Abstract

We define the dual of generalized fuzzy subspaces first. These concepts generalize the dual of fuzzy subspaces. And then we investigate the double dual of generalized fuzzy subspaces.

1. Introduction and Preliminaries

In fuzzy algebra, fuzzy subspaces are basic concepts. They had been introduced by Katsaras and Liu [1] in 1977 as a generalization of the usual notion of vector spaces. Since then, many results of fuzzy subspaces had been obtained in the literature [1โ€“4]. Moreover, many researches in fuzzy algebra are closely related to fuzzy subspaces, such as fuzzy subalgebras of an associative algebra [5], fuzzy Lie ideals of a Lie algebra [6], fuzzy subcoalgebras of a coalgebra [7]. Hence fuzzy subspaces play an important role in fuzzy algebra. In 1996, Abdukhalikov [8] defined the dual of fuzzy subspaces as a generalization of the dual of ๐‘˜-vector spaces. This notion was also studied and applied in many branches [2, 7โ€“9], especially in the fuzzy subcoalgebras [7] and fuzzy bialgebras [9].

After the introduction of fuzzy sets by Zadeh [10], there are a number of generalizations of this fundamental concept. So it is natural to study algebraic structures connecting with them. In this paper, we aim our attention at the dual of vector space in intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued intuitionistic fuzzy sets for our further researches.

1.1. Atanassov's Intuitionistic Fuzzy Sets

In [11] intuitionistic fuzzy sets are defined as follows:

Definition 1.1. An intuitionistic fuzzy set (IFS, for short) on a universe ๐‘‹ is defined as an object having the form ๐ด={โŸจ๐‘ฅ,๐œ‡๐ด(๐‘ฅ),๐œˆ๐ด(๐‘ฅ)โŸฉโˆฃ๐‘ฅโˆˆ๐‘‹}, where the functions ๐œ‡๐ดโˆถ๐‘‹โ†’[0,1] and ๐œˆ๐ดโˆถ๐‘‹โ†’[0,1] denote the degree of membership (namely, ๐œ‡๐ด(๐‘ฅ)) and the degree of nonmembership (namely, ) of each element to the set , respectively, and 0โ‰ค๐œ‡๐ด(๐‘ฅ)+๐œˆ๐ด(๐‘ฅ)โ‰ค1 for each ๐‘ฅโˆˆ๐‘‹. For the sake of simplicity, we shall use the symbol ๐ด=(๐œ‡๐ด,๐œˆ๐ด) for the intuitionistic fuzzy set ๐ด={โŸจ๐‘ฅ,๐œ‡๐ด(๐‘ฅ),๐œˆ๐ด(๐‘ฅ)โŸฉโˆฃ๐‘ฅโˆˆ๐‘‹}. The class of IFSs on a universe ๐‘‹ is denoted by IFS (๐‘‹).

In 1993, Gau and Buehrer [12] defined vague sets. Later, Bustince and Burillo [13] proved that the notion of vague sets is as same as that of intuitionistic fuzzy sets.

With the definition of intuitionistic fuzzy sets, we can give the following definition.

Definition 1.2. Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy set of ๐‘˜-vector space ๐‘‰. For any ๐‘ฅ,๐‘ฆโˆˆ๐‘‰ and ๐›ผ,๐›ฝโˆˆ๐‘˜, if it satisfies ๐œ‡๐ด(๐›ผ๐‘ฅ+๐›ฝ๐‘ฆ)โ‰ฅmin{๐œ‡๐ด(๐‘ฅ),๐œ‡๐ด(๐‘ฆ)} and ๐œˆ๐ด(๐›ผ๐‘ฅ+๐›ฝ๐‘ฆ)โ‰คmax{๐œˆ๐ด(๐‘ฅ),๐œˆ๐ด(๐‘ฆ)}, then ๐ด=(๐œ‡๐ด,๐œˆ๐ด) is called an intuitionistic fuzzy subspace of ๐‘‰.

