Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 840593, 9 pages
http://dx.doi.org/10.1155/2012/840593
Research Article

Coupling of Point Collocation Meshfree Method and FEM for EEG Forward Solver

1College of Medicine, Korea University, 126-1 Anam-dong, Sungbuk-gu, Seoul 136-705, Republic of Korea
2School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea

Received 15 November 2011; Accepted 28 December 2011

Academic Editor: Chang-Hwan Im

Copyright © 2012 Chany Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Hallez, B. Vanrumste, R. Grech et al., “Review on solving the forward problem in EEG source analysis,” Journal of NeuroEngineering and Rehabilitation, vol. 4, no. 1, article 46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” Journal of Cognitive Neuroscience, vol. 5, no. 2, pp. 162–176, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,” IEEE Signal Processing Magazine, vol. 18, no. 6, pp. 14–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Purves, “Principles of cognitive neuroscience,” Sinauer Associates, vol. 83, no. 3, 757 pages, 2008. View at Google Scholar
  5. C. H. Im, C. Lee, K. O. An, H. K. Jung, K. Y. Jung, and S. Y. Lee, “Precise estimation of brain electrical sources using anatomically constrained area source (ACAS) localization,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1713–1716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Zhang, “A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres,” Physics in Medicine and Biology, vol. 40, no. 3, article 01, pp. 335–349, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Mosher, R. M. Leahy, and P. S. Lewis, “EEG and MEG: forward solutions for inverse methods,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 3, pp. 245–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Im, C. Lee, H. K. Jung, Y. H. Lee, and S. Kuriki, “Magnetoencephalography cortical source imaging using spherical mapping,” IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1984–1987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. A. Awada, D. R. Jackson, J. T. Williams, D. R. Wilton, S. B. Baumann, and A. C. Papanicolaou, “Computational aspects of finite element modeling in EEG source localization,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 8, pp. 736–752, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Lee, C.-H. Im, H.-K. Jung, H.-K. Kim, and D. W. Kim, “A posteriori error estimation and adaptive node refinement for fast moving least square reproducing kernel (FMLSRK) method,” Computer Modeling in Engineering & Sciences, vol. 20, no. 1, pp. 35–41, 2007. View at Google Scholar · View at Zentralblatt MATH
  11. T. Belytschko, Y. Y. Lu, and L. Gu, “Crack propagation by element-free Galerkin methods,” Engineering Fracture Mechanics, vol. 51, no. 2, pp. 295–315, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Rabczuk, R. Gracie, J.-H. Song, and T. Belytschko, “Immersed particle method for fluid-structure interaction,” International Journal for Numerical Methods in Engineering, vol. 81, no. 1, pp. 48–71, 2010. View at Google Scholar · View at Zentralblatt MATH
  13. T. J. Barth and M. Field, Meshfree Methods for Partial Differential Equations II, Springer, 2003.
  14. B. N. Rao and S. Rahman, “A coupled meshless-finite element method for fracture analysis of cracks,” International Journal of Pressure Vessels and Piping, vol. 78, no. 9, pp. 647–657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Rabczuk, S. P. Xiao, and M. Sauer, “Coupling of mesh-free methods with finite elements: basic concepts and test results,” Communications in Numerical Methods in Engineering, vol. 22, no. 10, pp. 1031–1065, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. D. W. Kim and H. K. Kim, “Point collocation method based on the FMLSRK approximation for electromagnetic field analysis,” IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1029–1032, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Kim and Y. Kim, “Point collocation methods using the fast moving least-square reproducing kernel approximation,” International Journal for Numerical Methods in Engineering, vol. 56, no. 10, pp. 1445–1464, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. C. Lee, D. W. Kim, S. H. Park, H. K. Kim, C. H. Im, and H. K. Jung, “Point collocation mesh-free method using FMLSRKM for solving axisymmetric Laplace equation,” IEEE Transactions on Magnetics, vol. 44, no. 6, Article ID 4526930, pp. 1234–1237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” International Journal for Numerical Methods in Engineering, vol. 37, no. 2, pp. 229–256, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. W.-K. Liu, S. Li, and T. Belytschko, “Moving least-square reproducing kernel methods. I. Methodology and convergence,” Computer Methods in Applied Mechanics and Engineering, vol. 143, no. 1-2, pp. 113–154, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars,” Monthly Notices of the Royal Astronomical Society, vol. 181, no. 2, pp. 375–389, 1977. View at Google Scholar · View at Zentralblatt MATH
  22. W. L. Nicomedes, R. C. Mesquita, and F. J.S. Moreira, “A meshless local Petrov-Galerkin method for three-dimensional scalar problems,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 1214–1217, 2011. View at Publisher · View at Google Scholar
  23. V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, “Meshless methods: a review and computer implementation aspects,” Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 763–813, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. R. Han, J. Liang, X. Qu et al., “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Optics Express, vol. 17, no. 17, pp. 14481–14494, 2009. View at Publisher · View at Google Scholar · View at Scopus