Abstract

We rigorously justify a singular Euler-Poisson approximation of the incompressible Euler equations in the quasi-neutral regime for plasma physics. Using the modulated energy estimates, the rate convergence of Euler-Poisson systems to the incompressible Euler equations is obtained.

1. Introduction

In this paper, we shall consider the following hydrodynamic system: ๐œ•๐‘ก๐‘›๐œ†๎€ท๐‘›+div๐œ†๐ฎ๐œ†๎€ธ=0,๐‘ฅโˆˆ๐’ฏ3๐œ•,๐‘ก>0,๐‘ก๐ฎ๐œ†+๎€ท๐ฎ๐œ†๎€ธ๐ฎโ‹…โˆ‡๐œ†=โˆ‡๐œ™๐œ†,๐‘ฅโˆˆ๐’ฏ3,๐‘ก>0,ฮ”๐œ™๐œ†=๐‘›๐œ†โˆ’1๐œ†,๐‘ฅโˆˆ๐’ฏ3,๐‘ก>0(1.1) for ๐‘ฅโˆˆ๐’ฏ3 and ๐‘ก>0, subject to the initial conditions ๎€ท๐‘›๐œ†,๐ฎ๐œ†๎€ธ๎€ท๐‘›(๐‘ก=0)=๐œ†0,๐ฎ๐œ†0๎€ธ(1.2) for ๐‘ฅโˆˆ๐’ฏ3. In the above equations, ๐’ฏ3 is 3-dimensional torus and ๐œ†>0 is small parameter. Here ๐‘›๐œ†, ๐ฎ๐œ†, ๐œ™๐œ† denote the electron density, electron velocity, and the electrostatic potential, respectively.

System (1.1) is a model of a collisionless plasma where the ions are supposed to be at rest and create a neutralizing background field. Then the motion of the electrons can be described by using either the kinetic formalism or the hydrodynamic equations of conservation of mass and momentum as we do here. The self-induced electric field is the gradient of a potential that depends on the electronโ€™s density ๐‘›๐œ† through the linear Poisson equation ฮ”๐œ™๐œ†=(๐‘›๐œ†โˆ’1)/๐œ†.

To solve uniquely the Poisson equation, we add the condition โˆซ๐’ฏ3๐‘›๐œ†๐‘‘๐‘ฅ=1. Passing to the limit when ๐œ† goes to zero, it is easy to see, at least at a very formal level, that (๐‘›๐œ†,๐ฎ๐œ†,๐œ™๐œ†) tends to (๐‘›๐ผ,๐ฎ๐ผ,๐œ™๐ผ), where ๐‘›๐ผ=1 and ๐œ•๐‘ก๐ฎ๐ผ+๎€ท๐ฎ๐ผ๎€ธ๐ฎโ‹…โˆ‡๐ผ=โˆ‡๐œ™๐ผ,div๐ฎ๐ผ=0.(1.3) In other words, ๐ฎ๐ผ is a solution of the incompressible Euler equations. The aim of this paper is to give a rigorous justification to this formal computation. We shall prove the following result.

Theorem 1.1. Let ๐ฎ๐ผ be a solution of the incompressible Euler equations (1.3) such that ๐ฎ๐ผโˆˆ([0,๐‘‡],๐ป๐‘ +3(๐’ฏ3)) and โˆซ๐’ฏ3๐ฎ๐ผ๐‘‘๐‘ฅ=0 for ๐‘ >5/2. Assume that the initial value (๐‘›๐œ†0,๐ฎ๐œ†0)โˆˆ๐ป๐‘ +1 is such that ๎€œ๐’ฏ3๐‘›๐œ†0๎€œ๐‘‘๐‘ฅ=1,๐’ฏ3๐ฎ๐œ†0๐‘€๐‘‘๐‘ฅ=0,๐‘ โ€–โ€–๐ฎ(๐œ†)โˆถ=๐œ†0โˆ’๐ฎ๐ผ0โ€–โ€–2๐ป๐‘ +1+1๐œ†โ€–โ€–๐‘›๐œ†0โˆ’๐œ†ฮ”๐œ™๐ผ0โ€–โ€–(๐‘ก)โˆ’12๐ป๐‘ โŸถ0(when๐œ†โŸถ0),๐ฎ๐ผ0=๐ฎ๐ผโˆฃ๐‘ก=0.(1.4) Then, there exist ๐œ†0 and ๐ถ๐‘‡ such that for 0<๐œ†โ‰ค๐œ†0 there is a solution (๐‘›๐œ†,๐ฎ๐œ†)โˆˆ([0,๐‘‡],๐ป๐‘ +1(๐’ฏ3)) of (1.1) satisfying โ€–โ€–๐ฎ๐œ†(๐‘ก)โˆ’๐ฎ๐ผโ€–โ€–(๐‘ก)2๐ป๐‘ +1+1๐œ†โ€–โ€–๐‘›๐œ†(๐‘ก)โˆ’๐œ†ฮ”๐œ™๐ผโ€–โ€–โˆ’12๐ป๐‘ โ‰ค๐ถ๐‘‡๎€ท๐œ†+๐‘€๐‘ ๎€ธ(๐œ†)(1.5) for any 0โ‰ค๐‘กโ‰ค๐‘‡.