1.2. Interval-Valued Fuzzy Sets

The notion of interval-valued fuzzy sets was first introduced by Zadeh [14] as an extension of fuzzy sets in which the values of the membership degrees are intervals of numbers instead of the numbers.

Definition 1.3. An interval-valued fuzzy set ๐ด=(๐ด๐ฟ,๐ด๐‘ˆ) on a universe ๐‘‹ (IVFS, for short) is a mapping ๐‘‹โ†’Int([0,1]), where Int([0,1]) stands for the set of all closed subintervals of [0,1]. The class of all IVFSs on a universe ๐‘‹ is denoted by IVFS(๐‘‹).

In [15] the interval-valued fuzzy sets are called grey sets.

Notations. For interval numbers ๐ท1=[๐‘Ž๐ฟ1,๐‘๐‘ˆ1],๐ท2=[๐‘Ž๐ฟ2,๐‘๐‘ˆ2]โˆˆInt([0,1]). We define ๎€ฝ๐ท๐‘Ÿmin1,๐ท2๎€พ๐‘Ž=๐‘Ÿmin๎€ฝ๎€บ๐ฟ1,๐‘๐‘ˆ1๎€ป,๎€บ๐‘Ž๐ฟ2,๐‘๐‘ˆ2=๎€บ๎€ฝ๐‘Ž๎€ป๎€พmin๐ฟ1,๐‘Ž๐ฟ2๎€พ๎€ฝ๐‘,min๐‘ˆ1,๐‘๐‘ˆ2,๎€ฝ๐ท๎€พ๎€ป๐‘Ÿmax1,๐ท2๎€พ๐‘Ž=๐‘Ÿmax๎€ฝ๎€บ๐ฟ1,๐‘๐‘ˆ1๎€ป,๎€บ๐‘Ž๐ฟ2,๐‘๐‘ˆ2=๎€บ๎€ฝ๐‘Ž๎€ป๎€พmax๐ฟ1,๐‘Ž๐ฟ2๎€พ๎€ฝ๐‘,max๐‘ˆ1,๐‘๐‘ˆ2,๎€พ๎€ป(1.1) and put (a)๐ท1โ‰ค๐ท2โ‡”๐‘Ž๐ฟ1โ‰ค๐‘Ž๐ฟ2 and ๐‘๐‘ˆ1โ‰ค๐‘๐‘ˆ2, (b)๐ท1=๐ท2โ‡”๐‘Ž๐ฟ1=๐‘Ž๐ฟ2 and ๐‘๐‘ˆ1=๐‘๐‘ˆ2, (c)๐ท1<๐ท2โ‡”๐ท1โ‰ค๐ท2 and ๐ท1โ‰ ๐ท2.
In [16], Deschrijver and Kerre presented that the mapping between the lattices IVFS(๐‘‹) and IFS(๐‘‹) is an isomorphism. Thus intuitionistic fuzzy sets and interval-valued fuzzy sets are same from mathematical viewpoints.

Similarly, we can define the following.

Definition 1.4. Let ๐ด=(๐ด๐ฟ,๐ด๐‘ˆ) be an interval-valued fuzzy set of ๐‘˜-vector space ๐‘‰. For any ๐‘ฅ,๐‘ฆโˆˆ๐‘‰ and ๐›ผ,๐›ฝโˆˆ๐‘˜, if it satisfies ๐ด(๐›ผ๐‘ฅ+๐›ฝ๐‘ฆ)โ‰ฅ๐‘Ÿmin{๐ด(๐‘ฅ),๐ด(๐‘ฆ)}, then ๐ด=(๐ด๐ฟ,๐ด๐‘ˆ) is called an interval-valued fuzzy subspace of ๐‘‰.

1.3. Interval-Valued Intuitionistic Fuzzy Sets

The following definition generalizes the definitions of IFS and IVFS.

