Abstract

We consider the global existence of strong solution 𝑢, corresponding to a class of fully nonlinear wave equations with strongly damped terms 𝑢𝑡𝑡𝑘Δ𝑢𝑡=𝑓(𝑥,Δ𝑢)+𝑔(𝑥,𝑢,𝐷𝑢,𝐷2𝑢) in a bounded and smooth domain Ω in 𝑅𝑛, where 𝑓(𝑥,Δ𝑢) is a given monotone in Δ𝑢 nonlinearity satisfying some dissipativity and growth restrictions and 𝑔(𝑥,𝑢,𝐷𝑢,𝐷2𝑢) is in a sense subordinated to 𝑓(𝑥,Δ𝑢). By using spatial sequence techniques, the Galerkin approximation method, and some monotonicity arguments, we obtained the global existence of a solution 𝑢𝐿loc((0,),𝑊2,𝑝(Ω)𝑊01,𝑝(Ω)).

1. Introduction

We are concerned with the following mixed problem for a class of fully nonlinear wave equations with strongly damped terms in a bounded and 𝐶 domain Ω𝑅𝑛: 𝑢𝑡𝑡𝑘Δ𝑢𝑡=𝑓(𝑥,Δ𝑢)+𝑔𝑥,𝑢,𝐷𝑢,𝐷2𝑢[,in0,)×Ω,𝑢(0,𝑥)=𝜑,𝑢𝑡[(0,𝑥)=𝜓,inΩ,𝑢(𝑡,𝑥)=0,on0,)×𝜕Ω,(1.1) where 𝑢𝑡=𝜕𝑢𝜕𝑡,𝑢𝑡𝑡=𝜕2𝑢𝜕𝑡2,Δ=𝑛𝑖=1𝜕2𝜕𝑥2𝑖𝜕,𝐷=𝜕𝑥1𝜕,,𝜕𝑥𝑛,𝐷2=𝜕2𝜕𝑥𝛼11𝜕𝑥𝛼𝑛𝑛,𝛼1++𝛼𝑛𝑥=2,𝑥=1,,𝑥𝑛,𝑘>0.(1.2) Equations of type (1.1) are a class essential nonlinear wave equations describing the speed of strain waves in a viscoelastic configuration (e.g., a bar if the space dimension 𝑁=1 and a plate if 𝑁=2) made up of the material of the rate type [1, 2]. They can also be seen as field equations governing the longitudinal motion of a viscoelastic bar obeying the nonlinear Voigt model [3]. Concerning damped cases, there is much to the global existence of solutions for the problem: 𝑢𝑡𝑡+𝑢𝑡𝑢𝑥𝑥[𝑢=𝑓(𝑢),in0,)×Ω,(0,𝑥)=𝑢0(𝑥),𝑢𝑡(0,𝑥)=𝑢1(𝑥),inΩ;(1.3) they discussed the global existence of weak solutions and regularity in 𝑅1 and 𝑅𝑛 [48]. On the other hand, Ikehata and Inoue [9] considered the global existence of weak solutions for two-dimensional problem in an exterior domain Ω𝑅2 with a compact smooth boundary 𝜕Ω for a semilinear strongly damped wave equation with a power-type nonlinearity |𝑢|𝑞 and 𝑞>6: 𝑢𝑡𝑡(𝑡,𝑥)Δ𝑢(𝑡,𝑥)Δ𝑢𝑡||||(𝑡,𝑥)=𝑢(𝑡,𝑥)𝑞[in0,)×Ω,𝑢(0,𝑥)=𝑢0(𝑥),𝑢𝑡(0,𝑥)=𝑢1[(𝑥)inΩ,𝑢(𝑡,𝑥)=0,on0,)×𝜕Ω.(1.4) Cholewa and Dlotko [10] discussed the global solvability and asymptotic behavior of solutions to semilinear Cauchy problem for strongly damped wave equation in the whole of 𝑅𝑛. They assume the nonlinear term 𝑓 grows like |𝑢|𝑞 and 𝑞<(𝑛+2)/(𝑛2) if 𝑛3. Similar problems attracted attention of the researchers for many years [1113]. Especially, Yang [14] studied the global existence of weak solutions to the more general equation including (1.4), but he did not discuss the regularity of weak solution for the quasilinear wave equation. We are interested in discussing the global existence and regularity of weak solutions for strongly damped wave equation with the dissipative terms 𝑔 containing 𝐷𝑢 and the nonlinear terms 𝑓 containing Δ𝑢. Here 𝑓(𝑥,Δ𝑢) is a given monotone in Δ𝑢 nonlinearity satisfying some dissipativity and growth restrictions and 𝑔(𝑥,𝑢,𝐷𝑢,𝐷2𝑢) is in a sense subordinated to 𝑓(𝑥,Δ𝑢).

