in the current literature.

1. Introduction

Let 𝐸 be a Banach space with the dual πΈβˆ— and let πΈβˆ—βˆ— denote the dual space of πΈβˆ—. If 𝐸=πΈβˆ—βˆ—, then 𝐸 is called reflexive. We denote by 𝒩 and β„› the sets of positive integers and real numbers, respectively. Also, we denote by 𝐽 the normalized duality mapping from 𝐸 to 2πΈβˆ— defined by π‘₯𝐽π‘₯=βˆ—βˆˆπΈβˆ—βˆΆβŸ¨π‘₯,π‘₯βˆ—βŸ©=β€–π‘₯β€–2=β€–π‘₯βˆ—β€–2,βˆ€π‘₯∈𝐸,(1.1)where βŸ¨β‹…,β‹…βŸ© denotes the generalized duality pairing. Recall that if 𝐸 is smooth, then 𝐽 is single-valued, and if 𝐸 is uniformly smooth, then 𝐽 is uniformly norm-to-norm continuous on bounded subsets of 𝐸. We shall still denote by 𝐽 the single-valued duality mapping.

Let 𝐢 be a nonempty subset of πΈβˆ—βˆ—,πœ‚βˆΆπΆΓ—πΆβ†’πΈβˆ—βˆ— be a mapping and let πœ‰βˆΆπΈβˆ—βˆ—β†’β„› a function with πœ‰(𝑑𝑧)=π‘‘π‘πœ‰(𝑧) for all 𝑑>0 and π‘§βˆˆπΈβˆ—βˆ—, where 𝑝>1 is a constant. A mapping π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— is said to be relaxed πœ‚-πœ‰ semimonotone [1] if the following two conditions hold:(i)for each fixed π‘’βˆˆπΆ,𝐴(𝑒,β‹…) is relaxed πœ‚-πœ‰ monotone; that is,⟨𝐴(𝑒,𝑣)βˆ’π΄(𝑒,𝑀),πœ‚(𝑣,𝑀)⟩β‰₯πœ‰(π‘£βˆ’π‘€),βˆ€π‘£,π‘€βˆˆπΆ;(1.2)(ii)for each fixed π‘£βˆˆπΆ, 𝐴(β‹…,𝑣) is completely continuous; that is, for any net {𝑒𝑗} in 𝐢, 𝑒𝑗→𝑒0 in weakβˆ— topology of πΈβˆ—βˆ—, then {𝐴(𝑒𝑗,𝑣)} has a subsequence {𝐴(π‘’π‘—π‘˜,𝑣)}→𝐴(𝑒0,𝑣) in norm topology of πΈβˆ—.

In case πœ‚(π‘₯,𝑦)=π‘₯βˆ’π‘¦ for all π‘₯,π‘¦βˆˆπΆ and πœ‰β‰‘0, 𝐴 is called semi-monotone [2]. The following is an example of πœ‚-πœ‰ semi-monotone mapping.

Example 1.1. Let 𝐢=(βˆ’βˆž,∞),𝐴(π‘₯,𝑦)=π‘₯+𝑦, and ξ‚»πœ‚(π‘₯,𝑦)=βˆ’π‘(π‘₯βˆ’π‘¦),π‘₯β‰₯𝑦,𝑐(π‘₯βˆ’π‘¦),π‘₯<𝑦,(1.3) where 𝑐>0 is a constant. Then, 𝐴 is relaxed πœ‚-πœ‰ semi-monotone with ξ‚»πœ‰(𝑧)=βˆ’π‘π‘§2,𝑧β‰₯0,𝑐𝑧2,𝑧<0.(1.4)
Let π‘“βˆΆπΆΓ—πΆβ†’β„› be a bifunction, πœ‚βˆΆπΆΓ—πΆβ†’πΈβˆ—βˆ— a mapping, and πœ‰βˆΆπΈβˆ—βˆ—β†’β„›, πœ‘βˆΆπΆβ†’β„› two real-valued functions, and let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a πœ‚-πœ‰ semi-monotone mapping. We consider the problem of finding π‘’βˆˆπΆ such that𝑓(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆ,(1.5) which is called the generalized mixed equilibrium problem with respect to relaxed πœ‚-πœ‰ semi-monotone mapping (GMEP(𝑓,𝐴,πœ‚,πœ‘)). The set of such π‘’βˆˆπΆ is denoted by GMEP(𝑓,𝐴,πœ‚,πœ‘), that is, GMEP(𝑓,𝐴,πœ‚,πœ‘)={π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆ}.(1.6)

Now, let us consider some special cases of the problem (1.5).(a) In the case of 𝑓≑0, (1.5) is deduced to the following variational-like inequality problem:findπ‘’βˆˆπΆsuchthat⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)βˆ’πœ‘(𝑒)β‰₯0,βˆ€π‘£βˆˆπΆ.(1.7) The problem (1.7) was studied by Fang and Huang [1]. Using the KKM technique and πœ‚-πœ‰ monotonicity of the mapping πœ‘, they [1] obtained the existence of solutions of the variational-like inequality problem (1.7) in a real Banach space.(b) In the case of 𝑓≑0,πœ‘β‰‘0 and πœ‚(𝑣,𝑒)=π‘£βˆ’π‘’ for all 𝑣,π‘’βˆˆπΆ, the problem (1.5) is deduced to the following variational inequality problem:Findπ‘’βˆˆπΆsuchthat⟨𝐴(𝑒,𝑒),π‘£βˆ’π‘’βŸ©β‰₯0,βˆ€π‘£βˆˆπΆ.(1.8) The problem (1.8) was studied by Chen [2]. They obtained the existence results of solutions in a real Banach space.

When 𝐸 is a reflexive Banach space, we know πΈβˆ—βˆ—=𝑗(𝐸), where π‘—βˆΆπΈβ†’πΈβˆ—βˆ— is the duality mapping defined by βŸ¨π‘—π‘₯,π‘“βŸ©=βŸ¨π‘“,π‘₯⟩, for all π‘₯∈𝐸,π‘“βˆˆπΈβˆ—, which is an isometric mapping, so we may regard 𝐸=πΈβˆ—βˆ— under an isometry. The following problems can be derived as special cases of the problem (1.5).(c) In case 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—), 𝑓≑0 and πœ‚(𝑣,𝑒)=π‘£βˆ’π‘’ for all 𝑣,π‘’βˆˆπΆ, the problem (1.5) is deduced to the following variational inequality problem:findπ‘’βˆˆπΆsuchthat⟨𝐴(𝑒,𝑒),π‘£βˆ’π‘’βŸ©+πœ‘(𝑣)βˆ’πœ‘(𝑒)β‰₯0,βˆ€π‘£βˆˆπΆ.(1.9) The problem (1.9) was studied by Chen [2].(d) If 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—) and 𝐴≑0, (1.5) is deduced to the mixed equilibrium problem:findπ‘’βˆˆπΆsuchthat𝑓(𝑒,𝑣)+πœ‘(𝑣)β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆ.(1.10) The problem (1.10) was considered and studied by Ceng and Yao [3]; Cholamjiak and Suantai [4].(e)In the case of 𝐴≑0 and πœ‘β‰‘0, (1.5) is deduced to the following classical equilibrium problem:findπ‘’βˆˆπΆsuchthat𝑓(𝑒,𝑣)β‰₯0,βˆ€π‘£βˆˆπΆ.(1.11) The set of all solution of (1.11) is denoted by EP(𝑓), that is,EP(𝑓)={π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)β‰₯0,βˆ€π‘£βˆˆπΆ}.(1.12) Numerous problems in physics, optimization, and economics can be reduced to find a solution of the equilibrium problem, variational inequality problem, and related optimization problems; see, for instance, [5–11]. Some methods have been proposed to solve the equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [12]; Combettes and Hirstoaga [13]; Moudafi [14].

Let 𝐢 be a nonempty, closed convex subset of 𝐸. A mapping π‘†βˆΆπΆβ†’πΈ is called nonexpansive if ‖𝑆π‘₯βˆ’π‘†π‘¦β€–β‰€β€–π‘₯βˆ’π‘¦β€– for all π‘₯,π‘¦βˆˆπΆ. Also a mapping π‘†βˆΆπΆβ†’πΆ is called asymptotically nonexpansive if there exists a sequence {π‘˜π‘›}βŠ‚[1,∞) with π‘˜π‘›β†’1 as π‘›β†’βˆž such that ‖𝑆𝑛π‘₯βˆ’π‘†π‘›π‘¦β€–β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€– for all π‘₯,π‘¦βˆˆπΆ and for each 𝑛β‰₯1. The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [15] as an important generalization of nonexpansive mappings. Denote by 𝐹(𝑆) the set of fixed points of 𝑆, that is, 𝐹(𝑆)={π‘₯βˆˆπΆβˆΆπ‘†π‘₯=π‘₯}. There are several methods for approximating fixed points of a nonexpansive mapping; see, for instance, [16–21]. Furthermore, since 1972, a host of authors have studied weak and strong convergence problems of the iterative processes for the class of asymptotically nonexpansive mappings; see, for instance, [22–25]. In 1953, Mann [16] introduced the following iterative procedure to approximate a fixed point of a nonexpansive mapping 𝑆 in a Hilbert space 𝐻:π‘₯𝑛+1=𝛼𝑛π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘†π‘₯𝑛,βˆ€π‘›βˆˆπ’©,(1.13) where the initial point π‘₯0 is taken in 𝐢 arbitrarily and {𝛼𝑛} is a sequence in [0,1]. However, we note that Mann's iteration process (1.13) has only weak convergence, in general; for instance, see [26–28]. In 2003, Nakajo and Takahashi [29] introduced the following iterative algorithm for the nonexpansive mapping 𝑆 in the framework of Hilbert spaces:π‘₯0𝑦=π‘₯∈𝐢,𝑛=𝛼𝑛π‘₯𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘†π‘₯𝑛,𝐢𝑛=ξ€½β€–β€–π‘§βˆˆπΆβˆΆπ‘§βˆ’π‘¦π‘›β€–β€–β‰€β€–β€–π‘§βˆ’π‘₯𝑛‖‖,𝑄𝑛=ξ€½π‘§βˆˆπΆβˆΆβŸ¨π‘₯π‘›βˆ’π‘§,π‘₯βˆ’π‘₯𝑛,π‘₯⟩β‰₯0𝑛+1=π‘ƒπΆπ‘›βˆ©π‘„π‘›π‘₯,𝑛β‰₯0,(1.14) where {𝛼𝑛}βŠ‚[0,𝛼],π›Όβˆˆ[0,1], and π‘ƒπΆπ‘›βˆ©π‘„π‘› is the metric projection from a Hilbert space 𝐻 onto πΆπ‘›βˆ©π‘„π‘›. They proved that {π‘₯𝑛} generated by (1.14) converges strongly to a fixed point of 𝑆. Xu [30] extended Nakajo and Takahashi's theorem to Banach spaces by using the generalized projection.