Definition 1.5 (see [17]). An interval-valued intuitionistic fuzzy set on a universe ๐‘‹ (IVIFS, for short) is an object of the form ๐ด={(๐‘ฅ,๐‘€๐ด(๐‘ฅ),๐‘๐ด(๐‘ฅ))โˆฃ๐‘ฅโˆˆ๐‘‹}, where ๐‘€๐ดโˆถ๐‘‹โ†’Int([0,1]) and ๐‘๐ดโˆถ๐‘‹โ†’Int([0,1]) satisfy for any . The class of all IVIFSs on a universe is denoted by .

Definition 1.6. Let be an interval-valued intuitionistic fuzzy set of -vector space . For any and , if it satisfies and , then is called an interval-valued intuitionistic fuzzy subspace of .

In this paper, intuitionistic fuzzy subspaces, interval-valued fuzzy subspaces and interval-valued intuitionistic fuzzy subspaces are called generalized fuzzy subspaces. In Section 2, we study the dual of generalized fuzzy subspaces. At first, we give the definitions of the dual of generalized fuzzy subspaces, and then discuss their properties and the relationship between them. In Section 3, we investigate the double dual of intuitionistic fuzzy subspaces. Other cases can be investigated similarly. At last a conclusion is presented.

2. The Dual of Generalized Fuzzy Subspaces

In this paper, is denoted the dual space of , that is, the vector space of all linear maps from to . We recall the following.

Definition 2.1 (see [8]). Let be a fuzzy subspace of -vector space .
Define by then is called the dual of fuzzy subspace .

Now, we study the dual of generalized fuzzy subspaces.

2.1. The Dual of Intuitionistic Fuzzy Subspaces

Let be an intuitionistic fuzzy subspace of -vector space . Then for any , which implies . Hence we give the definition of the dual of intuitionistic fuzzy subspaces as follows.

Definition 2.2. Let be an intuitionistic fuzzy subspace of -vector space .
Define , where
Obviously, is an intuitionistic fuzzy set of and is called the dual of intuitionistic fuzzy subspace. The class of all the dual of intuitionistic fuzzy subspaces of is denoted by .

In [11], Atanassov defined two operators and โ—Š. Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy set. Then โ–ก๐ด=(๐œ‡๐ด,๐œ‡๐‘๐ด) and โ—Š๐ด=(๐œˆ๐‘๐ด,๐œˆ๐ด). Using the notations in the dual of intuitionistic fuzzy subspaces, we have the following.

Remark 2.3. (1) If ๐ด=โ–ก๐ด, then ๐ดโˆ—=โ—Š๐ดโˆ—.
(2) If ๐ด=โ—Š๐ด, then ๐ดโˆ—=โ–ก๐ดโˆ—.
Following the above remark, Definition 2.1 is the special case of Definition 2.2. And we can give a characterization of the intuitionistic fuzzy subspaces.

Theorem 2.4. ๐ดโˆ—=(๐œ‡๐ดโˆ—,๐œˆ๐ดโˆ—) is an intuitionistic fuzzy subspace of ๐‘‰โˆ— if and only if โ–ก๐ดโˆ— and โ—Š๐ดโˆ— are intuitionistic fuzzy subspaces of ๐‘‰โˆ—.

In the end, we give an explain of Definition 2.2 intuitively.

Remark 2.5. Let 10 experts vote to ๐ด and ๐ต and require per expert to vote at most one. The result is that ๐ด is 5 and ๐ต is 3. That is, the number of the supporters of ๐ด is 5 and the number of the supporters of ๐ต is 3.
In the voting model, ๐ด and ๐ต can be regarded as the dual objects. The analysis indicates that the number of supporters of ๐ด is equal to the number of objectors of ๐ต and the number of supporters of ๐ต is equal to the number of objectors of ๐ด. So if ๐ต is the dual of ๐ด and the numbers of supporters and objectors of ๐ด are known, then we can calculate the supporters of ๐ต by the objectors of ๐ด and the objectors of ๐ต by the supporters of ๐ด.
This is the idea that the ๐œ‡๐ดโˆ— is defined by ๐œˆ๐ด and the ๐œˆ๐ดโˆ— is defined by ๐œ‡๐ด in Definition 2.2.