Concerning the quasi-neutral limit, there are some results for various specific models. In particular, this limit has been performed for the Vlasov-Poisson system [1, 2], for the drift-diffusion equations and the quantum drift-diffusion equations [3, 4], for the one-dimensional and isothermal Euler-Poisson system [5], for the multidimensional Euler-Poisson equations [6, 7], for the bipolar Euler-Poisson system [8, 9], for the Vlasov-Maxwell system [10], and for Euler-Maxwell equations [11]. We refer to [12โ€“15] and references therein for more recent contributions.

The main focus in the present note is on the use of the modulated energy techniques for studying incompressible fluids. We will mostly restrict ourselves to the case of well-prepared initial data. Our result gives a more general rate of convergence in strong ๐ป๐‘  norm of the solution of the singular system towards a smooth solution of the incompressible Euler equation. We noticed that the quasi-neutral limit with pressure is treated in [5, 6]. But the techniques used there do not apply here.

It should be pointed that the model that we considered is a collisionless plasma while the model in [6, 7] includes the pressure. Our proof is based on the modulated energy estimates and the curl-div decomposition of the gradient while the proof in [6, 7] is based on formal asymptotic expansions and iterative methods. Meanwhile, the model that we considered in this paper is a different scaling from that of [16]. Furthermore, our convergence result is different from the convergence result in [16].

2. Proof of Theorem 1.1

First, let us set๎€ท๐‘›(๐‘›,๐ฎ,๐œ™)=๐œ†โˆ’1โˆ’๐œ†ฮ”๐œ™๐ผ,๐ฎ๐œ†โˆ’๐ฎ๐ผ,๐œ™๐œ†โˆ’๐œ™๐ผ๎€ธ.(2.1) Then, we know the vector (๐‘›,๐ฎ,๐œ™) solves the system ๐œ•๐‘ก๎€ท๐ฎ+๐ฎ+๐ฎ๐ผ๎€ธโ‹…โˆ‡๐ฎ+(๐ฎโ‹…โˆ‡)๐ฎ๐ผ๐œ•=โˆ‡๐œ™,๐‘ก๎€ท๐‘›+๐ฎ+๐ฎ๐ผ๎€ธ๎€ท๐œ•โ‹…โˆ‡๐‘›=โˆ’(๐‘›+1)div๐ฎโˆ’๐œ†๐‘กฮ”๐œ™๐ผ๎€ท+divฮ”๐œ™๐ผ๎€ท๐ฎ+๐ฎ๐ผ,๐‘›๎€ธ๎€ธ๎€ธฮ”๐œ™=๐œ†,(2.2) where โˆ‘โˆ‡๐ฎโˆถโˆ‡๐ฏ=3๐‘–,๐‘—=1(๐œ•๐‘ฅ๐‘–๐ฎ/๐œ•๐‘ฅ๐‘—)(๐œ•๐‘ฅ๐‘—๐ฏ/๐œ•๐‘ฅ๐‘–). In fact, from (1.3), we get ฮ”๐œ™๐ผ=โˆ‡๐ฎ๐ผโˆถโˆ‡๐ฎ๐ผ.