Matsushita and Takahashi [17] introduced the following iterative algorithm in the framework of Banach spaces:π‘₯0𝐢=π‘₯∈𝐢,𝑛=ξ€½coπ‘§βˆˆπΆβˆΆβ€–π‘§βˆ’π‘†π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘₯𝑛‖‖,𝐷𝑛=π‘₯π‘§βˆˆπΆβˆΆπ‘›ξ€·βˆ’π‘§,𝐽π‘₯βˆ’π‘₯𝑛,π‘₯β‰₯0𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯,𝑛β‰₯0,(1.15) where co𝐷 denoted the convex closure of the set 𝐷,{𝑑𝑛} is a sequence in (0,1) with 𝑑𝑛→0, and π‘ƒπΆπ‘›βˆ©π·π‘› is the metric projection from 𝐸 onto πΆπ‘›βˆ©π·π‘›.

Very recently, Dehghan [24] introduced the following iterative algorithm for finding fixed points of an asymptotically nonexpansive mapping 𝑆 in a uniformly convex and smooth Banach space:π‘₯0=π‘₯∈𝐢,𝐢0=𝐷0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖,𝐷𝑛=ξ€½π‘§βˆˆπ·π‘›βˆ’1∢π‘₯π‘›ξ€·βˆ’π‘§,𝐽π‘₯βˆ’π‘₯𝑛,π‘₯β‰₯0𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯,𝑛β‰₯0,(1.16) where co𝐷 denotes the convex closure of the set 𝐷,𝐽 is the normalized duality mapping, {𝑑𝑛} is a sequence in (0,1) with 𝑑𝑛→0, and π‘ƒπΆπ‘›βˆ©π·π‘› is the metric projection from 𝐸 onto πΆπ‘›βˆ©π·π‘›. The strong convergence theorem of the iterative sequence {π‘₯𝑛} defined by (1.16) is obtained in a uniformly convex and smooth Banach space.

In this paper, motivated and inspired by the above results, we first suggest and analyze the new generalized mixed equilibrium problem with respect to relaxed πœ‚-πœ‰ semi-monotone mapping. Using the KKM technique, we obtain the existence of solutions for such problem in a Banach space. Next, we also introduce a hybrid projection algorithm for finding a common element in the solution set of a generalized mixed equilibrium problem and the fixed point set of an asymptotically nonexpansive mapping. The strong convergence theorem of the proposed sequence is obtained in a Banach space setting. The main results extend various results existing in the current literature.

2. Preliminaries

Let 𝐸 be a real Banach space, and let π‘ˆ={π‘₯βˆˆπΈβˆΆβ€–π‘₯β€–=1} be the unit sphere of 𝐸. A Banach space 𝐸 is said to be strictly convex if for any π‘₯,π‘¦βˆˆπ‘ˆ,π‘₯≠𝑦impliesβ€–π‘₯+𝑦‖<2.(2.1)

It is also said to be uniformly convex if for each πœ€βˆˆ(0,2], there exists 𝛿>0 such that for any π‘₯,π‘¦βˆˆπ‘ˆ,β€–π‘₯βˆ’π‘¦β€–β‰₯πœ€impliesβ€–π‘₯+𝑦‖<2(1βˆ’π›Ώ).(2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function π›ΏβˆΆ[0,2]β†’[0,1] called the modulus of convexity of 𝐸 as follows:‖‖‖𝛿(πœ€)=inf1βˆ’π‘₯+𝑦2β€–β€–β€–ξ‚‡βˆΆπ‘₯,π‘¦βˆˆπΈ,β€–π‘₯β€–=‖𝑦‖=1,β€–π‘₯βˆ’π‘¦β€–β‰₯πœ€.(2.3)

Then 𝐸 is uniformly convex if and only if 𝛿(πœ€)>0 for all πœ€βˆˆ(0,2]. A Banach space 𝐸 is said to be smooth if the limitlim𝑑→0β€–π‘₯+π‘‘π‘¦β€–βˆ’β€–π‘₯‖𝑑(2.4) exists for all π‘₯,π‘¦βˆˆπ‘ˆ. Let 𝐢 be a nonempty, closed, and convex subset of a reflexive, strictly convex, and smooth Banach space 𝐸. Then for any π‘₯∈𝐸, there exists a unique point π‘₯0∈𝐢 such thatβ€–β€–π‘₯0β€–β€–βˆ’π‘₯≀minπ‘¦βˆˆπΆβ€–π‘¦βˆ’π‘₯β€–.(2.5)

The mapping π‘ƒπΆβˆΆπΈβ†’πΆ defined by 𝑃𝐢π‘₯=π‘₯0 is called the metric projection from 𝐸 onto 𝐢. The following theorem is wellknown.

Theorem 2.1 (see [31]). Let 𝐢 be a nonempty, closed convex subset of a smooth Banach space 𝐸 and let π‘₯∈𝐸, and π‘¦βˆˆπΆ. Then the following are equivalent:(a)𝑦 is a best approximation to π‘₯βˆΆπ‘¦=𝑃𝐢π‘₯.(b)𝑦 is a solution of the variational inequality:βŸ¨π‘¦βˆ’π‘§,𝐽(π‘₯βˆ’π‘¦)⟩β‰₯0,βˆ€π‘§βˆˆπΆ,(2.6) where 𝐽 is a duality mapping and 𝑃𝐢 is the metric projection from 𝐸 onto 𝐢.

It is wellknown that if 𝑃𝐢 is a metric projection from a real Hilbert space 𝐻 onto a nonempty, closed, and convex subset 𝐢, then 𝑃𝐢 is nonexpansive. But, in a general Banach space, this fact is not true.

In the sequel, we will need the following lemmas.

Lemma 2.2 (see [32]). Let 𝐸 be a uniformly convex Banach space, let {𝛼𝑛} be a sequence of real numbers such that 0<𝑏≀𝛼𝑛≀𝑐<1 for all 𝑛β‰₯1, and let {π‘₯𝑛} and {𝑦𝑛} be sequences in 𝐸 such that limsupπ‘›β†’βˆžβ€–π‘₯𝑛‖≀𝑑,limsupπ‘›β†’βˆžβ€–π‘¦π‘›β€–β‰€π‘‘, and limπ‘›β†’βˆžβ€–π›Όπ‘›π‘₯𝑛+(1βˆ’π›Όπ‘›)𝑦𝑛‖=𝑑. Then limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π‘¦π‘›β€–=0.

Theorem 2.3 (see [33]). Let 𝐢 be a bounded, closed, and convex subset of a uniformly convex Banach space 𝐸. Then there exists a strictly increasing, convex, and continuous function π›ΎβˆΆ[0,∞)β†’[0,∞) such that 𝛾(0)=0 and 𝛾‖‖‖‖𝑆𝑛𝑖=1πœ†π‘–π‘₯𝑖ξƒͺβˆ’π‘›ξ“π‘–=1πœ†π‘–π‘†π‘₯𝑖‖‖‖‖ξƒͺ≀max1β‰€π‘—β‰€π‘˜β‰€π‘›ξ€·β€–β€–π‘₯π‘—βˆ’π‘₯π‘˜β€–β€–βˆ’β€–β€–π‘†π‘₯π‘—βˆ’π‘†π‘₯π‘˜β€–β€–ξ€Έ,(2.7) for all π‘›βˆˆπ’©, {π‘₯1,π‘₯2,…,π‘₯𝑛}βŠ‚πΆ, {πœ†1,πœ†2,…,πœ†π‘›}βŠ‚[0,1] with βˆ‘π‘›π‘–=1πœ†π‘–=1 and nonexpansive mapping 𝑆 of 𝐢 into 𝐸.

Theorem 2.4 (see [24]). Let 𝐢 be a bounded, closed, and convex subset of a uniformly convex Banach space 𝐸. Then there exists a strictly increasing, convex, and continuous function π›ΎβˆΆ[0,∞)β†’[0,∞) such that 𝛾(0)=0 and 𝛾1π‘˜π‘šβ€–β€–β€–β€–π‘†π‘šξƒ©π‘›ξ“π‘–=1πœ†π‘–π‘₯𝑖ξƒͺβˆ’π‘›ξ“π‘–=1πœ†π‘–π‘†π‘šπ‘₯𝑖‖‖‖‖ξƒͺ≀max1β‰€π‘—β‰€π‘˜β‰€π‘›ξ‚΅β€–β€–π‘₯π‘—βˆ’π‘₯π‘˜β€–β€–βˆ’1π‘˜π‘šβ€–β€–π‘†π‘šπ‘₯π‘—βˆ’π‘†π‘šπ‘₯π‘˜β€–β€–ξ‚Ά,(2.8) for all π‘›βˆˆπ’©, {π‘₯1,π‘₯2,…,π‘₯𝑛}βŠ‚πΆ; {πœ†1,πœ†2,…,πœ†π‘›}βŠ‚[0,1] with βˆ‘π‘›π‘–=1πœ†π‘–=1 and an asymptotically nonexpansive mapping 𝑆 of 𝐢 into 𝐸 with the sequence {π‘˜π‘š}.

Now, let us recall the following well-known concepts and results.

Definition 2.5. Let 𝐡 be a subset of topological vector space 𝑋. A mapping πΊβˆΆπ΅β†’2𝑋 is called a KKM mapping if co{π‘₯1,π‘₯2,…,π‘₯π‘šβ‹ƒ}βŠ‚π‘šπ‘–=1𝐺(π‘₯𝑖) for π‘₯π‘–βˆˆπ΅ and 𝑖=1,2,…,π‘š, where co𝐴 denotes the convex hull of the set 𝐴.

Lemma 2.6 (see [34]). Let 𝐡 be a nonempty subset of a Hausdorff topological vector space 𝑋, and let πΊβˆΆπ΅β†’2𝑋 be a KKM mapping. If 𝐺(π‘₯) is closed for all π‘₯∈𝐡 and is compact for at least one π‘₯∈𝐡, then β‹‚π‘₯∈𝐡𝐺(π‘₯)β‰ βˆ….

Theorem 2.7 (see [35] (Kakutani-Fan-Glicksberg Fixed Point Theorem)). Let E be a locally convex Hausdorff topological vector space and 𝐢 a nonempty, convex, and compact subset of 𝐸. Suppose π‘‡βˆΆπΆβ†’2𝐢 is a upper semi-continuous mapping with nonempty, closed, and convex values. Then 𝑇 has a fixed point in 𝐢.

Definition 2.8 (see [36]). Let 𝐢 be a nonempty, closed convex of a Banach space 𝐸. Let π‘‡βˆΆπΆβ†’πΈβˆ— and let πœ‚βˆΆπΆΓ—πΆβ†’β„› be two mappings. 𝑇 is said to be πœ‚-hemicontinuous if, for any fixed π‘₯,π‘¦βˆˆπΆ, the mapping π‘“βˆΆ[0,1]β†’(βˆ’βˆž,∞) defined by 𝑓(𝑑)=βŸ¨π‘‡(π‘₯+𝑑(π‘¦βˆ’π‘₯)),πœ‚(𝑦,π‘₯)⟩ is continuous at 0+.
For solving the mixed equilibrium problem, let us assume the following conditions for a bifunction π‘“βˆΆπΆΓ—πΆβ†’β„›:
(A1)𝑓(π‘₯,π‘₯)=0 for all π‘₯∈𝐢;(A2)𝑓 is monotone, that is, 𝑓(π‘₯,𝑦)+𝑓(𝑦,π‘₯)≀0 for all π‘₯,π‘¦βˆˆπΆ;(A3)for all π‘¦βˆˆπΆ, 𝑓(β‹…,𝑦) is weakly upper semicontinuous;(A4)for all π‘₯∈𝐢, 𝑓(π‘₯,β‹…) is convex. The following lemmas can be found in [37].