2.2. The Dual of Interval-Valued Fuzzy Subspaces

Definition 2.6. Let ๐ด=(๐ด๐ฟ,๐ด๐‘ˆ) be an interval-valued fuzzy subspace of ๐‘˜-vector space ๐‘‰.
Define ๐ดโˆ—=(๐ดโˆ—๐ฟ,๐ดโˆ—๐‘ˆ), where ๐ดโˆ—โˆถ๐‘‰โˆ—[]โŸถInt(0,1)by๐ดโˆ—๎‚ป[][](๐‘“)=1,1โˆ’sup{๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0}if๐‘“โ‰ 01,1โˆ’inf{๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰}if๐‘“=0.(2.3)
Then ๐ดโˆ—=(๐ดโˆ—๐ฟ,๐ดโˆ—๐‘ˆ) is called the dual of an interval-valued fuzzy subspace. The class of all the dual of interval-valued fuzzy subspace of ๐‘‰โˆ— is denoted by DIVFS(๐‘‰โˆ—).

Remark 2.7. In Definition 2.6, the definition of ๐ดโˆ—=(๐ดโˆ—๐ฟ,๐ดโˆ—๐‘ˆ) can be described in detail as follows: ๐ดโˆ—๐ฟโˆถ๐‘‰โˆ—โŸถ[]0,1by๐ดโˆ—๐ฟ๎‚ป๎€ฝ๐ด(๐‘“)=1โˆ’sup๐ฟ๎€พ๎€ฝ๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0if๐‘“โ‰ 01โˆ’inf๐ฟ๎€พ๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰if๐‘“=0,โˆ—๐‘ˆโˆถ๐‘‰โˆ—โŸถ[]0,1by๐ดโˆ—๐‘ˆ๎‚ป๎€ฝ๐ด(๐‘“)=1โˆ’sup๐‘ˆ๎€พ๎€ฝ๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0if๐‘“โ‰ 01โˆ’inf๐‘ˆ๎€พ(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰if๐‘“=0.(2.4)
The following theorem indicates that the dual of intuitionistic fuzzy subspaces and the dual of interval-valued fuzzy subspaces are same upon the lattice isomorphism.

Theorem 2.8. The mapping ๐œ‘โˆถDIVFS(๐‘‰โˆ—)โ†’DIFS(๐‘‰โˆ—) by ๐œ‡โ†ฆ๐ด is an isomorphism between the lattices DIVFS(๐‘‰โˆ—) and DIFS(๐‘‰โˆ—), where ๐œ‡=(๐œ‡๐ฟ,๐œ‡๐‘ˆ)โˆถ๐‘‰โˆ—โ†’Int([0,1]) by ๐‘“โ†ฆ(๐œ‡๐ฟ(๐‘“),๐œ‡๐‘ˆ(๐‘“)) and ๐ด=(๐œ‡๐ด,๐œˆ๐ด)=(๐œ‡๐ด=๐œ‡๐‘ˆ,๐œˆ๐ด=1โˆ’๐œ‡๐ฟ).

2.3. The Dual of Interval-Valued Intuitionistic Fuzzy Subspaces

Definition 2.9. Let ๐ด=(๐‘€๐ด,๐‘๐ด) be an interval-valued intuitionistic fuzzy subspace of ๐‘˜-vector space ๐‘‰.
Define ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—), where ๐‘€๐ดโˆ—โˆถ๐‘‰โˆ—[]โŸถInt(0,1)by๐‘€๐ดโˆ—๎‚ป๎€ฝ๐‘(๐‘“)=inf๐ด๎€พ๎€ฝ๐‘(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0if๐‘“โ‰ 0sup๐ด๎€พ๐‘(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰if๐‘“=0,๐ดโˆ—โˆถ๐‘‰โˆ—[]โŸถInt(0,1)by๐‘๐ดโˆ—๎‚ป๎€ฝ๐‘€(๐‘“)=sup๐ด๎€พ๎€ฝ๐‘€(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0if๐‘“โ‰ 0inf๐ด๎€พ(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰if๐‘“=0.(2.5)
Then ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—) is called the dual of interval-valued intuitionistic fuzzy subspace.