In [15], we have investigated the existence of global solutions to a class of nonlinear damped wave operator equations. In this paper, our first aim is to study the global existence of strong solutions to the more general equation including (1.4), which is the motivation that we establish our abstract strongly damped wave equation model with. The second aim is to deal with the global existence of strong solutions to a class of fully nonlinear wave equations with strongly damped terms under some weakly growing conditions.

This paper is organized as follows:(i)in Section 2, we recall some preliminary tools and definitions;(ii)in Section 3, we put forward our abstract strongly damped wave equation model and proof the global existence of strong solution of it;(iii)in Section 4, we provide the proof of the main results about the mixed problem (1.1).

2. Preliminaries

We introduce two spatial sequences: 𝑋𝐻3𝑋2𝑋1𝑋𝐻,2𝐻2𝐻1𝐻,(2.1) where 𝐻, 𝐻1, 𝐻2, and 𝐻3 are Hilbert spaces, 𝑋 is a linear space, and 𝑋1,𝑋2 are Banach spaces.

All embeddings of (2.1) are dense. Let 𝐿𝑋𝑋1beone-for-onedenselinearoperator,𝐿𝑢,𝑣𝐻=𝑢,𝑣𝐻1,𝑢,𝑣𝑋.(2.2)

Furthermore, 𝐿 has eigenvectors {𝑒𝑘} satisfying 𝐿𝑒𝑘=𝜆𝑘𝑒𝑘,(𝑘=1,2,),(2.3) and {𝑒𝑘} constitutes common orthogonal basis of 𝐻 and 𝐻3.

We consider the following abstract wave equation model: 𝑑2𝑢𝑑𝑡2𝑑+𝑘𝑑𝑡𝑢=𝐺(𝑢),𝑘>0,𝑢(0)=𝜑,𝑢𝑡(0)=𝜓,(2.4) where 𝐺𝑋2×𝑅+𝑋1 is a map, 𝑅+=[0,), and 𝑋2𝑋1 is a bounded linear operator, satisfying 𝑢,𝐿𝑣𝐻=𝑢,𝑣𝐻2,𝑢,𝑣𝑋2.(2.5)

Definition 2.1. We say that 𝑢𝑊1,((0,𝑇),𝐻1)𝐿((0,𝑇),𝑋2) is a global weak solution of the (2.4) provided for (𝜑,𝜓)𝑋2×𝐻1𝑢𝑡,𝑣𝐻+𝑘𝑢,𝑣𝐻=𝑡0𝐺(𝑢),𝑣𝑑𝜏+𝜓,𝑣𝐻+𝑘𝜑,𝑣𝐻,(2.6) for each 𝑣𝑋1 and 0𝑡𝑇<.

Definition 2.2. Let 𝑢𝑛, 𝑢0𝐿𝑝((0,𝑇),𝑋2). We say that 𝑢𝑛𝑢0 in 𝐿𝑝((0,𝑇),𝑋2) is uniformly weakly convergent if {𝑢𝑛}𝐿((0,𝑇),𝐻) is bounded, and 𝑢𝑛𝑢0,in𝐿𝑝(0,𝑇),𝑋2,lim𝑛𝑇0||𝑢𝑛𝑢0,𝑣𝐻||2𝑑𝑡=0,𝑣𝐻.(2.7)

Lemma 2.3 (see [16]). Let {𝑢𝑛}𝐿𝑝((0,𝑇),𝑊𝑚,𝑝(Ω))(𝑚1) be bounded sequences and {𝑢𝑛} uniformly weakly convergent to 𝑢0𝐿𝑝((0,𝑇),𝑊𝑚,𝑝(Ω)). Then, for each |𝛼|𝑚1, it follows that 𝐷𝛼𝑢𝑛𝐷𝛼𝑢0,in𝐿2((0,𝑇)×Ω).(2.8)

Lemma 2.4 (see [17]). Let Ω𝑅𝑛 be an open set and 𝑓Ω×𝑅𝑁𝑅1 satisfy Caratheodory condition and ||||𝑓(𝑥,𝜉)𝐶𝑁𝑖=1||𝜉𝑖||𝑝𝑖/𝑝+𝑏(𝑥).(2.9) If {𝑢𝑖𝑘}𝐿𝑝𝑖(Ω)(1𝑖𝑁) is bounded and 𝑢𝑖𝑘 convergent to 𝑢𝑖 in Ω0 for all bounded Ω0Ω, then for each 𝑣𝐿𝑝(Ω), the following equality holds lim𝑘Ω𝑓𝑥,𝑢1𝑘,,𝑢𝑁𝑘𝑣𝑑𝑥=Ω𝑓𝑥,𝑢1,,𝑢𝑁𝑣𝑑𝑥.(2.10)