Lemma 2.9 (see [37]). Let 𝐢 be a nonempty, bounded, closed, and convex subset of a smooth, strictly convex and reflexive Banach space 𝐸, let π‘‡βˆΆπΆβ†’πΈβˆ— be an πœ‚-hemicontinuous and relaxed πœ‚-πœ‰ monotone mapping. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1) and (A4), and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. Let π‘Ÿ>0 and π‘§βˆˆπΆ. Assume that(i)πœ‚(π‘₯,π‘₯)=0,forallπ‘₯∈𝐢;(ii) for any fixed 𝑒,π‘£βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π‘‡π‘£,πœ‚(π‘₯,𝑒)⟩ is convex. Then the following problems (2.9) and (2.10) are equivalent. Find π‘₯∈𝐢 such that: 1𝑓(π‘₯,𝑦)+πœ‘(𝑦)+βŸ¨π‘‡π‘₯,πœ‚(𝑦,π‘₯)⟩+π‘ŸβŸ¨π‘¦βˆ’π‘₯,𝐽(π‘₯βˆ’π‘§)⟩β‰₯πœ‘(π‘₯),βˆ€π‘¦βˆˆπΆ.(2.9) Find π‘₯∈𝐢 such that 1𝑓(π‘₯,𝑦)+βŸ¨π‘‡π‘¦,πœ‚(𝑦,π‘₯)⟩+πœ‘(𝑦)+π‘ŸβŸ¨π‘¦βˆ’π‘₯,𝐽(π‘₯βˆ’π‘§)⟩β‰₯πœ‘(π‘₯)+πœ‰(π‘¦βˆ’π‘₯),βˆ€π‘¦βˆˆπΆ.(2.10)

Lemma 2.10 (see [37]). Let 𝐢 be a nonempty, bounded, closed, and convex subset of a smooth, strictly convex, and reflexive Banach space 𝐸, let π‘‡βˆΆπΆβ†’πΈβˆ— be an πœ‚-hemicontinuous and relaxed πœ‚-πœ‰ monotone mapping. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1), (A3), and (A4), and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. Let π‘Ÿ>0 and π‘§βˆˆπΆ. Assume that(i)πœ‚(π‘₯,𝑦)+πœ‚(𝑦,π‘₯)=0 for all π‘₯,π‘¦βˆˆπΆ;(ii)for any fixed 𝑒,π‘£βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π‘‡π‘£,πœ‚(π‘₯,𝑒)⟩ is convex and lower semicontinuous;(iii)πœ‰βˆΆπΈβ†’β„› is weakly lower semicontinuous; that is,  for any net {π‘₯𝛽},{π‘₯𝛽} converges to π‘₯ in 𝜎(𝐸,πΈβˆ—) implies that πœ‰(π‘₯)≀liminfπœ‰(π‘₯𝛽). Then, the solution set of the problem (2.9) is nonempty, that is, there exists π‘₯0∈𝐢 such that 𝑓π‘₯0ξ€Έ+,𝑦𝑇π‘₯0ξ€·,πœ‚π‘¦,π‘₯01+πœ‘(𝑦)+π‘Ÿξ«π‘¦βˆ’π‘₯0ξ€·π‘₯,𝐽0ξ€·π‘₯βˆ’π‘§ξ€Έξ¬β‰₯πœ‘0ξ€Έ,βˆ€π‘¦βˆˆπΆ.(2.11)

3. Existence Results of Generalized Mixed Equilibrium Problem

In this section, we prove the following crucial lemma concerning the generalized mixed equilibrium problem with respect to relaxed πœ‚-πœ‰ semi-monotone mapping (GMEP(𝑓,𝐴,πœ‚,πœ‘)) in a real Banach space with the smooth and strictly convex second dual space.

Lemma 3.1. Let 𝐸 be a real Banach space with the smooth and strictly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty bounded closed convex subset of πΈβˆ—βˆ—, let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone mapping. Let π‘“βˆΆπΆΓ—πΆβ†’β„› be a bifunction satisfying (A1), (A3), and (A4), and let πœ‘βˆΆπΆβ†’β„›βˆͺ{+∞} be a proper lower semicontinuous and convex function. Let π‘Ÿ>0 and π‘§βˆˆπΆ. Assume that(i)πœ‚(π‘₯,𝑦)+πœ‚(𝑦,π‘₯)=0 for all π‘₯,π‘¦βˆˆπΆ;(ii)for any fixed 𝑒,𝑣,π‘€βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π΄(𝑣,𝑀),πœ‚(π‘₯,𝑒)⟩ is convex and lower semicontinuous;(iii)for each π‘₯∈𝐢,𝐴(π‘₯,β‹…)βˆΆπΆβ†’πΈβˆ— is finite-dimensional continuous: that is, for any finite-dimensional subspace πΉβŠ‚πΈβˆ—βˆ—,𝐴(π‘₯,β‹…)βˆΆπΆβˆ©πΉβ†’πΈβˆ— is continuous;(iv)πœ‰βˆΆπΈβˆ—βˆ—β†’β„› is convex lower semicontinuous. Then there exists 𝑒0∈𝐢 such that 𝑓𝑒0ξ€Έ+𝐴𝑒,𝑣0,𝑒0ξ€Έξ€·,πœ‚π‘£,𝑒01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬β‰₯πœ‘0ξ€Έ,βˆ€π‘£βˆˆπΆ.(3.1)

Proof. Let πΉβŠ†πΈβˆ—βˆ— be a finite-dimensional subspace with 𝐢𝐹∢=πΉβˆ©πΆβ‰ βˆ…. For each π‘€βˆˆπΆ, consider the following problem: find 𝑒0∈𝐢𝐹 such that 𝑓𝑒0ξ€Έ+𝐴,𝑣𝑀,𝑒0ξ€Έξ€·,πœ‚π‘£,𝑒01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬βˆ’πœ‘0ξ€Έβ‰₯0,βˆ€π‘£βˆˆπΆπΉ.(3.2)
Since πΆπΉβŠ†πΉ is bounded closed and convex, 𝐴(𝑀,β‹…) is continuous on 𝐢𝐹 and relaxed πœ‚-πœ‰ monotone for each fixed π‘€βˆˆπΆ, from Lemma 2.10, we know that problem (3.2) has a solution 𝑒0∈𝐢𝐹.
Now, define a set-valued mapping πΊβˆΆπΆπΉβ†’2𝐢𝐹 as follows: Gw=π‘’βˆˆπΆπΉ1βˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑀,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘ŸβŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘§)βŸ©βˆ’πœ‘(𝑒)β‰₯0,βˆ€π‘£βˆˆπΆπΉξ‚‡.(3.3) It follows from Lemma 2.9 that, for each fixed π‘€βˆˆπΆπΉ: ξ‚†π‘’βˆˆπΆπΉ1βˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑀,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘ŸβŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘§)βŸ©βˆ’πœ‘(𝑒)β‰₯0,βˆ€π‘£βˆˆπΎπΉξ‚‡=ξ‚†π‘’βˆˆπΆπΉ1βˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑀,𝑣),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘ŸβŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘§)βŸ©βˆ’πœ‘(𝑒)β‰₯πœ‰(π‘£βˆ’π‘’),βˆ€π‘£βˆˆπΎπΉξ‚‡.(3.4) Since every convex lower semicontinuous function in Banach spaces is weakly lower semicontinuous, the proper convex lower semicontinuity of πœ‘ and πœ‰, condition (ii), (A3) and (A4) implies that πΊβˆΆπΆπΉβ†’2𝐢𝐹 has nonempty bounded closed and convex values. Using (A3) and the complete continuity of 𝐴(β‹…,𝑒), we can conclude that 𝐺 is upper semicontinuous. It follows from Theorem 2.7 that 𝐺 has a fixed point π‘€βˆ—βˆˆπΆπΉ, that is, ξ«π‘“ξ€·π‘€βˆ—ξ€Έξ€·π‘€,𝑣+βŸ¨π΄βˆ—,π‘€βˆ—ξ€Έξ€·,πœ‚π‘£,π‘€βˆ—1+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘€βˆ—ξ€·π‘€,π½βˆ—ξ€·π‘€βˆ’π‘§ξ€Έξ¬βˆ’πœ‘βˆ—ξ€Έβ‰₯0,βˆ€π‘£βˆˆπΆπΉ.(3.5) Let ξ€½β„±=πΉβŠ‚πΈβˆ—βˆ—ξ€ΎβˆΆπΉisfinitedimensionalwithπΉβˆ©πΆβ‰ βˆ…,(3.6) and let π‘ŠπΉ=+1π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑣),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)rβŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘§)βŸ©βˆ’πœ‘(𝑒)β‰₯πœ‰(π‘£βˆ’π‘’),βˆ€π‘£βˆˆπΆπΉξ‚‡,βˆ€πΉβˆˆβ„±.(3.7) By (3.5) and Lemma 2.9, we know that π‘ŠπΉ is nonempty and bounded. Denote by π‘Šβˆ—πΉ the weakβˆ—-closure of π‘ŠπΉ in πΈβˆ—βˆ—. Then, π‘Šβˆ—πΉ is weakβˆ— compact in πΈβˆ—βˆ—.
For any πΉπ‘–βˆˆβ„±, 𝑖=1,2,…,𝑁, we know that π‘Šβ‹‚π‘π‘–=1πΉπ‘–βŠ‚β‹‚π‘π‘–=1π‘ŠπΉπ‘–, so {π‘Šβˆ—πΉβˆΆπΉβˆˆβ„±} has the finite intersection property. Therefore, it follows thatξ™πΉβˆˆβ„±π‘Šβˆ—πΉβ‰ βˆ….(3.8) Let 𝑒0βˆˆβ‹‚πΉβˆˆβ„±π‘Šβˆ—πΉ. We claim that 𝑓𝑒0ξ€Έ+𝐴𝑒,𝑣0,𝑒0ξ€Έξ€·,πœ‚π‘£,𝑒01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬βˆ’πœ‘0ξ€Έβ‰₯0,βˆ€π‘£βˆˆπΆ.(3.9) Indeed, for each π‘£βˆˆπΆ, let πΉβˆˆβ„± be such that π‘£βˆˆπΆπΉ and 𝑒0∈𝐢𝐹. Then, there exists π‘’π‘—βˆˆπ‘ŠπΉ such that 𝑒𝑗⇀𝑒0. The definition of π‘ŠπΉ implies that 𝑓𝑒𝑗+𝐴𝑒,𝑣𝑗,𝑣,πœ‚π‘£,𝑒𝑗1+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’π‘—ξ€·π‘’,π½π‘—ξ€·π‘’βˆ’π‘§ξ€Έξ¬βˆ’πœ‘π‘—ξ€Έξ€·β‰₯πœ‰π‘£βˆ’π‘’π‘—ξ€Έ,(3.10) that is 𝑓𝑒𝑗+𝐴𝑒,𝑣𝑗,𝑣,πœ‚π‘£,𝑒𝑗1+πœ‘(𝑣)+π‘Ÿξ«ξ€·π‘’π‘£βˆ’π‘§,π½π‘—βˆ’1βˆ’π‘§ξ€Έξ¬π‘Ÿβ€–β€–π‘§βˆ’π‘’π‘—β€–β€–2ξ€·π‘’βˆ’πœ‘π‘—ξ€Έξ€·β‰₯πœ‰π‘£βˆ’π‘’π‘—ξ€Έ,(3.11) for all 𝑗=1,2,…. Using the complete continuity of 𝐴(β‹…,𝑒), (A3), (ii), the continuity of 𝐽, the convex lower semicontinuity of πœ‘, πœ‰, and β€–β‹…β€–2, and letting π‘—β†’βˆž, we get 𝑓𝑒0𝑒,𝑣+⟨𝐴0ξ€Έξ€·,𝑣,πœ‚π‘£,𝑒0ξ€Έ1⟩+πœ‘(𝑣)+π‘ŸβŸ¨π‘£βˆ’π‘’0𝑒,𝐽0ξ€Έξ€·π‘’βˆ’π‘§βŸ©βˆ’πœ‘0ξ€Έξ€·β‰₯πœ‰π‘£βˆ’π‘’0ξ€Έ,βˆ€π‘£βˆˆπΆ.(3.12) From Lemma 2.9, we have 𝑓𝑒0ξ€Έ+𝐴𝑒,𝑣0,𝑒0ξ€Έξ€·,πœ‚π‘£,𝑒01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬βˆ’πœ‘0ξ€Έβ‰₯0,βˆ€π‘£βˆˆπΆ.(3.13) Hence, we complete the proof.