Theorem 2.10. The interval-valued intuitionistic fuzzy set ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—) is an interval-valued intuitionistic fuzzy subspace of ๐‘‰โˆ—.

Proof. Since ๐‘€๐ดโˆ—(0) is the upper bound of ๐‘€๐ดโˆ—(๐‘‰โˆ—) and ๐‘๐ดโˆ—(0) is the lower bound of ๐‘๐ดโˆ—(๐‘‰โˆ—), it suffices to show that the nonempty sets ๐‘ˆ(๐‘€๐ดโˆ—,[๐›ฟ1,๐›ฟ2])={๐‘“โˆˆ๐‘‰โˆ—โˆฃ๐‘€๐ดโˆ—(๐‘“)โ‰ฅ[๐›ฟ1,๐›ฟ2]} and ๐ฟ(๐‘๐ดโˆ—,[๐œ‰1,๐œ‰2])={๐‘“โˆˆ๐‘‰โˆ—โˆฃ๐‘๐ดโˆ—(๐‘“)โ‰ค[๐œ‰1,๐œ‰2]} are subspaces of ๐‘‰โˆ— for all [๐›ฟ1,๐›ฟ2],[๐œ‰1,๐œ‰2]โˆˆ[๐‘๐ดโˆ—(0),๐‘€๐ดโˆ—(0)]. The remainder proof can be imitated by Theorem 3.2 of [8].

Remark 2.11. The result is also true for intuitionistic fuzzy subspaces and interval-valued fuzzy subspaces.

Example 2.12. Let ๐‘‰={๐‘ฅ=(0,๐‘Ž,๐‘)โˆฃ๐‘Ž,๐‘โˆˆ๐‘…} be a two dimensional vector space and ๐‘‰โˆ— be its dual space. We define ๐ด=(๐‘€๐ด,๐‘๐ด), where for ๐‘˜โˆˆ๐‘… and ๐‘ฅโˆˆ๐‘‰๐‘€๐ดโŽงโŽชโŽจโŽชโŽฉ๐‘Ž(๐‘ฅ)=1๐‘if๐‘ฅ=(0,๐‘˜,0)1๐‘if๐‘ฅ=(0,0,๐‘˜)1๐‘‘if๐‘ฅ=(0,0,0)1๐‘otherwise,๐ดโŽงโŽชโŽจโŽชโŽฉ๐‘Ž(๐‘ฅ)=2๐‘if๐‘ฅ=(0,๐‘˜,0)2๐‘if๐‘ฅ=(0,0,๐‘˜)2๐‘‘if๐‘ฅ=(0,0,0)2otherwise,(2.6)
If ๐‘Ž1=[0.3,0.4], ๐‘1=[0.2,0.5], ๐‘1=[1,1], ๐‘‘1=[0.2,0.4] and ๐‘Ž2=[0.5,0.6], ๐‘2=[0.4,0.5], ๐‘2=[0,0], ๐‘‘2=[0.5,0.6], then ๐ด is an interval-valued intuitionistic fuzzy subspace. By Definition 2.9, ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—), where if ๐‘“โ‰ 0, ๐‘€๐ดโˆ—(๐‘“)=[0.4,0.5] and ๐‘๐ดโˆ—(๐‘“)=[0.3,0.5], if ๐‘“=0, ๐‘€๐ดโˆ—(0)=[0.5,0.6] and ๐‘๐ดโˆ—(0)=[0.2,0.4]. Then ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—) is an interval-valued intuitionistic fuzzy subspace of ๐‘‰โˆ—.
If ๐‘Ž1=0.3, ๐‘1=0.4, ๐‘1=1, ๐‘‘1=0.3 and ๐‘Ž2=0.5, ๐‘2=0.2, ๐‘2=0, ๐‘‘1=0.5, then ๐ด is an intuitionistic fuzzy subspace. By Definition 2.6, ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—), where if ๐‘“โ‰ 0, ๐‘€๐ดโˆ—(๐‘“)=0.2 and ๐‘๐ดโˆ—(๐‘“)=0.4, if ๐‘“=0, ๐‘€๐ดโˆ—(0)=0.5 and ๐‘๐ดโˆ—(0)=0.3. Then ๐ดโˆ—=(๐‘€๐ดโˆ—,๐‘๐ดโˆ—) is an intuitionistic fuzzy subspace of ๐‘‰โˆ—.