3. Model Results

Let 𝐺=𝐴+𝐵𝑋2×𝑅+𝑋1. Assume(A1) there is a 𝐶1 functional 𝐹𝑋2𝑅1 such that 𝐴𝑢,𝐿𝑣=𝐷𝐹(𝑢),𝑣,𝑢,𝑣𝑋;(3.1)(A2) functional 𝐹𝑋2𝑅1 is coercive, that is, 𝐹(𝑢),𝑢𝑋2;(3.2)(A3)𝐵 satisfies ||||𝐵𝑢,𝐿𝑣𝐶1𝑘𝐹(𝑢)+2𝑣2𝐻1+𝐶2,𝑢,𝑣𝑋,(3.3)

for 𝑔𝐿1loc(0,).

Theorem 3.1. Set 𝐺𝑋2×𝑅+𝑋1, for each (𝜑,𝜓)𝑋2×𝐻1, then the following assertions hold.(1)If 𝐺=𝐴 satisfies (A1) and (A2), then (2.4) has a globally weak solution 𝑢𝑊1,(0,),𝐻1𝑊1,2(0,),𝐻2𝐿(0,),𝑋2.(3.4)(2)If 𝐺=𝐴+𝐵 satisfies (A1)–(A3), then (2.4) has a global weak solution 𝑢𝑊1,loc(0,),𝐻1𝑊1,2loc(0,),𝐻2𝐿loc(0,),𝑋2.(3.5)(3)Furthermore, if 𝑋2𝑋1 is symmetric sectorial operator, that is, 𝑢,𝑣=𝑢,𝑣, and 𝐺=𝐴+𝐵 satisfies ||||𝐺𝑢,𝑣𝐶11𝐹(𝑢)+2𝑣2𝐻+𝐶2,(3.6)then 𝑢𝑊2,2loc((0,),𝐻).