Setting 𝐴≑0 and πœ‘β‰‘0 in Lemma 3.1, we have the following result.

Corollary 3.2. Let 𝐸 be a real Banach space with the smooth and strictly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty bounded closed convex subset of πΈβˆ—βˆ—. Let π‘“βˆΆπΆΓ—πΆβ†’β„› be a bifunction satisfying (A1), (A3), and (A4). Let π‘Ÿ>0 and π‘§βˆˆπΆ. Then there exists 𝑒0∈𝐢 such that 𝑓𝑒0ξ€Έ+1,π‘£π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0βˆ’π‘§ξ€Έξ¬β‰₯0,βˆ€π‘£βˆˆπΆ.(3.14)

If 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—) smooth and strictly convex real Banach space, then we have the following result.

Corollary 3.3. Let 𝐸 be a reflexive smooth and strictly convex Banach space, let 𝐢 be a nonempty bounded closed convex subset of 𝐸, let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone mapping. Let π‘“βˆΆπΆΓ—πΆβ†’β„› be a bifunction satisfying (A1), (A3), and (A4), and let πœ‘βˆΆπΆβ†’β„›βˆͺ{+∞} be a proper lower semicontinuous and convex function. Let π‘Ÿ>0 and π‘§βˆˆπΆ. Assume that(i)πœ‚(π‘₯,𝑦)+πœ‚(𝑦,π‘₯)=0 for all π‘₯,π‘¦βˆˆπΆ;(ii)for any fixed 𝑒,𝑣,π‘€βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π΄(𝑣,𝑀),πœ‚(π‘₯,𝑒)⟩ is convex and lower semicontinuous;(iii)for each π‘₯∈𝐢,𝐴(π‘₯,β‹…)βˆΆπΆβ†’πΈβˆ— is finite-dimensional continuous.(iv)πœ‰βˆΆπΈβ†’β„› is convex lower semicontinuous.Then, there exists 𝑒0∈𝐢 such that 𝑓𝑒0ξ€Έ+𝐴𝑒,𝑣0,𝑒0ξ€Έξ€·,πœ‚π‘£,𝑒01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬β‰₯πœ‘0ξ€Έ,βˆ€π‘£βˆˆπΆ.(3.15)

If 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—) smooth and strictly convex, 𝐴 is semi-monotone, then we obtain the following result.

Corollary 3.4. Let 𝐸 be a reflexive smooth and strictly convex Banach space, let 𝐢 be a nonempty bounded closed convex subset of 𝐸, let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a semi-monotone mapping. Let π‘“βˆΆπΆΓ—πΆβ†’β„› be a bifunction satisfying (A1), (A3), and (A4), and let πœ‘βˆΆπΆβ†’β„›βˆͺ{+∞} be a proper lower semicontinuous and convex function. Assume that, for any π‘Ÿ>0 and π‘§βˆˆπΆ,(i)for any fixed 𝑒,𝑣,π‘€βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π΄(𝑣,𝑀),π‘₯βˆ’π‘’)⟩ is convex and lower semicontinuous;(ii)for each π‘₯∈𝐢,𝐴(π‘₯,β‹…)βˆΆπΆβ†’πΈβˆ— is finite-dimensional continuous.Then, there exists 𝑒0∈𝐢 such that 𝑓𝑒0ξ€Έ+𝐴𝑒,𝑣0,𝑒0ξ€Έ,π‘£βˆ’π‘’01+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘’0𝑒,𝐽0ξ€·π‘’βˆ’π‘§ξ€Έξ¬β‰₯πœ‘0ξ€Έ,βˆ€π‘£βˆˆπΆ.(3.16)

Theorem 3.5. Let 𝐸 be a real Banach space with the smooth and strictly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty, bounded, closed, and convex subset of πΈβˆ—βˆ—, let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone mapping. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1)–(A4) and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. For any π‘Ÿ>0, define a mapping Ξ¦π‘ŸβˆΆπΈβˆ—βˆ—β†’πΆ as follows: Ξ¦π‘Ÿξ‚†1(π‘₯)=π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘Ÿξ‚‡βŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘₯)⟩β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆ,(3.17) for all π‘₯∈𝐸. Assume that(i)πœ‚(π‘₯,𝑦)+πœ‚(𝑦,π‘₯)=0 for all π‘₯,π‘¦βˆˆπΆ;(ii)for any fixed 𝑒,𝑣,π‘€βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π΄(𝑣,𝑀),πœ‚(π‘₯,𝑒)⟩ is convex and lower semicontinuous;(iii)for each π‘₯∈𝐢,𝐴(π‘₯,β‹…)βˆΆπΆβ†’πΈβˆ— is finite-dimensional continuous: that is, for any finite-dimensional subspace πΉβŠ‚πΈβˆ—βˆ—,𝐴(π‘₯,β‹…)βˆΆπΆβˆ©πΉβ†’πΈβˆ— is continuous;(iv)πœ‰βˆΆπΈβˆ—βˆ—β†’β„› is convex lower semicontinuous;(v) for any π‘₯,π‘¦βˆˆπΆ, πœ‰(π‘₯βˆ’π‘¦)+πœ‰(π‘¦βˆ’π‘₯)β‰₯0;(vi)for any π‘₯,π‘¦βˆˆπΆ, 𝐴(π‘₯,𝑦)=𝐴(𝑦,π‘₯). Then, the following holds:(1)Ξ¦π‘Ÿ is single-valued;(2)βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿπ‘¦,𝐽(Ξ¦π‘Ÿπ‘₯βˆ’π‘₯)βŸ©β‰€βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿπ‘¦,𝐽(Ξ¦π‘Ÿπ‘¦βˆ’π‘¦)⟩ for all π‘₯,π‘¦βˆˆπΈ;(3)𝐹(Ξ¦π‘Ÿ)=GMEP(𝑓,𝐴,πœ‚,πœ‘);(4)GMEP(𝑓,𝐴,πœ‚,πœ‘) is nonempty, closed, and convex.