3. The Double Dual of Generalized Fuzzy Subspaces

In this section, we mainly study the double dual of intuitionistic fuzzy subspaces. The double dual of interval-valued fuzzy subspaces and the double dual of interval-valued intuitionistic fuzzy subspaces can be investigated similarly.

Let ๐‘‰ be a ๐‘˜-vector space and ๐‘‰โˆ— be the space of all linear maps from ๐‘‰ to ๐‘˜. Then ๐‘‰โˆ—โˆ—=(๐‘‰โˆ—)โˆ— is the space of all linear maps from ๐‘‰โˆ— to ๐‘˜, which is the double dual space for ๐‘‰. There exists a canonical injection ๐‘–โˆถ๐‘‰โ†’๐‘‰โˆ—โˆ— by ๐‘–(๐‘ฅ)(๐‘“)=๐‘“(๐‘ฅ). If dim๐‘‰<โˆž, then the injection ๐‘– is an isomorphism.

Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy subspace of ๐‘˜-vector space ๐‘‰. Then the intuitionistic fuzzy subspace ๐ดโˆ—โˆ—=(๐œ‡๐ดโˆ—โˆ—,๐œˆ๐ดโˆ—โˆ—)โˆถ๐‘‰โˆ—โˆ—โ†’[0,1] is defined by ๐œ‡๐ดโˆ—โˆ—๎‚ป๎€ฝ๐œˆ(๐‘ฅ)=inf๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ๎€ฝ๐œˆ,๐‘ฅ(๐‘“)โ‰ 0if๐‘ฅโ‰ 0sup๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ๐œˆif๐‘ฅ=0,๐ดโˆ—โˆ—๎‚ป๎€ฝ๐œ‡(๐‘ฅ)=sup๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ๎€ฝ๐œ‡,๐‘ฅ(๐‘“)โ‰ 0if๐‘ฅโ‰ 0inf๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พif๐‘ฅ=0.(3.1)

Theorem 3.1. Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy subspace of ๐‘˜-vector space ๐‘‰ and ๐‘–โˆถ๐‘‰โ†’๐‘‰โˆ—โˆ— be the canonical injection. Then ๐ดโˆ—โˆ—(๐‘–(๐‘ฅ))=๐ด(๐‘ฅ) for all ๐‘ฅโˆˆ๐‘‰โงต{0}.