Proof. Let {𝑒𝑘}𝑋 be a common orthogonal basis of 𝐻 and 𝐻3, satisfying (2.3). Set 𝑋𝑛=𝑛𝑖=1𝛼𝑖𝑒𝑖𝛼𝑖𝑅1,𝑋𝑛=𝑛𝑗=1𝛽𝑗(𝑡)𝑒𝑗𝛽𝑗𝐶2[.0,)(3.7) Clearly, 𝐿𝑋𝑛=𝑋𝑛, 𝐿𝑋𝑛=𝑋𝑛.
By using Galerkin method, there exits 𝑢𝑛𝐶2([0,),𝑋𝑛) satisfying 𝑑𝑢𝑛𝑑𝑡,𝑣𝐻+𝑘𝑢𝑛,𝑣𝐻=𝑡0𝐺𝑢𝑛,𝑣𝑑𝜏+𝜓𝑛,𝑣𝐻+𝑘𝜑𝑛,𝑣𝐻,𝑢𝑛(0)=𝜑𝑛,𝑢𝑛(0)=𝜓𝑛,(3.8) for 𝑣𝑋𝑛, and 𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑣𝐻+𝑘𝑑𝑢𝑛𝑑𝑡,𝑣𝐻𝑑𝜏=𝑡0𝐺𝑢𝑛,𝑣𝑑𝜏(3.9) for 𝑋𝑣𝑛.
Firstly, we consider 𝐺=𝐴. Let 𝑣=(𝑑/𝑑𝑡)𝐿𝑢𝑛 in (3.9). Taking into account (2.2) and (3.1), it follows that 0=𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑑𝑑𝑡𝐿𝑢𝑛+𝑘𝑑𝑢𝑛,𝑑𝑑𝑡𝑑𝑡𝐿𝑢𝑛𝐻𝑑𝜏𝑡0𝐴𝑢𝑛,𝑑𝑑𝑡𝐿𝑢𝑛𝑑𝜏,0=𝑡012𝑑𝑑𝑡𝑑𝑢𝑛,𝑑𝑡𝑑𝑢𝑛𝑑𝑡𝐻1+𝑘𝑑𝑢𝑛,𝑑𝑡𝑑𝑢𝑛𝑑𝑡𝐻2+𝑢𝐷𝐹𝑛,𝑑𝑢𝑛=1𝑑𝑡𝑑𝜏2𝑑𝑢𝑛𝑑𝑡2𝐻112𝜓𝑛2𝐻1+𝑘𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻2𝑢𝑑𝜏+𝐹𝑛𝜑𝐹𝑛.(3.10)
We get 12𝑑𝑢𝑛𝑑𝑡2𝐻1+𝑘𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻2𝑢𝑑𝜏+𝐹𝑛𝜑=𝐹𝑛+12𝜓𝑛2𝐻1.(3.11)
Let 𝜑𝐻3. From (2.1) and (2.2), it is known that {𝑒𝑛} are orthogonal basis of 𝐻1. We find that 𝜑𝑛𝜑 in 𝐻3, and 𝜓𝑛𝜓 in 𝐻1. Since 𝐻3𝑋2 is imbedding, it follows that 𝜑𝑛𝜑,in𝑋2,𝜓𝑛𝜓,in𝐻1.(3.12)
From (3.2), (3.11), and (3.12), we obtain that, 𝑢𝑛𝑊1,loc(0,),𝐻1𝑊1,2loc(0,),𝐻2𝐿loc(0,),𝑋2isbounded.(3.13)
Let 𝑢𝑛𝑢0,in𝑊1,loc(0,),𝐻1𝐿loc(0,),𝑋2,𝑢𝑛𝑢0,in𝑊1,2loc(0,),𝐻2,(3.14) which implies that 𝑢𝑛𝑢0 in 𝑊1,2loc((0,),𝐻) is uniformly weakly convergent from that 𝐻2𝐻 is compact imbedding.
If we have the following equality: lim𝑛𝑡0||𝐺𝑢𝑛𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0||𝑘𝑑𝜏+2𝑢𝑛𝑢02𝐻2=0,(3.15) then 𝑢0 is a weak solution of (2.4) in view of (3.8), (3.14).
We will show (3.15) as follows. It follows that from (2.5), 𝑡0𝑑𝑑𝑡𝑢𝑛𝑑𝑑𝑡𝑢0,𝐿𝑢𝑛𝐿𝑢0𝐻1𝑑𝜏=2𝑡0𝑑𝑑𝑡𝑢𝑛𝑢0,𝑢𝑛𝑢0𝐻2=1𝑑𝜏2𝑢𝑛(𝑡)𝑢0(𝑡)2𝐻212𝜑𝑛𝜑2𝐻2.(3.16)