Proof. For each π‘₯βˆˆπΈβˆ—βˆ—, by Lemma 2.10, we conclude that Ξ¦π‘Ÿ(π‘₯) is nonempty.(1)We prove that Ξ¦π‘Ÿ is single-valued. Indeed, for π‘₯βˆˆπΈβˆ—βˆ— and π‘Ÿ>0, let 𝑧1,𝑧2βˆˆΞ¦π‘Ÿ(π‘₯). Then,𝑓𝑧1ξ€Έ+𝐴𝑧,𝑣1,𝑧1ξ€Έξ€·,πœ‚π‘£,𝑧11+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘§1𝑧,𝐽1ξ€·π‘§βˆ’π‘₯β‰₯πœ‘1𝑓𝑧,βˆ€π‘£βˆˆπΆ,2ξ€Έ+𝐴𝑧,𝑣2,𝑧2ξ€Έξ€·,πœ‚π‘£,𝑧21+πœ‘(𝑣)+π‘Ÿξ«π‘£βˆ’π‘§2𝑧,𝐽2ξ€·π‘§βˆ’π‘₯β‰₯πœ‘2ξ€Έ,βˆ€π‘£βˆˆπΆ.(3.18) Hence, 𝑓𝑧1,𝑧2ξ€Έ+𝐴𝑧1,𝑧1𝑧,πœ‚2,𝑧1𝑧+πœ‘2ξ€Έ+1π‘Ÿξ«π‘§2βˆ’π‘§1𝑧,𝐽1ξ€·π‘§βˆ’π‘₯β‰₯πœ‘1ξ€Έ,𝑓𝑧2,𝑧1ξ€Έ+𝐴𝑧2,𝑧2𝑧,πœ‚1,𝑧2𝑧+πœ‘1ξ€Έ+1π‘Ÿξ«π‘§1βˆ’π‘§2𝑧,𝐽2ξ€·π‘§βˆ’π‘₯β‰₯πœ‘2ξ€Έ.(3.19) Adding the two inequalities, from (i) we have 𝑓𝑧2,𝑧1𝑧+𝑓1,𝑧2ξ€Έ+𝐴𝑧1,𝑧1ξ€Έξ€·π‘§βˆ’π΄2,𝑧2𝑧,πœ‚2,𝑧1+1ξ€Έξ¬π‘Ÿξ«π‘§2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2βˆ’π‘₯β‰₯0.(3.20) From (A2), we have 𝐴𝑧1,𝑧1ξ€Έξ€·π‘§βˆ’π΄2,𝑧2𝑧,πœ‚2,𝑧1+1ξ€Έξ¬π‘Ÿξ«π‘§2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2βˆ’π‘₯β‰₯0.(3.21) That is, 1π‘Ÿξ«π‘§2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2β‰₯ξ«π΄ξ€·π‘§βˆ’π‘₯2,𝑧2ξ€Έξ€·π‘§βˆ’π΄1,𝑧1𝑧,πœ‚2,𝑧1.(3.22) Calculating the right-hand side of (3.22), we have 𝐴𝑧2,𝑧2ξ€Έξ€·π‘§βˆ’π΄1,𝑧1𝑧,πœ‚2,𝑧1=𝐴𝑧2,𝑧2ξ€Έξ€·π‘§βˆ’π΄2,𝑧1𝑧+𝐴2,𝑧1ξ€Έξ€·π‘§βˆ’π΄1,𝑧2𝑧+𝐴1,𝑧2ξ€Έξ€·π‘§βˆ’π΄1,𝑧1𝑧,πœ‚2,𝑧1=𝐴𝑧2,𝑧2ξ€Έξ€·π‘§βˆ’π΄2,𝑧1𝑧,πœ‚2,𝑧1+𝐴𝑧2,𝑧1ξ€Έξ€·π‘§βˆ’π΄1,𝑧2𝑧,πœ‚2,𝑧1+𝐴𝑧1,𝑧2ξ€Έξ€·π‘§βˆ’π΄1,𝑧1𝑧,πœ‚2,𝑧1𝑧β‰₯2πœ‰2βˆ’π‘§1ξ€Έ+𝐴𝑧2,𝑧1ξ€Έξ€·π‘§βˆ’π΄1,𝑧2𝑧,πœ‚2,𝑧1,(3.23) and so, 1π‘Ÿξ«π‘§2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2ξ€·π‘§βˆ’π‘₯β‰₯2πœ‰2βˆ’π‘§1ξ€Έ+𝐴𝑧2,𝑧1ξ€Έξ€·π‘§βˆ’π΄1,𝑧2𝑧,πœ‚2,𝑧1.(3.24) In (3.24) exchanging the position of 𝑧1 and 𝑧2, we get 1π‘Ÿξ«π‘§1βˆ’π‘§2𝑧,𝐽2ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½1ξ€·π‘§βˆ’π‘₯β‰₯2πœ‰1βˆ’π‘§2ξ€Έ+𝐴𝑧1,𝑧2ξ€Έξ€·π‘§βˆ’π΄2,𝑧1𝑧,πœ‚1,𝑧2.(3.25) Adding the inequalities (3.24) and (3.25) and using (v) and (vi), we have 𝑧2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2ξ€·πœ‰ξ€·π‘§βˆ’π‘₯β‰₯π‘Ÿ2βˆ’π‘§1𝑧+πœ‰1βˆ’π‘§2ξ€Έξ€Έβ‰₯0.(3.26) Hence, 𝑧0≀2βˆ’π‘§1𝑧,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2=π‘§βˆ’π‘₯2ξ€Έβˆ’ξ€·π‘§βˆ’π‘₯1ξ€Έξ€·π‘§βˆ’π‘₯,𝐽1ξ€Έξ€·π‘§βˆ’π‘₯βˆ’π½2βˆ’π‘₯.(3.27) Since 𝐽 is monotone and πΈβˆ—βˆ— is strictly convex, we obtain that 𝑧1βˆ’π‘₯=𝑧2βˆ’π‘₯ and hence 𝑧1=𝑧2. Therefore, Ξ¦π‘Ÿ is single-valued.(2) For π‘₯,π‘¦βˆˆπΆ, we haveπ‘“ξ€·Ξ¦π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€Έ+ξ«π΄ξ€·Ξ¦π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘₯ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯Φ+πœ‘π‘Ÿπ‘¦ξ€Έξ€·Ξ¦βˆ’πœ‘π‘Ÿπ‘₯ξ€Έ+1π‘Ÿξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿπ‘“ξ€·Ξ¦π‘₯βˆ’π‘₯β‰₯0,π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯ξ€Έ+ξ«π΄ξ€·Ξ¦π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€·Ξ¦ξ€Έξ¬+πœ‘π‘Ÿπ‘₯ξ€Έξ€·Ξ¦βˆ’πœ‘π‘Ÿπ‘¦ξ€Έ+1π‘Ÿξ«Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘¦,π½π‘Ÿπ‘¦βˆ’π‘¦ξ€Έξ¬β‰₯0.(3.28) Adding the above two inequalities and by (i) and (A2), we get ξ«π΄ξ€·Ξ¦π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘₯ξ€Έξ€·Ξ¦βˆ’π΄π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯+1ξ€Έξ¬π‘Ÿξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯βˆ’π½π‘Ÿπ‘¦βˆ’π‘¦ξ€Έξ¬β‰₯0,(3.29) that is 1π‘Ÿξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯βˆ’π½π‘Ÿβ‰₯ξ«π΄ξ€·Ξ¦π‘¦βˆ’π‘¦ξ€Έξ¬π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦βˆ’π΄π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘₯ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯.(3.30) After calculating (3.30), we have 1π‘Ÿξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯βˆ’π½π‘Ÿξ€·Ξ¦π‘¦βˆ’π‘¦ξ€Έξ¬β‰₯2πœ‰π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯ξ€Έ+ξ«π΄ξ€·Ξ¦π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯ξ€Έξ€·Ξ¦βˆ’π΄π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯.(3.31) In (3.30), exchanging the position of Ξ¦π‘Ÿπ‘₯ and Ξ¦π‘Ÿπ‘¦, we get 1π‘ŸβŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘¦,π½π‘Ÿξ€Έξ€·Ξ¦π‘¦βˆ’π‘¦βˆ’π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯⟩β‰₯2πœ‰π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€Έ+ξ«π΄ξ€·Ξ¦π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦βˆ’π΄π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯ξ€Έξ€·Ξ¦,πœ‚π‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦.(3.32) Adding the inequalities (3.31) and (3.32), use (i) and (vi), we have ξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯βˆ’π½π‘Ÿξ€·πœ‰ξ€·Ξ¦π‘¦βˆ’π‘¦ξ€Έξ¬β‰₯π‘Ÿπ‘Ÿπ‘₯,Ξ¦π‘Ÿπ‘¦ξ€Έξ€·Ξ¦+πœ‰π‘Ÿπ‘¦,Ξ¦π‘Ÿπ‘₯ξ€Έξ€Έ.(3.33) It follows from (iv) that ξ«Ξ¦π‘Ÿπ‘¦βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘₯,π½π‘Ÿξ€Έξ€·Ξ¦π‘₯βˆ’π‘₯βˆ’π½π‘Ÿπ‘¦βˆ’π‘¦ξ€Έξ¬β‰₯0.(3.34) Hence, βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘¦,π½π‘Ÿξ€Έπ‘₯βˆ’π‘₯βŸ©β‰€βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿξ€·Ξ¦π‘¦,π½π‘Ÿξ€Έπ‘¦βˆ’π‘¦βŸ©.(3.35)(3) Next, we show that 𝐹(Ξ¦π‘Ÿ)=GMEP(𝑓,𝐴,πœ‚,πœ‘). Indeed, we have the following: ξ€·Ξ¦π‘’βˆˆπΉπ‘Ÿξ€ΈβŸΊπ‘’=Ξ¦π‘Ÿπ‘’1βŸΊπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘ŸβŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘’)⟩β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆβŸΊπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆβŸΊπ‘’βˆˆGMEP(𝑓,𝐴,πœ‚,πœ‘).(3.36)Hence, 𝐹(Ξ¦π‘Ÿ)=GMEP(𝑓,𝐴,πœ‚,πœ‘).(4) Finally, we prove that GMEP(𝑓,𝐴,πœ‚,πœ‘) is nonempty, closed, and convex. For each π‘£βˆˆπΆ, we define the multivalued mapping πΊβˆΆπΆβ†’2πΈβˆ—βˆ— by𝐺(𝑣)={π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)β‰₯πœ‘(𝑒)}.(3.37) Since π‘£βˆˆπΊ(𝑣), we have 𝐺(𝑣)β‰ βˆ…. We prove that 𝐺 is a KKM mapping on 𝐢. Suppose that there exists a finite subset {𝑧1,𝑧2,…,π‘§π‘š} of 𝐢, and 𝛼𝑖>0 with βˆ‘π‘šπ‘–=1𝛼𝑖=1 such that βˆ‘Μ‚π‘§=π‘šπ‘–=1π›Όπ‘–π‘§π‘–βˆ‰πΊ(𝑧𝑖) for all 𝑖=1,2,…,π‘š. Then 𝑓̂𝑧,𝑧𝑖+𝐴𝑧(̂𝑧,̂𝑧),πœ‚π‘–ξ€·π‘§,̂𝑧+πœ‘π‘–ξ€Έβˆ’πœ‘(̂𝑧)<0,𝑖=1,2,…,π‘š.(3.38) From (A1), (A4), (ii), and the convexity of πœ‘, we have 0=𝑓(̂𝑧,̂𝑧)+⟨𝐴(̂𝑧,̂𝑧),πœ‚(̂𝑧,̂𝑧)⟩+πœ‘(̂𝑧)βˆ’πœ‘(̂𝑧)=𝑓̂𝑧,π‘šξ“π‘–=1𝛼𝑖𝑧𝑖ξƒͺ+𝐴(̂𝑧,̂𝑧),πœ‚π‘šξ“π‘–=1𝛼𝑖𝑧𝑖,̂𝑧ξƒͺξ„•+πœ‘π‘šξ“π‘–=1𝛼𝑖𝑧𝑖ξƒͺβ‰€βˆ’πœ‘(̂𝑧)π‘šξ“π‘–=1𝛼𝑖𝑓̂𝑧,𝑧𝑖+𝑧𝐴(̂𝑧,̂𝑧),πœ‚π‘–ξ€·π‘§,̂𝑧+πœ‘π‘–ξ€Έξ€Έβˆ’πœ‘(̂𝑧)<0,(3.39) which is a contradiction. Thus, 𝐺 is a KKM mapping on 𝐢.
Next, we prove that 𝐺(𝑦) is closed for each π‘¦βˆˆπΆ. For any π‘¦βˆˆπΆ, let {π‘₯𝑛} be any sequence in 𝐺(𝑦) such that π‘₯𝑛→π‘₯0. We claim that π‘₯0∈𝐺(𝑦). Then, for each π‘¦βˆˆπΆ, we have𝑓π‘₯𝑛+𝐴π‘₯,𝑦𝑛,π‘₯𝑛,πœ‚π‘¦,π‘₯𝑛π‘₯+πœ‘(𝑦)β‰₯πœ‘π‘›ξ€Έ.(3.40) By monotonicity of 𝐴, we obtain that 𝑓π‘₯𝑛+𝐴π‘₯,𝑦𝑛,𝑦,πœ‚π‘¦,π‘₯𝑛π‘₯+πœ‘(𝑦)β‰₯πœ‘π‘›ξ€Έξ€·+πœ‰π‘¦βˆ’π‘₯𝑛.(3.41) By (A3), (i), (ii), (iv), lower semicontinuity of πœ‘, and the complete continuity of 𝐴, we obtain the following πœ‘ξ€·π‘₯0ξ€Έ+𝐴π‘₯0ξ€Έξ€·π‘₯,𝑦,πœ‚0,𝑦≀liminfπ‘›β†’βˆžπœ‘ξ€·π‘₯𝑛+liminfπ‘›β†’βˆžξ«π΄ξ€·π‘₯𝑛π‘₯,𝑦,πœ‚π‘›,𝑦≀liminfπ‘›β†’βˆžξ€·πœ‘ξ€·π‘₯𝑛+𝐴π‘₯𝑛π‘₯,𝑦,πœ‚π‘›,𝑦=liminfπ‘›β†’βˆžξ€·πœ‘ξ€·π‘₯π‘›ξ€Έβˆ’ξ«π΄ξ€·π‘₯𝑛,𝑦,πœ‚π‘¦,π‘₯𝑛≀limsupπ‘›β†’βˆžξ€·πœ‘ξ€·π‘₯π‘›ξ€Έβˆ’ξ«π΄ξ€·π‘₯𝑛,𝑦,πœ‚π‘¦,π‘₯𝑛≀limsupπ‘›β†’βˆžξ€·π‘“ξ€·π‘₯𝑛,𝑦+πœ‘(𝑦)βˆ’πœ‰π‘¦βˆ’π‘₯𝑛π‘₯≀𝑓0ξ€Έξ€·,𝑦+πœ‘(𝑦)βˆ’πœ‰π‘¦βˆ’π‘₯0ξ€Έ.(3.42) Hence, 𝑓π‘₯0ξ€Έ+𝐴π‘₯,𝑦0ξ€Έξ€·,𝑦,πœ‚π‘¦,π‘₯0ξ€·π‘₯+πœ‘(𝑦)β‰₯πœ‘0ξ€Έξ€·+πœ‰π‘¦βˆ’π‘₯0ξ€Έ,βˆ€π‘¦βˆˆπΆ.(3.43) From Lemma 2.9, we have 𝑓π‘₯0ξ€Έ+𝐴π‘₯,𝑦0,π‘₯0ξ€Έξ€·,πœ‚π‘¦,π‘₯0ξ€·π‘₯+πœ‘(𝑦)β‰₯πœ‘0ξ€Έ,βˆ€π‘¦βˆˆπΆ.(3.44) This shows that π‘₯0∈𝐺(𝑦), and hence 𝐺(𝑦) is closed for each π‘¦βˆˆπΆ. Thus, β‹‚GMEP(𝑓,𝐴,πœ‚,πœ‘)=π‘¦βˆˆπΆπΊ(𝑦) is also closed.
Next, we observe that 𝐺(𝑦) is weakly compact. In fact, since 𝐢 is bounded, closed, and convex, we also have 𝐺(𝑦), which is weakly compact in the weak topology. By Lemma 2.6, we can conclude that β‹‚π‘¦βˆˆπΆπΊ(𝑦)=GMEP(𝑓,𝐴,πœ‚,πœ‘)β‰ βˆ….
Finally, we prove that GMEP(𝑓,𝐴,πœ‚,πœ‘) is convex. In fact, let 𝑒,π‘£βˆˆπΉ(Ξ¦π‘Ÿ), and 𝑧𝑑=𝑑𝑒+(1βˆ’π‘‘)𝑣 for π‘‘βˆˆ(0,1). From (2), we know that ξ«Ξ¦π‘Ÿπ‘’βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·Ξ¦,π½π‘Ÿπ‘§π‘‘βˆ’π‘§π‘‘ξ€Έξ€·Ξ¦βˆ’π½π‘Ÿπ‘’βˆ’π‘’ξ€Έξ¬β‰₯0.(3.45) This yields that ξ«π‘’βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·Ξ¦,π½π‘Ÿπ‘§π‘‘βˆ’π‘§π‘‘ξ€Έξ¬β‰₯0.(3.46) Similarly, we also have ξ«π‘£βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·Ξ¦,π½π‘Ÿπ‘§π‘‘βˆ’π‘§π‘‘ξ€Έξ¬β‰₯0.(3.47) It follows from (3.46) and (3.47) that β€–β€–π‘§π‘‘βˆ’Ξ¦π‘Ÿπ‘§π‘‘β€–β€–2=ξ«π‘§π‘‘βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·π‘§,π½π‘‘βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ«ξ€Έξ¬=π‘‘π‘’βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·π‘§,π½π‘‘βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ«ξ€Έξ¬+(1βˆ’π‘‘)π‘£βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€·π‘§,π½π‘‘βˆ’Ξ¦π‘Ÿπ‘§π‘‘ξ€Έξ¬β‰€0.(3.48) Hence, π‘§π‘‘βˆˆπΉ(Ξ¦π‘Ÿ)=GMEP(𝑓,𝐴,πœ‚,πœ‘) and hence GMEP(𝑓,𝐴,πœ‚,πœ‘) is convex. This completes the proof.