Proof. Let 0โ‰ ๐‘ฅโˆˆ๐‘‰. Then let ๐œ‡๐ดโˆ—โˆ—๎€ฝ๐œˆ(๐‘–(๐‘ฅ))=inf๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ,๐‘–(๐‘ฅ)(๐‘“)โ‰ 0=inf๐‘“โˆˆ๐‘‰โˆ—,๐‘–(๐‘ฅ)(๐‘“)=๐‘“(๐‘ฅ)โ‰ 0๎€ฝ๎€ฝ๐œ‡sup๐ด(,๐œˆ๐‘ฆ)โˆฃ๐‘ฆโˆˆ๐‘‰,๐‘“(๐‘ฆ)โ‰ 0๎€พ๎€พ๐ดโˆ—โˆ—๎€ฝ๐œ‡(๐‘–(๐‘ฅ))=sup๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ,๐‘–(๐‘ฅ)(๐‘“)โ‰ 0=sup๐‘“โˆˆ๐‘‰โˆ—,๐‘–(๐‘ฅ)(๐‘“)=๐‘“(๐‘ฅ)โ‰ 0๎€ฝ๎€ฝ๐œˆinf๐ด.(๐‘ฆ)โˆฃ๐‘ฆโˆˆ๐‘‰,๐‘“(๐‘ฆ)โ‰ 0๎€พ๎€พ(3.2)
Denote ๐‘†={๐‘“โˆˆ๐‘‰โˆ—โˆฃ๐‘“(๐‘ฅ)โ‰ 0} and let ๐œ‡๐ด(๐‘ฅ)=๐‘ก1,๐œˆ๐ด(๐‘ฅ)=๐‘ก2.
Let ๐‘“โˆˆ๐‘†. Then if ๐‘ฆโˆˆ๐‘ˆ๐‘ก1, we have ๐‘“(๐‘ฆ)โ‰ 0 and sup๐‘ฆโˆˆ๐‘ˆ๐‘ก1,๐‘“(๐‘ฆ)โ‰ 0{๐œ‡๐ด(๐‘ฆ)}โ‰ฅ๐‘ก1; if ๐‘ฆโˆ‰๐‘ˆ๐‘ก1, we have ๐‘“(๐‘ฆ)โ‰ 0 and ๐œ‡๐ด(๐‘ฆ)<๐‘ก1, so sup๐‘ฆโˆˆ๐‘‰โงต๐‘ˆ๐‘ก1,๐‘“(๐‘ฆ)โ‰ 0{๐œ‡๐ด(๐‘ฆ)}<๐‘ก1.
Hence for ๐‘ฆโˆˆ๐‘‰โงต{0}, then sup๐‘“(๐‘ฆ)โ‰ 0{๐œ‡๐ด(๐‘ฆ)}โ‰ฅ๐‘ก1. Since ๐‘ฅโˆˆ๐‘‰โงต{0} and ๐‘“(๐‘ฅ)โ‰ 0, we have inf๐‘“โˆˆ๐‘‰โˆ—,๐‘–(๐‘ฅ)(๐‘“)=๐‘“(๐‘ฅ)โ‰ 0๎€ฝ๎€ฝ๐œ‡sup๐ด(๐‘ฆ)โˆฃ๐‘ฆโˆˆ๐‘‰,๐‘“(๐‘ฆ)โ‰ 0๎€พ๎€พ=๐‘ก1=๐œ‡๐ด(๐‘ฅ).(3.3)
On the other hand, let ๐‘“โˆˆ๐‘†. Thenif ๐‘ฆโˆˆ๐ฟ๐‘ก2, we have ๐‘“(๐‘ฆ)โ‰ 0 and inf๐‘ฆโˆˆ๐ฟ๐‘ก2,๐‘“(๐‘ฆ)โ‰ 0{๐œˆ๐ด(๐‘ฆ)}โ‰ค๐‘ก2; if ๐‘ฆโˆ‰๐ฟ๐‘ก2, we have ๐‘“(๐‘ฆ)โ‰ 0 and ๐œˆ๐ด(๐‘ฆ)>๐‘ก2, so inf๐‘ฆโˆˆ๐‘‰โงต๐ฟ๐‘ก2,๐‘“(๐‘ฆ)โ‰ 0{๐œˆ๐ด(๐‘ฆ)}>๐‘ก2.
Hence for ๐‘ฆโˆˆ๐‘‰โงต{0}, then inf๐‘“(๐‘ฆ)โ‰ 0{๐œˆ๐ด(๐‘ฆ)}โ‰ค๐‘ก2. Since ๐‘ฅโˆˆ๐‘‰โงต{0} and ๐‘“(๐‘ฅ)โ‰ 0, we have sup๐‘“โˆˆ๐‘‰โˆ—,๐‘–(๐‘ฅ)(๐‘“)=๐‘“(๐‘ฅ)โ‰ 0๎€ฝ๎€ฝ๐œˆinf๐ด(๐‘ฆ)โˆฃ๐‘ฆโˆˆ๐‘‰,๐‘“(๐‘ฆ)โ‰ 0๎€พ๎€พ=๐‘ก2=๐œˆ๐ด(๐‘ฅ).(3.4)
So ๐œ‡๐ดโˆ—โˆ—(๐‘–(๐‘ฅ))=๐œ‡๐ด(๐‘ฅ) and ๐œˆ๐ดโˆ—โˆ—(๐‘–(๐‘ฅ))=๐œˆ๐ด(๐‘ฅ).