Taking into account (2.2), (2.5), and (3.9), we get that 𝑡0𝐺𝑢𝑛𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0𝑘𝑑𝜏+2𝑢𝑛𝑢02𝐻2=𝑡0𝐺𝑢0𝐺𝑢𝑛,𝐿𝑢𝑛𝐿𝑢0𝑑+𝑘𝑑𝑡𝑢𝑛𝑑𝑑𝑡𝑢0,𝐿𝑢𝑛𝐿𝑢0𝐻𝑘𝑑𝜏+2𝜑𝑛𝜑2𝐻2=𝑡0𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0+𝐺𝑢𝑛,𝐿𝑢0𝐺𝑢𝑛,𝐿𝑢𝑛𝑘𝑑𝑢𝑛𝑑𝑡,𝑢0𝐻2𝑘𝑑𝑢0𝑑𝑡,𝑢𝑛𝑢0𝐻2𝑑+𝑘𝑑𝑡𝑢𝑛,𝐿𝑢𝑛𝐻𝑘𝑑𝜏+2𝜑𝑛𝜑2𝐻2=𝑡0𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0+𝐺𝑢𝑛,𝐿𝑢0𝑘𝑑𝑢𝑛𝑑𝑡,𝑢0𝐻2𝑘𝑑𝑢0𝑑𝑡,𝑢𝑛𝑢0𝐻2𝑑2𝑢𝑛𝑑𝑡2𝑑+𝑘𝑑𝑡𝑢𝑛,𝐿𝑢𝑛𝐻𝑑+𝑘𝑑𝑡𝑢𝑛,𝐿𝑢𝑛𝐻𝑘𝑑𝜏+2𝜑𝑛𝜑2𝐻2=𝑡0𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0+𝐺𝑢𝑛,𝐿𝑢0𝑘𝑑𝑢𝑛𝑑𝑡,𝑢0𝐻2𝑑𝑘𝑢𝑑𝑡0,𝑢𝑛𝑢0𝐻2+𝑑𝑢𝑛,𝑑𝑡𝑑𝑢𝑛𝑑𝑡𝐻1𝑑𝜏𝑑𝑢𝑛𝑑𝑡,𝑢𝑛𝐻1+𝜓𝑛,𝜑𝑛𝐻1+𝑘2𝜑𝑛𝜑2𝐻2.(3.17)
From (2.1) and (3.14), we have lim𝑛𝜑𝑛𝜑𝐻2=0,lim𝑛𝑡0𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0𝑑𝜏=0,lim𝑛𝑡0𝑑𝑢𝑑𝑡0,𝑢𝑛𝑢0𝐻2𝑑𝜏=0.(3.18)
Then, we get lim𝑛𝑡0𝐺𝑢𝑛𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0𝑘𝑑𝜏+2lim𝑛𝑢𝑛𝑢02𝐻2=lim𝑛𝑡0𝐺𝑢𝑛,𝐿𝑢0𝑘𝑑𝑢𝑛𝑑𝑡,𝑢0𝐻2+𝑑𝑢𝑛𝑑𝑡2𝐻1𝑑𝜏lim𝑛𝑑𝑢𝑛𝑑𝑡,𝑢𝑛𝐻1+𝜓,𝜑𝐻1.(3.19)
In view of (3.9), (3.14), we obtain for all 𝑣𝑛=1𝑋𝑛lim𝑛𝑡0𝐺𝑢𝑛,𝐿𝑣𝑑𝜏=𝑡0𝑘𝑑𝑢0𝑑𝑡,𝑣𝐻2𝑑𝑢0,𝑑𝑡𝑑𝑣𝑑𝑡𝐻1+𝑑𝜏𝑑𝑢0𝑑𝑡,𝑣𝐻1𝜓,𝑣(0)𝐻1.(3.20)
Since 𝑛=1𝑋𝑛 is dense in 𝑊1,2((0,𝑇),𝐻2)𝐿𝑝((0,𝑇),𝑋2), for all 𝑝<, (3.20) holds for all 𝑣𝑊1,2((0,𝑇),𝐻2)𝐿𝑝((0,𝑇),𝑋2). Thus, we have lim𝑛𝑡0𝐺𝑢𝑛,𝐿𝑢0𝑑𝜏=𝑡0𝑘𝑑𝑢0𝑑𝑡,𝑢0𝐻2𝑑𝑢0𝑑𝑡2𝐻1+𝑑𝜏𝑑𝑢0𝑑𝑡,𝑢0𝐻1𝜓,𝜑𝐻1.(3.21)
From (3.14) and 𝐻2𝐻1 being compact imbedding, it follows that lim𝑛𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻1𝑑𝜏=𝑡0𝑑𝑢0𝑑𝑡2𝐻1𝑑𝜏,lim𝑛𝑑𝑢𝑛𝑑𝑡,𝑢𝑛𝐻1=𝑑𝑢0𝑑𝑡,𝑢0𝐻1,a.e.𝑡0.(3.22)
Clearly, lim𝑛𝑡0𝑑𝑢𝑛𝑑𝑡,𝑢𝑛𝐻1𝑑𝜏=𝑡0𝑑𝑢0𝑑𝑡,𝑢0𝐻1𝑑𝜏.(3.23)
Then, (3.14) follows from (3.19)–(3.21), which implies assertion (1).