If 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—) smooth and strictly convex, then the following result can be derived as a corollary of Theorem 3.5

Corollary 3.6. Let 𝐸 be a reflexive smooth and strictly convex Banach space, let 𝐢 be a nonempty, bounded, closed, and convex subset of 𝐸, and let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone mapping. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1)–(A4) and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. Let π‘Ÿ>0 and π‘§βˆˆπΆ and define a mapping Ξ¦π‘ŸβˆΆπΈβ†’πΆ as follows: Ξ¦π‘Ÿξ‚†1(π‘₯)=π‘’βˆˆπΆβˆΆπ‘“(𝑒,𝑣)+⟨𝐴(𝑒,𝑒),πœ‚(𝑣,𝑒)⟩+πœ‘(𝑣)+π‘Ÿξ‚‡βŸ¨π‘£βˆ’π‘’,𝐽(π‘’βˆ’π‘₯)⟩β‰₯πœ‘(𝑒),βˆ€π‘£βˆˆπΆ,(3.49)for all π‘₯∈𝐸. Assume that(i)πœ‚(π‘₯,𝑦)+πœ‚(𝑦,π‘₯)=0 for all π‘₯,π‘¦βˆˆπΆ;(ii)for any fixed 𝑒,𝑣,π‘€βˆˆπΆ, the mapping π‘₯β†¦βŸ¨π΄(𝑣,𝑀),πœ‚(π‘₯,𝑒)⟩ is convex and lower semicontinuous; (iii)for each π‘₯∈𝐢,𝐴(π‘₯,β‹…)βˆΆπΆβ†’πΈβˆ— is finite-dimensional continuous;(iv)πœ‰βˆΆπΈβ†’β„› is convex lower semicontinuous;(v)for any π‘₯,π‘¦βˆˆπΆ, πœ‰(π‘₯βˆ’π‘¦)+πœ‰(π‘¦βˆ’π‘₯)β‰₯0;(vi)for any π‘₯,π‘¦βˆˆπΆ, 𝐴(π‘₯,𝑦)=𝐴(𝑦,π‘₯). Then, the following holds:(1)Ξ¦π‘Ÿ is single-valued;(2)βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿπ‘¦,𝐽(Ξ¦π‘Ÿπ‘₯βˆ’π‘₯)βŸ©β‰€βŸ¨Ξ¦π‘Ÿπ‘₯βˆ’Ξ¦π‘Ÿπ‘¦,𝐽(Ξ¦π‘Ÿπ‘¦βˆ’π‘¦)⟩ for all π‘₯,π‘¦βˆˆπΈ;(3)𝐹(Ξ¦π‘Ÿ)=GMEP(𝑓,𝐴,πœ‚,πœ‘);(4)GMEP(𝑓,𝐴,πœ‚,πœ‘) is nonempty, closed, and convex.

4. Strong Convergence Theorems

In this section, we prove a strong convergence theorem by using a hybrid projection algorithm for an asymptotically nonexpansive mapping in a uniformly convex and smooth Banach space.

Theorem 4.1. Let 𝐸 be a real Banach space with the smooth and uniformly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty, bounded, closed, and convex subset of πΈβˆ—βˆ—. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1)–(A4), and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. Let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone and let π‘†βˆΆπΆβ†’πΆ be an asymptotically nonexpansive mapping with a sequence {π‘˜π‘›}βŠ‚[1,∞) such that π‘˜π‘›β†’1 as π‘›β†’βˆž. Assume that Ω∢=𝐹(𝑆)∩GMEP(𝑓,𝐴,πœ‚,πœ‘)β‰ βˆ…. Let {π‘₯𝑛} be a sequence in 𝐢 generated by π‘₯0∈𝐢,𝐷0=𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖𝑒,𝑛β‰₯1,π‘›π‘“ξ€·π‘’βˆˆπΆπ‘ π‘’π‘β„Žπ‘‘β„Žπ‘Žπ‘‘π‘›ξ€Έξ«π΄ξ€·π‘’,𝑦+πœ‘(𝑦)+𝑛,𝑒𝑛,πœ‚π‘¦,𝑒𝑛+1ξ€Έξ¬π‘Ÿπ‘›ξ«π‘¦βˆ’π‘’π‘›ξ€·π‘’,π½π‘›βˆ’π‘₯𝑛𝑒β‰₯πœ‘π‘›ξ€Έπ·,βˆ€π‘¦βˆˆπΆ,𝑛β‰₯0,𝑛=ξ€½π‘§βˆˆπ·π‘›βˆ’1βˆΆξ«π‘’π‘›ξ€·π‘₯βˆ’π‘§,π½π‘›βˆ’π‘’π‘›ξ€Ύπ‘₯β‰₯0,𝑛β‰₯1,𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯0,𝑛β‰₯0,(4.1) where {𝑑𝑛} and {π‘Ÿπ‘›} are real sequences in (0,1) such that limπ‘›β†’βˆžπ‘‘π‘›=0, and liminfπ‘›β†’βˆžπ‘Ÿπ‘›>0. Then {π‘₯𝑛} converges strongly, as π‘›β†’βˆž, to 𝑃Ωπ‘₯0.