Theorem 3.2. Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy subspace of ๐‘˜-vector space ๐‘‰. Then ๐ดโˆ—โˆ—(0)=(๐œ‡๐ดโˆ—โˆ—(0),๐œˆ๐ดโˆ—โˆ—(0)), where ๐œ‡๐ดโˆ—โˆ—(0)=sup{๐œ‡๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰โงต{0}} and ๐œˆ๐ดโˆ—โˆ—(0)=inf{๐œˆ๐ด(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰โงต{0}}.

Proof. We have ๐œ‡๐ดโˆ—โˆ—๎€ฝ๐œˆ(0)=sup๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ๎€ฝ๐œˆ=sup๐ดโˆ—(๐‘“)โˆฃ0โ‰ ๐‘“โˆˆ๐‘‰โˆ—๎€พ=sup0โ‰ ๐‘“โˆˆ๐‘‰โˆ—๎€ฝ๎€ฝ๐œ‡sup๐ด๎€ฝ๐œ‡(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0๎€พ๎€พ=sup๐ด๎€พ,๐œˆ(๐‘ฅ)๐‘ฅโˆˆ๐‘‰โงต{0}๐ดโˆ—โˆ—๎€ฝ๐œ‡(0)=inf๐ดโˆ—(๐‘“)โˆฃ๐‘“โˆˆ๐‘‰โˆ—๎€พ๎€ฝ๐œ‡=inf๐ดโˆ—(๐‘“)โˆฃ0โ‰ ๐‘“โˆˆ๐‘‰โˆ—๎€พ=inf0โ‰ ๐‘“โˆˆ๐‘‰โˆ—๎€ฝ๎€ฝ๐œˆinf๐ด๎€ฝ๐œˆ(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰,๐‘“(๐‘ฅ)โ‰ 0๎€พ๎€พ=inf๐ด๎€พ.(๐‘ฅ)โˆฃ๐‘ฅโˆˆ๐‘‰โงต{0}(3.5)

Theorem 3.3. Let ๐ด=(๐œ‡๐ด,๐œˆ๐ด) be an intuitionistic fuzzy subspace of finite dimensional ๐‘˜-vector space ๐‘‰ and ๐œ‡๐ด(0)=sup{๐œ‡๐ด(๐‘‰โงต{0})} and ๐œˆ๐ด(0)=inf{๐œˆ๐ด(๐‘‰โงต{0})}. Then the canonical map ๐‘–โˆถ๐‘‰โ†’๐‘‰โˆ—โˆ— is an isomorphism between the intuitionistic fuzzy subspace ๐ด and ๐ดโˆ—โˆ—.

Proof. Follows from Theorems 3.1 and 3.2.

4. Conclusions

In this paper, we study the contents of the dual of generalized fuzzy subspaces. Generalized fuzzy subspaces, including intuitionistic fuzzy subspaces, interval-valued fuzzy subspaces and interval-valued intuitionistic fuzzy subspaces, are the basic contents for the further study of some algebras [18, 19]. Moreover, many algebras have the dual structures. Therefore it makes sense to investigate the dual of generalized fuzzy subspaces. In the future, we will consider the applications of the dual of generalized fuzzy subspaces in coalgebras and bialgebras.

Acknowledgments

The authors would like to show their sincere thanks to the referees. This project is supported by the National Natural Science Foundation of China (Grant no. 61070241, 11126301) and Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province (no. BS2011SF002).