Secondly, we consider 𝐺=𝐴+𝐵. Let 𝑣=(𝑑/𝑑𝑡)𝐿𝑢𝑛 in (3.9). In view of (2.2) and (2.8), it follows that 𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑑𝑑𝑡𝐿𝑢𝑛𝐻+𝑘𝑑𝑢𝑛,𝑑𝑑𝑡𝑑𝑡𝐿𝑢𝑛𝐻𝑑𝜏=𝑡0(𝐴+𝐵)𝑢𝑛,𝑑𝑑𝑡𝐿𝑢𝑛𝐻𝑑𝜏𝑡012𝑑𝑑𝑡𝑑𝑢𝑛,𝑑𝑡𝑑𝑢𝑛𝑑𝑡𝐻1+𝑘𝑑𝑢𝑛,𝑑𝑡𝑑𝑢𝑛𝑑𝑡𝐻2=𝑑𝜏𝑡0𝑢𝐷𝐹𝑛,𝑑𝑢𝑛+𝐵𝑢𝑑𝑡𝑛,𝑑𝑑𝑡𝐿𝑢𝑛𝐻1𝑑𝜏,2𝑑𝑢𝑛𝑑𝑡2𝐻112𝜓𝑛2𝐻1+𝑘𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻2𝑢𝑑𝜏+𝐹𝑛𝜑𝐹𝑛=𝑡0𝐵𝑢𝑛,𝑑𝑑𝑡𝐿𝑢𝑛𝐻1𝑑𝜏,2𝑑𝑢𝑛𝑑𝑡2𝐻1+𝑘𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻2𝑢𝑑𝑡+𝐹𝑛=𝑡0𝐵𝑢𝑛,𝑑𝑑𝑡𝐿𝑢𝑛𝜑𝑑𝜏+𝐹𝑛+12𝜓𝑛2𝐻1.(3.24)
From (3.3), we have 12𝑑𝑢𝑛𝑑𝑡2𝐻1𝑢+𝐹𝑛+𝑘𝑡0𝑑𝑢𝑛𝑑𝑡2𝐻2𝑑𝜏𝐶𝑡0𝐶1𝐹𝑢𝑛+𝑘2𝑑𝑢𝑛𝑑𝑡2𝐻1+𝐶2𝜑𝑑𝜏+𝐹𝑛+12𝜓𝑛2𝐻1𝐶𝑡0𝐹𝑢𝑛+12𝑑𝑢𝑛𝑑𝑡2𝐻1𝑑𝜏+𝑓(𝑡),(3.25) where 𝑓(𝑡)=(1/2)𝜓2𝐻1+sup𝑛𝐹(𝜑𝑛).
By using Gronwall inequality, it follows that 12𝑑𝑢𝑛𝑑𝑡2𝐻1𝑢+𝐹𝑛𝑓(0)𝑒𝐶𝑡+𝑡0𝑓(𝜏)𝑒𝐶(𝑡𝜏)𝑑𝜏,(3.26) which implies that for all 0<𝑇<, 𝑢𝑛𝑊1,(0,𝑇),𝐻1𝐿(0,𝑇),𝑋2isbounded.(3.27)
From (3.25) and (3.21), it follows that 𝑢𝑛𝑊1,2(0,𝑇),𝐻2isbounded.(3.28)
Let 𝑢𝑛𝑢0,in𝑊1,(0,𝑇),𝐻1𝐿(0,𝑇),𝑋2,𝑢𝑛𝑢0,in𝑊1,2(0,𝑇),𝐻2,(3.29) which implies that 𝑢𝑛𝑢0 in 𝑊1,2((0,𝑇),𝐻) is uniformly weakly convergent from that 𝐻2𝐻 is compact imbedding.
The left proof is same as assertion (1).
Lastly, assume (3.6) hold. Let 𝑣=𝑑2𝑢𝑛/𝑑𝑡2 in (3.9). It follows that 𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑑2𝑢𝑛𝑑𝑡2𝐻+𝑘𝑑𝑢𝑛,𝑑𝑑𝑡2𝑢𝑛𝑑𝑡2𝐻=𝑑𝜏𝑡0𝑢(𝐴+𝐵)𝑛,𝑑2𝑢𝑛𝑑𝑡2𝑑𝜏𝑡0𝑢𝐶𝐹𝑛+12𝑑2𝑢𝑛𝑑𝑡22𝐻+𝑔(𝑡)𝑑𝜏,𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑑2𝑢𝑛𝑑𝑡2𝐻+𝑘2𝑡0Ω𝑑𝑢𝑑𝑡𝑛(𝑡)2𝑑𝑥𝑑𝜏𝑡0𝑢𝐶𝐹𝑛+12𝑑2𝑢𝑛𝑑𝑡22𝐻+𝑔(𝑡)𝑑𝜏,𝑡0𝑑2𝑢𝑛𝑑𝑡2,𝑑2𝑢𝑛𝑑𝑡2𝐻𝑘𝑑𝑡+2𝑑𝑢𝑛𝑑𝑡2𝐻1𝑘2𝜓𝑛2𝐻+𝑡012𝑑2𝑢𝑛𝑑𝑡22𝐻𝑢+𝐶𝐹𝑛+𝑔(𝜏)𝑑𝜏.(3.30)
From (3.26), the above inequality implies 𝑡0𝑑2𝑢𝑛𝑑𝑡22𝐻𝑑𝜏𝐶,(𝐶>0isconstant).(3.31) We see that for all 0<𝑇<, {𝑢𝑛}𝑊2,2((0,𝑇),𝐻) is bounded. Thus 𝑢𝑊2,2((0,𝑇),𝐻).