Proof. Firstly, we rewrite the (4.1) as follows: π‘₯0∈𝐢,𝐷0=𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖𝐷,𝑛β‰₯0,𝑛=ξ€½π‘§βˆˆπ·π‘›βˆ’1βˆΆβŸ¨Ξ¦π‘Ÿπ‘›π‘₯𝑛π‘₯βˆ’π‘§,π½π‘›βˆ’Ξ¦π‘Ÿπ‘›π‘₯𝑛π‘₯⟩β‰₯0,𝑛β‰₯1,𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯0,𝑛β‰₯0,(4.2) where Ξ¦π‘Ÿ is the mapping defined by Ξ¦π‘Ÿξ‚†1(π‘₯)=π‘§βˆˆπΆβˆΆπ‘“(𝑧,𝑦)+⟨𝐴(𝑧,𝑧),πœ‚(𝑦,𝑧)⟩+πœ‘(𝑦)+π‘Ÿξ‚‡βŸ¨π‘¦βˆ’π‘§,𝐽(π‘§βˆ’π‘₯)⟩β‰₯πœ‘(𝑧),βˆ€π‘¦βˆˆπΆ.(4.3) We first show that the sequence {π‘₯𝑛} is well defined. It is easy to verify that πΆπ‘›βˆ©π·π‘› is closed and convex and Ξ©βŠ‚πΆπ‘› for all 𝑛β‰₯0. Next, we prove that Ξ©βŠ‚πΆπ‘›βˆ©π·π‘›. Since 𝐷0=𝐢, we also have Ξ©βŠ‚πΆ0∩𝐷0. Suppose that Ξ©βŠ‚πΆπ‘˜βˆ’1βˆ©π·π‘˜βˆ’1 for π‘˜β‰₯2. It follows from Theorem 3.5 (2) that ξ«Ξ¦π‘Ÿπ‘˜π‘₯π‘˜βˆ’Ξ¦π‘Ÿπ‘˜ξ€·Ξ¦π‘’,π½π‘Ÿπ‘˜ξ€Έξ€·Ξ¦π‘’βˆ’π‘’βˆ’π½π‘Ÿπ‘˜π‘₯π‘˜βˆ’π‘₯π‘˜ξ€Έξ¬β‰₯0,(4.4) for all π‘’βˆˆΞ©. This implies that ξ«Ξ¦π‘Ÿπ‘˜π‘₯π‘˜ξ€·π‘₯βˆ’π‘’,π½π‘˜βˆ’Ξ¦π‘Ÿπ‘˜π‘₯π‘˜ξ€Έξ¬β‰₯0,(4.5) for all π‘’βˆˆΞ©. Hence Ξ©βŠ‚π·π‘˜. By the mathematical induction, we get that Ξ©βŠ‚πΆπ‘›βˆ©π·π‘› for each 𝑛β‰₯0, and hence {π‘₯𝑛} is welldefined. Put 𝑀=𝑃Ωπ‘₯0. Since Ξ©βŠ‚πΆπ‘›βˆ©π·π‘› and π‘₯𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›, we have β€–β€–π‘₯𝑛+1βˆ’π‘₯0β€–β€–β‰€β€–β€–π‘€βˆ’π‘₯0β€–β€–,𝑛β‰₯0.(4.6) Since π‘₯𝑛+2βˆˆπ·π‘›+1βŠ‚π·π‘› and π‘₯𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯0, we have β€–β€–π‘₯𝑛+1βˆ’π‘₯0‖‖≀‖‖π‘₯𝑛+2βˆ’π‘₯0β€–β€–.(4.7) Since {β€–π‘₯π‘›βˆ’π‘₯0β€–} is bounded, we have limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π‘₯0β€–=𝑑 for some a constant 𝑑. Moreover, by the convexity of 𝐷𝑛, we also have (1/2)(π‘₯𝑛+1+π‘₯𝑛+2)βˆˆπ·π‘› and hence β€–β€–π‘₯0βˆ’π‘₯𝑛+1‖‖≀‖‖‖π‘₯0βˆ’π‘₯𝑛+1+π‘₯𝑛+22‖‖‖≀12ξ€·β€–β€–π‘₯0βˆ’π‘₯𝑛+1β€–β€–+β€–β€–π‘₯0βˆ’π‘₯𝑛+2β€–β€–ξ€Έ.(4.8) This implies that limπ‘›β†’βˆžβ€–β€–β€–12ξ€·π‘₯0βˆ’π‘₯𝑛+1ξ€Έ+12ξ€·π‘₯0βˆ’π‘₯𝑛+2ξ€Έβ€–β€–β€–=limπ‘›β†’βˆžβ€–β€–β€–π‘₯0βˆ’π‘₯𝑛+1+π‘₯𝑛+22β€–β€–β€–=𝑑.(4.9) By Lemma 2.2, we have limπ‘›β†’βˆžβ€–β€–π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–=0.(4.10) Next, we show that limπ‘›β†’βˆžβ€–β€–π‘₯π‘›βˆ’π‘†π‘₯𝑛‖‖=0.(4.11) To obtain (4.11), we need to show that limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π‘†π‘›βˆ’π‘˜π‘₯𝑛‖=0,forallπ‘˜βˆˆπ’©.
Fix π‘˜βˆˆπ’© and put π‘š=π‘›βˆ’π‘˜. Since π‘₯𝑛=π‘ƒπΆπ‘›βˆ’1βˆ©π·π‘›βˆ’1π‘₯, we have π‘₯π‘›βˆˆπΆπ‘›βˆ’1βŠ†β‹―βŠ†πΆπ‘š. Since π‘‘π‘š>0, there exist 𝑦1,…,π‘¦π‘βˆˆπΆ and nonnegative numbers πœ†1,…,πœ†π‘ with πœ†1+β‹―+πœ†π‘=1 such that β€–β€–β€–β€–π‘₯π‘›βˆ’π‘ξ“π‘–=1πœ†π‘–π‘¦π‘–β€–β€–β€–β€–<π‘‘π‘š,(4.12) and β€–π‘¦π‘–βˆ’π‘†π‘šπ‘¦π‘–β€–β‰€π‘‘π‘šβ€–π‘₯π‘šβˆ’π‘†π‘šπ‘₯π‘šβ€– for all π‘–βˆˆ{1,…,𝑁}. Put 𝑀=supπ‘₯βˆˆπΆβ€–π‘₯β€–,𝑒=𝑃𝐹(𝑆)π‘₯ and π‘Ÿ0=sup𝑛β‰₯1(1+π‘˜π‘›)β€–π‘₯π‘›βˆ’π‘’β€–. Since 𝐢 and {π‘˜π‘š} are bounded, (4.12) implies β€–β€–β€–β€–π‘₯π‘›βˆ’1π‘˜π‘šπ‘ξ“π‘–=1πœ†π‘–π‘¦π‘–β€–β€–β€–β€–β‰€ξ‚΅11βˆ’π‘˜π‘šξ‚Ά1β€–π‘₯β€–+π‘˜π‘šβ€–β€–β€–β€–π‘₯π‘›βˆ’π‘ξ“π‘–=1πœ†π‘–π‘¦π‘–β€–β€–β€–β€–β‰€ξ‚΅11βˆ’π‘˜π‘šξ‚Άπ‘€+π‘‘π‘š,(4.13) and β€–π‘¦π‘–βˆ’π‘†π‘šπ‘¦π‘–β€–β‰€π‘‘π‘šβ€–π‘₯π‘šβˆ’π‘†π‘šπ‘₯π‘šβ€–β‰€π‘‘π‘š(1+π‘˜π‘š)β€–π‘₯π‘šβˆ’π‘’β€–β‰€π‘Ÿ0π‘‘π‘š for all π‘–βˆˆ{1,…,𝑁}. Therefore, β€–β€–β€–π‘¦π‘–βˆ’1π‘˜π‘šπ‘†π‘šπ‘¦π‘–β€–β€–β€–β‰€ξ‚΅11βˆ’π‘˜π‘šξ‚Άπ‘€+π‘Ÿ0π‘‘π‘š,(4.14) for all π‘–βˆˆ{1,…,𝑁}. Moreover, asymptotically nonexpansiveness of 𝑆 and (4.6) give that β€–β€–β€–β€–1π‘˜π‘šπ‘†π‘šξƒ©π‘ξ“π‘–=1πœ†π‘–π‘¦π‘–ξƒͺβˆ’π‘†π‘šπ‘₯𝑛‖‖‖‖≀11βˆ’π‘˜π‘šξ‚Άπ‘€+π‘‘π‘š.(4.15) It follows from Theorem 2.4, (4.13)–(4.15) that β€–β€–π‘₯π‘›βˆ’π‘†π‘šπ‘₯𝑛‖‖≀‖‖‖‖π‘₯π‘›βˆ’1π‘˜π‘šπ‘ξ“π‘–=1πœ†π‘–π‘¦π‘–β€–β€–β€–β€–+1π‘˜π‘šβ€–β€–β€–β€–π‘ξ“π‘–=1πœ†π‘–ξ€·π‘¦π‘–βˆ’π‘†π‘šπ‘¦π‘–ξ€Έβ€–β€–β€–β€–+1π‘˜π‘šβ€–β€–β€–β€–π‘ξ“π‘–=1πœ†π‘–π‘†π‘šπ‘¦π‘–βˆ’π‘†π‘šξƒ©π‘ξ“π‘–=1πœ†π‘–π‘¦π‘–ξƒͺβ€–β€–β€–β€–+β€–β€–β€–β€–1π‘˜π‘šπ‘†π‘šξƒ©π‘ξ“π‘–=1πœ†π‘–π‘¦π‘–ξƒͺβˆ’π‘†π‘šπ‘₯𝑛‖‖‖‖1≀21βˆ’π‘˜π‘šξ‚Άπ‘€+2π‘‘π‘š+π‘Ÿ0π‘‘π‘šπ‘˜π‘š+π›Ύβˆ’1ξ‚΅max1β‰€π‘–β‰€π‘—β‰€π‘ξ‚΅β€–β€–β€–π‘¦π‘–βˆ’π‘¦π‘—1β€–βˆ’π‘˜π‘šβ€–π‘†π‘šπ‘¦π‘–βˆ’π‘†π‘šπ‘¦π‘—β€–β€–β€–ξ‚΅1≀21βˆ’π‘˜π‘šξ‚Άπ‘€+2π‘‘π‘š+π‘Ÿ0π‘‘π‘šπ‘˜π‘š+π›Ύβˆ’1ξ‚΅max1β‰€π‘–β‰€π‘—β‰€π‘ξ‚΅β€–β€–β€–π‘¦π‘–βˆ’1π‘˜π‘šπ‘†π‘šπ‘¦π‘–β€–β€–β€–+β€–β€–β€–π‘¦π‘—βˆ’1π‘˜π‘šπ‘†π‘šπ‘¦π‘—β€–β€–β€–ξ‚΅1≀21βˆ’π‘˜π‘šξ‚Άπ‘€+2π‘‘π‘š+π‘Ÿ0π‘‘π‘šπ‘˜π‘š+π›Ύβˆ’1ξ‚΅2ξ‚΅11βˆ’π‘˜π‘šξ‚Άπ‘€+2π‘Ÿ0π‘‘π‘šξ‚Ά.(4.16) Since limπ‘›β†’βˆžπ‘˜π‘›=1 and limπ‘›β†’βˆžπ‘‘π‘›=0, it follows from the last inequality that limπ‘›β†’βˆžβ€–π‘₯π‘›βˆ’π‘†π‘šπ‘₯𝑛‖=0. We have that β€–β€–π‘₯π‘›βˆ’π‘†π‘₯𝑛‖‖=β€–β€–π‘₯π‘›βˆ’π‘†π‘›βˆ’1π‘₯𝑛‖‖+β€–β€–π‘†π‘›βˆ’1π‘₯π‘›βˆ’π‘†π‘₯𝑛‖‖≀‖‖π‘₯π‘›βˆ’π‘†π‘›βˆ’1π‘₯𝑛‖‖+π‘˜1β€–β€–π‘†π‘›βˆ’2π‘₯π‘›βˆ’π‘₯π‘›β€–β€–βŸΆ0asπ‘›βŸΆβˆž.(4.17) Since {π‘₯𝑛} is bounded, there exists a subsequence {π‘₯𝑛𝑖} of {π‘₯𝑛} such that π‘₯𝑛𝑖⇀̃π‘₯∈𝐢. Therefore, we obtain Μƒπ‘₯∈𝐹(𝑆). Next, we show that Μƒπ‘₯∈GMEP(𝑓,𝐴,πœ‚,πœ‘). By the construction of 𝐷𝑛, we see from Theorem 2.1 that Ξ¦π‘Ÿπ‘›π‘₯𝑛=𝑃𝐷𝑛π‘₯𝑛. Since π‘₯𝑛+1βˆˆπ·π‘›, we get β€–β€–π‘₯π‘›βˆ’Ξ¦π‘Ÿπ‘›π‘₯𝑛‖‖≀‖‖π‘₯π‘›βˆ’π‘₯𝑛+1β€–β€–βŸΆ0.(4.18) From (C2), we also have 1π‘Ÿπ‘›β€–β€–π½ξ€·π‘₯π‘›βˆ’Ξ¦π‘Ÿπ‘›π‘₯𝑛‖‖=1π‘Ÿπ‘›β€–β€–π‘₯π‘›βˆ’Ξ¦π‘Ÿπ‘›π‘₯π‘›β€–β€–βŸΆ0,(4.19) as π‘›β†’βˆž. By (4.19), we also have Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖⇀̃π‘₯. By the definition of Ξ¦π‘Ÿπ‘›π‘–, for each π‘¦βˆˆπΆ, we obtain π‘“ξ‚€Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖+𝐴Φ,π‘¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖,Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖,πœ‚π‘¦,Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖+1+πœ‘(𝑦)π‘Ÿπ‘›π‘–ξ‚¬π‘¦βˆ’Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖Φ,π½π‘Ÿπ‘›π‘–π‘₯π‘›π‘–βˆ’π‘₯𝑛𝑖Φβ‰₯πœ‘π‘Ÿπ‘›π‘–π‘₯𝑛𝑖.(4.20) By (A3), (4.19), (ii), the weakly lower semicontinuity of πœ‘ and complete continuity of 𝐴 we have πœ‘(Μƒπ‘₯)≀liminfπ‘–β†’βˆžπœ‘ξ‚€Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖≀liminfπ‘–β†’βˆžπ‘“ξ‚€Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖,𝑦+liminfπ‘–β†’βˆžξ‚¬π΄ξ‚€Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖,Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖,πœ‚π‘¦,Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖+πœ‘(𝑦)+liminfπ‘–β†’βˆž1π‘Ÿπ‘›π‘–ξ‚¬π‘¦βˆ’Ξ¦π‘Ÿπ‘›π‘–π‘₯𝑛𝑖Φ,π½π‘Ÿπ‘›π‘–π‘₯π‘›π‘–βˆ’π‘₯𝑛𝑖≀𝑓(Μƒπ‘₯,𝑦)+πœ‘(𝑦)+⟨𝐴(Μƒπ‘₯,Μƒπ‘₯),πœ‚(𝑦,Μƒπ‘₯)⟩.(4.21) Hence, 𝑓(Μƒπ‘₯,𝑦)+πœ‘(𝑦)+⟨𝐴(Μƒπ‘₯,Μƒπ‘₯),πœ‚(𝑦,Μƒπ‘₯)⟩β‰₯πœ‘(Μƒπ‘₯).(4.22) This shows that Μƒπ‘₯∈GMEP(𝑓,𝐴,πœ‚,πœ‘), and hence Μƒπ‘₯∈Ω∢=𝐹(𝑆)∩GMEP(𝑓,𝐴,πœ‚,πœ‘).
Finally, we show that π‘₯𝑛→𝑀 as π‘›β†’βˆž, where π‘€βˆΆ=𝑃Ωπ‘₯0. By the weakly lower semicontinuity of the norm, it follows from (4.6) that β€–β€–π‘₯0‖‖≀‖‖π‘₯βˆ’π‘€0β€–β€–βˆ’Μƒπ‘₯≀liminfπ‘–β†’βˆžβ€–β€–π‘₯0βˆ’π‘₯𝑛𝑖‖‖≀limsupπ‘–β†’βˆžβ€–β€–π‘₯0βˆ’π‘₯𝑛𝑖‖‖≀‖‖π‘₯0β€–β€–βˆ’π‘€.(4.23) This shows that limπ‘–β†’βˆžβ€–β€–π‘₯0βˆ’π‘₯𝑛𝑖‖‖=β€–β€–π‘₯0β€–β€–=β€–β€–π‘₯βˆ’π‘€0β€–β€–βˆ’Μƒπ‘₯,(4.24) and Μƒπ‘₯=𝑀. Since πΈβˆ—βˆ— is uniformly convex, we obtain that π‘₯0βˆ’π‘₯𝑛𝑖→π‘₯0βˆ’π‘€. It follows that π‘₯𝑛𝑖→𝑀. So, we have π‘₯𝑛→𝑀 as π‘›β†’βˆž. This completes the proof.