4. Main Result

Now, we begin to consider the mixed problem (1.1). Set 𝐹(𝑥,𝑦)=𝑦0𝑓(𝑥,𝑧)𝑑𝑧.(4.1) We assume 𝐹(𝑥,𝑦)𝐶1||𝑦||𝑝𝐶2||||||𝑦||,𝑝2,𝑓(𝑥,𝑦)𝐶𝑝1,𝑓+1(4.2)𝑥,𝑦1𝑓𝑥,𝑦2𝑦1𝑦2||𝑦𝜆1𝑦2||2|||||,𝜆>0,(4.3)𝑔(𝑥,𝑧,𝜉,𝜂)𝐶𝑧|𝑝/2+||𝜉||𝑝/2+||𝜂||𝑝/2||𝑔+1,(4.4)𝑥,𝑧,𝜉,𝜂1𝑔𝑥,𝑧,𝜉,𝜂2||𝐾1||𝜂1𝜂2||,(4.5) where 𝐶,𝐶1,𝐶2 are constant and 𝐾1<𝜆𝐾, 𝐾 is the best constant satisfying 𝐾2𝑢2𝐻2Ω||||Δ𝑢2𝑑𝑥.(4.6)

Theorem 4.1. If the assumptions of (4.1)–(4.5) hold, for (𝜑,𝜓)𝑊2,𝑝(Ω)𝑊01,𝑝(Ω)×𝐻10(Ω), then (1.1) is a strong solution 𝑢𝐿loc(0,),𝑊2,𝑝(Ω)𝑊01,𝑝,𝑢(Ω)𝑡𝐿loc(0,),𝐻10(Ω)𝐿2loc(0,),𝐻2,𝑢(Ω)𝑡𝑡𝐿𝑝((0,𝑇)×Ω),𝑝=𝑝𝑝1,0<𝑇<.(4.7)