If 𝑆 is a nonexpansive mapping in Theorem 4.1, then we obtain the following result concerning the problem of finding a common element of GMEP(𝑓,𝐴,πœ‚,πœ‘) and the fixed point set of a nonexpansive mapping in a Banach space setting.

Theorem 4.2. Let 𝐸 be a real Banach space with the smooth and uniformly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty, bounded, closed, and convex subset of πΈβˆ—βˆ—. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1)–(A4) and let πœ‘ be a lower semicontinuous and convex function from 𝐢 to β„›. Let π΄βˆΆπΆΓ—πΆβ†’πΈβˆ— be a relaxed πœ‚-πœ‰ semi-monotone and let π‘†βˆΆπΆβ†’πΆ be a nonexpansive mapping such that Ω∢=𝐹(𝑆)∩GMEP(𝑓,𝐴,πœ‚,πœ‘)β‰ βˆ…. Let {π‘₯𝑛} be a sequence in 𝐢 generated by π‘₯0∈𝐢,𝐷0=𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘₯𝑛‖‖𝑒,𝑛β‰₯1,π‘›π‘“ξ€·π‘’βˆˆπΆsuchthat𝑛𝐴𝑒,𝑦+πœ‘(𝑦)+𝑛,𝑒𝑛,πœ‚π‘¦,𝑒𝑛+1ξ€Έξ¬π‘Ÿπ‘›ξ«π‘¦βˆ’π‘’π‘›ξ€·π‘’,π½π‘›βˆ’π‘₯𝑛𝑒β‰₯πœ‘π‘›ξ€Έπ·,βˆ€π‘¦βˆˆπΆ,𝑛β‰₯0,𝑛=ξ€½π‘§βˆˆπ·π‘›βˆ’1βˆΆξ«π‘’π‘›ξ€·π‘₯βˆ’π‘§,π½π‘›βˆ’π‘’π‘›ξ€Ύπ‘₯β‰₯0,𝑛β‰₯1,𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯0,𝑛β‰₯0,(4.25) where {𝑑𝑛} and {π‘Ÿπ‘›} are real sequences in (0,1) such that limπ‘›β†’βˆžπ‘‘π‘›=0, and liminfπ‘›β†’βˆžπ‘Ÿπ‘›>0. Then, {π‘₯𝑛} converges strongly, as π‘›β†’βˆž, to 𝑃Ωπ‘₯0.

Putting 𝐴≑0 and πœ‘β‰‘0 in Theorem 4.1, then we have the following result in a Banach space.

Theorem 4.3. Let 𝐸 be a real Banach space with the smooth and uniformly convex second dual space πΈβˆ—βˆ— and let 𝐢 be a nonempty, bounded, closed, and convex subset of πΈβˆ—βˆ—. Let 𝑓 be a bifunction from 𝐢×𝐢 to β„› satisfying (A1)–(A4). Let π‘†βˆΆπΆβ†’πΆ be an asymptotically nonexpansive mapping with a sequence {π‘˜π‘›}βŠ‚[1,∞) such that Ω∢=𝐹(𝑆)∩EP(𝑓)β‰ βˆ…. Let {π‘₯𝑛} be a sequence in 𝐢 generated by π‘₯0∈𝐢,𝐷0=𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖𝑒,𝑛β‰₯1,π‘›π‘“ξ€·π‘’βˆˆπΆsuchthat𝑛+1,π‘¦π‘Ÿπ‘›ξ«π‘¦βˆ’π‘’π‘›ξ€·π‘’,π½π‘›βˆ’π‘₯𝑛𝐷β‰₯0,βˆ€π‘¦βˆˆπΆ,𝑛β‰₯0,𝑛=ξ€½π‘§βˆˆπ·π‘›βˆ’1βˆΆξ«π‘’π‘›ξ€·π‘₯βˆ’π‘§,π½π‘›βˆ’π‘’π‘›ξ€Ύπ‘₯β‰₯0,𝑛β‰₯1,𝑛+1=π‘ƒπΆπ‘›βˆ©π·π‘›π‘₯0,𝑛β‰₯0,(4.26) where {𝑑𝑛} and {π‘Ÿπ‘›} are real sequences in (0,1) such that limπ‘›β†’βˆžπ‘‘π‘›=0, and liminfπ‘›β†’βˆžπ‘Ÿπ‘›>0. Then, {π‘₯𝑛} converges strongly, as π‘›β†’βˆž, to 𝑃Ωπ‘₯0.

Putting 𝑓≑0,𝐴≑0,πœ‘β‰‘0, and π‘Ÿπ‘›β‰‘1 in Theorem 4.1 and applying Theorem 2.1, we get π‘₯𝑛=𝑒𝑛. Then, we have the following new approximation method concerning the problem of finding a fixed of an asymptotically nonexpansive mapping in a Banach space.

Theorem 4.4. Let 𝐸 be a real Banach space with the smooth and uniformly convex second dual space πΈβˆ—βˆ—, let 𝐢 be a nonempty, bounded, closed, and convex subset of πΈβˆ—βˆ—. Let π‘†βˆΆπΆβ†’πΆ be an asymptotically nonexpansive mapping with a sequence {π‘˜π‘›}βŠ‚[1,∞) such that 𝐹(𝑆)β‰ βˆ…. Let {π‘₯𝑛} be a sequence in 𝐢 generated by π‘₯0∈𝐢,𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖π‘₯,𝑛β‰₯1,𝑛+1=𝑃𝐢𝑛π‘₯0,𝑛β‰₯0,(4.27) where {𝑑𝑛} and {π‘Ÿπ‘›} is a real sequence in (0,1) such that limπ‘›β†’βˆžπ‘‘π‘›=0. Then {π‘₯𝑛} converges strongly, as π‘›β†’βˆž, to 𝑃𝐹(𝑆)π‘₯0.

If 𝐸 is reflexive (i.e., 𝐸=πΈβˆ—βˆ—) smooth and uniformly convex, then the following results can be derived as a corollary of Theorem 4.4.

Corollary 4.5. Let 𝐸 be a reflexive smooth and uniformly convex real Banach space, let 𝐢 be a nonempty, bounded, closed, and convex subset of 𝐸. Let π‘†βˆΆπΆβ†’πΆ be an asymptotically nonexpansive mapping with a sequence {π‘˜π‘›}βŠ‚[1,∞] such that 𝐹(𝑆)β‰ βˆ…. Let {π‘₯𝑛} be a sequence in 𝐢 generated by π‘₯0∈𝐢,𝐢0𝐢=𝐢,𝑛=ξ€½coπ‘§βˆˆπΆπ‘›βˆ’1βˆΆβ€–π‘§βˆ’π‘†π‘›π‘§β€–β‰€π‘‘π‘›β€–β€–π‘₯π‘›βˆ’π‘†π‘›π‘₯𝑛‖‖π‘₯,𝑛β‰₯1,𝑛+1=𝑃𝐢𝑛π‘₯0,𝑛β‰₯0,(4.28) where {𝑑𝑛} and {π‘Ÿπ‘›} is a real sequence in (0,1) such that limπ‘›β†’βˆžπ‘‘π‘›=0. Then, {π‘₯𝑛} converges strongly, as π‘›β†’βˆž, to 𝑃𝐹(𝑆)π‘₯0.

Acknowledgment

The first author is supported by the β€œCentre of Excellence in Mathematics” under the Commission on Higher Education, Ministry of Education, Thailand.