Proof. We introduce spatial sequences 𝑋=𝑢𝐶(||ΔΩ)𝑘𝑢||𝜕Ω,𝑋=0,𝑘=0,1,2,1=𝐿𝑝𝑋(Ω),2=𝑊2,𝑝(Ω)𝑊01,𝑝(Ω),𝐻=𝐿2𝐻(Ω),1=𝐻10𝐻(Ω),2=𝐻2(Ω)𝐻10𝐻(Ω),3=𝑢𝐻2𝑚(Ω)𝑢|𝜕Ω==Δ𝑚1𝑢|𝜕Ω,=0(4.8) where the inner products of 𝐻2 and 𝐻3 are defined by 𝑢,𝑣𝐻2=ΩΔ𝑢Δ𝑣𝑑𝑥,𝑢,𝑣𝐻2=ΩΔ𝑚𝑢Δ𝑚𝑣𝑑𝑥,(4.9) where 𝑚1 such that 𝐻3𝑋2 is an embedding.
Linear operators 𝑋𝑋1 and 𝐿𝑋𝑋1 are defined by 𝑢=𝐿𝑢=Δ𝑢.(4.10) It is known that and 𝐿 satisfy (2.2), (2.3), and (2.5). Define 𝐺=𝐴+𝐵𝑋2𝑋1 by 𝐴𝑢,𝑣=Ω𝑓(𝑥,Δ𝑢)𝑣𝑑𝑥,𝐵𝑢,𝑣=Ω𝑔𝑥,𝑢,𝐷𝑢,𝐷2𝑢𝑣𝑑𝑥,for𝑣𝑋1.(4.11)
We show that 𝐺=𝐴+𝐵𝑋2𝑋1 is 𝑇-coercively weakly continuous. Let {𝑢𝑛}𝐿((0,𝑇),𝑊2,𝑝(Ω)𝑊01,𝑝(Ω)) satisfying (2.7) and lim𝑛𝑇0||𝐺𝑢𝑛𝐺𝑢0,𝐿𝑢𝑛𝐿𝑢0||𝑑𝑡=lim𝑛𝑇0Ω𝑓𝑥,Δ𝑢𝑛𝑓𝑥,Δ𝑢0𝑢𝑛𝑢0+𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢𝑛𝑔𝑥,𝑢0,𝐷𝑢0,𝐷2𝑢0𝑢𝑛𝑢0𝑑𝑥𝑑𝑡=0.(4.12)
We need to prove that lim𝑛𝑇0Ω𝑓𝑥,Δ𝑢𝑛+𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢𝑛=𝑣𝑑𝑥𝑑𝑡𝑇0Ω𝑓𝑥,Δ𝑢0+𝑔𝑥,𝑢0,𝐷𝑢0,𝐷2𝑢0𝑣𝑑𝑥𝑑𝑡.(4.13)
From (2.7) and Lemma 2.3, we obtain 𝑢𝑛𝑢0,𝐷𝑢𝑛𝐷𝑢0in𝐿2((0,𝑇)×Ω).(4.14)
From (4.3), we get 𝑇0Ω𝑓𝑥,Δ𝑢𝑛𝑓𝑥,Δ𝑢0Δ𝑢𝑛Δ𝑢0𝑑𝑥𝑑𝑡𝜆𝑇0Ω||Δ𝑢𝑛Δ𝑢0||2𝑑𝑥𝑑𝑡.(4.15)
We have the deformation 𝑇0Ω𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢𝑛𝑔𝑥,𝑢0,𝐷𝑢0,𝐷2𝑢0Δ𝑢𝑛Δ𝑢0=𝑑𝑥𝑑𝑡𝑇0Ω𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢0𝑔𝑥,𝑢0,𝐷𝑢0,𝐷2𝑢0Δ𝑢𝑛Δ𝑢0+𝑑𝑥𝑑𝑡𝑇0Ω𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢𝑛𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢0Δ𝑢𝑛Δ𝑢0𝑑𝑥𝑑𝑡.(4.16)
From (4.14) and Lemma 2.4, we have lim𝑛𝑇0Ω𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢0𝑔𝑥,𝑢0,𝐷𝑢0,𝐷2𝑢0Δ𝑢𝑛Δ𝑢0𝑑𝑥𝑑𝑡=0.(4.17)
From (4.12), (4.15)–(4.17), it follows that 0𝜆𝑇0Ω||Δ𝑢𝑛Δ𝑢0||2𝑑𝑥𝑑𝑡+𝑇0Ω𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢𝑛𝑔𝑥,𝑢𝑛,𝐷𝑢𝑛,𝐷2𝑢0×Δ𝑢𝑛Δ𝑢0𝑑𝑥𝑑𝑡𝜆𝑇0Ω||Δ𝑢𝑛Δ𝑢0||2𝑑𝑥𝑑𝑡𝐾1𝑇0Ω||𝐷2𝑢𝑛𝐷2𝑢0||||Δ𝑢𝑛Δ𝑢0||𝜆𝑑𝑥𝑑𝑡2𝑇0Ω||Δ𝑢𝑛Δ𝑢0||2𝐾𝑑𝑥𝑑𝑡212𝜆𝑇0Ω||𝐷2𝑢𝑛𝐷2𝑢0||2𝜆𝑑𝑥𝑑𝑡2𝐾2𝐾212𝜆𝑇0Ω||𝐷2𝑢𝑛𝐷2𝑢0||2𝑑𝑥𝑑𝑡.(4.18)
Since 𝜆𝐾>𝐾1, we have lim𝑛𝑇0Ω||𝐷2𝑢𝑛𝐷2𝑢0||2𝑑𝑥𝑑𝑡=0.(4.19)
From (4.14), (4.19), (4.1), (4.4), and Lemma 2.3, we get (4.13).
Let 𝐹1(𝑢)=Ω𝐹(𝑥,Δ𝑢)𝑑𝑥, where 𝐹 is same as (4.1). We get 𝐴𝑢,𝐿𝑢=𝐷𝐹1(𝑢),𝑣,𝐹(𝑢)𝑢𝑋2,(4.20) which implies Conditions (A1), (A2) of model results in Theorem 3.1.
We will show (3.3) as follows. It follows that ||||=𝐵𝑢,𝐿𝑣Ω||𝑔𝑥,𝑢,𝐷𝑢,𝐷2𝑢||||||𝑘Δ𝑣𝑑𝑥2Ω||||Δ𝑣22𝑑𝑥+𝑘Ω||𝑔𝑥,𝑢,𝐷𝑢,𝐷2𝑢||2𝑘𝑑𝑥2𝑣2𝐻2+𝐶Ω||𝐷2𝑢||𝑝+||||𝑢𝑝+|𝑢|𝑝𝑘+1𝑑𝑥2𝑣2𝐻2+𝐶𝐹1(𝑢)+𝐶,(4.21) which imply Conditions (A3) of Theorem 3.1. From Theorem 3.1, (1.1) has a solution 𝑢𝐿loc(0,),𝑊2,𝑝(Ω)𝑊01,𝑝,𝑢(Ω)𝑡𝐿loc(0,),𝐻10(Ω)𝐿2loc(0,),𝐻2,𝑢(Ω)𝑡𝑡𝐿𝑝((0,𝑇)×Ω),𝑝=𝑝𝑝1,0<𝑇<,(4.22) satisfying Ω𝜕𝑢𝜕𝑡𝑣𝑑𝑥𝑘ΩΔ𝑢𝑣𝑑𝑥=𝑡0Ω𝑓(𝑥,Δ𝑢)𝑣𝑑𝑥𝑑𝜏+𝑡0Ω𝑔𝑥,𝑢,𝐷𝑢,𝐷2𝑢+𝑣𝑑𝑥𝑑𝜏Ω𝜓𝑣𝑑𝑥𝑘ΩΔ𝜑𝑣𝑑𝑥.(4.23)

Acknowledgments

The authors are grateful to the anonymous reviewers for their careful reading and useful suggestions, which greatly improved the presentation of the paper. This paper was funded by the National Natural Science Foundation of China (no. 11071177) and the NSF of Sichuan Science and Technology Department of China (no. 2010JY0057).