As in [16], we make the following change of unknowns: (๐‘‘,๐œ)=(div๐ฎ,curl๐ฎ).(2.3) By using the last equation in (2.2), we get the following system: ๐œ•๐‘ก๎€ท๐‘‘+๐ฎ+๐ฎ๐ผ๎€ธ๐‘›โ‹…โˆ‡๐‘‘=๐œ†๎€ทโˆ’โˆ‡๐ฎ+2๐ฎ๐ผ๎€ธ๐œ•โˆถโˆ‡๐ฎ,๐‘ก๎€ท๐œ+๐ฎ+๐ฎ๐ผ๎€ธ๎€ทโ‹…โˆ‡๐œ=๐œโ‹…โˆ‡๐ฎ+๐ฎ๐ผ๎€ธ๎€ท+curlโˆ‡๐ฎ๐ผ๎€ธ๎€ทโ‹…๐ฎโˆ’๐‘‘๐œโˆ’curl(๐ฎโ‹…โˆ‡)๐ฎ๐ผ๎€ธ,๐œ•๐‘ก๎€ท๐‘›+๐ฎ+๐ฎ๐ผ๎€ธ๎€ท๐œ•โ‹…โˆ‡๐‘›=โˆ’(๐‘›+1)๐‘‘โˆ’๐œ†๐‘กฮ”๐œ™๐ผ๎€ท+divฮ”๐œ™๐ผ๎€ท๐ฎ+๐ฎ๐ผ.๎€ธ๎€ธ๎€ธ(2.4) This last system can be written as a singular perturbation of a symmetrizable hyperbolic system: ๐œ•๐‘ก๐ฏ+3๎“๐‘—=1๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—1๐ฏ=๐œ†๐’ฆ๐œ†๐ฏ+โ„’(๐ฏ)+๐’ฎ(๐ฏ)+๐œ†โ„›(๐ฏ),(2.5) where (๐ฎ+๐ฎ๐ผ)๐‘— denotes the ๐‘–th component of (๐ฎ+๐ฎ๐ผ) and where โŽ›โŽœโŽœโŽœโŽœโŽ๐‘‘๐œ๐‘›โŽžโŽŸโŽŸโŽŸโŽŸโŽ ๐ฏ=,๐’ฆ๐œ†=โŽ›โŽœโŽœโŽœโŽœโŽโŽžโŽŸโŽŸโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽœโŽœโŽ0โŽžโŽŸโŽŸโŽŸโŽŸโŽ ,โŽ›โŽœโŽœโŽœโŽœโŽ๎€ท0๐ŸŽ1๐ŸŽ๐ŸŽ๐ŸŽโˆ’๐œ†๐ŸŽ0,โ„’(๐ฏ)=โˆ’๐‘‘๐œโˆ’๐‘‘๐‘›๐’ฎ(๐ฏ)=โˆ’โˆ‡๐ฎ+2๐ฎ๐ผ๎€ธ๎€ทโˆถโˆ‡๐ฎ๐œโ‹…โˆ‡๐ฎ+๐ฎ๐ผ๎€ธ๎€ท+curlโˆ‡๐ฎ๐ผ๎€ธ๎€ทโ‹…๐ฎโˆ’curl(๐ฎโ‹…โˆ‡)๐ฎ๐ผ๎€ธ0โŽžโŽŸโŽŸโŽŸโŽŸโŽ ,โŽ›โŽœโŽœโŽœโŽœโŽ0๐ŸŽโˆ’๎€ท๐œ•โ„›(๐ฏ)=๐‘กฮ”๐œ™๐ผ๎€ท+divฮ”๐œ™๐ผ๎€ท๐ฎ+๐ฎ๐ผโŽžโŽŸโŽŸโŽŸโŽŸโŽ .๎€ธ๎€ธ๎€ธ(2.6)

Now, let us set ๐’œ๐œ†0=๎‚€1๐ŸŽ0๐ŸŽ๐ผ๐‘‘๐ŸŽ0๐ŸŽ1/๐œ†๎‚ and for |๐›ผ|โ‰ค๐‘  with ๐‘ >๐‘‘/2, ๐ธ๐œ†๐›ผ,๐‘ 1(๐‘ก)=2๎€ท๐’œ๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐œ•๐›ผ๐‘ฅ๐ฏ๎€ธ=12๎‚€โ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘‘โ€–โ€–2+โ€–โ€–๐œ•๐›ผ๐‘ฅ๐œโ€–โ€–2+1๐œ†โ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘›โ€–โ€–2๎‚,๐ธ๐œ†๐‘ ๎“(๐‘ก)=|๐›ผ|โ‰ค๐‘ ๐ธ๐œ†๐›ผ,๐‘ (๐‘ก).(2.7) It is easy to know that system (2.5) is a hyperbolic system. Consequently, for ๐œ†>0 fixed, we have a result of local existence and uniqueness of strong solutions in ๐ถ([0,๐‘‡],๐ป๐‘ ), see [17]. This allows us to define ๐‘‡๐œ† as the largest time such that ๐ธ๐œ†๐‘ (๐‘ก)โ‰ค๐‘€๐œ†๎€บ,โˆ€๐‘กโˆˆ0,๐‘‡๐œ†๎€ป,(2.8) where ๐‘€๐œ† which is such that ๐‘€๐œ†โ†’0 when ๐œ† goes to zero will be chosen carefully later. To achieve the proof of Theorem 1.1, and in particular inequality (1.5), it is sufficient to establish that ๐‘‡๐œ†โ‰ฅ๐‘‡, which will be proved by showing that in (2.8) the equality cannot be reached for ๐‘‡๐œ†<๐‘‡ thanks to a good choice of ๐‘€๐œ†.

Before performing the energy estimate, we apply the operator ๐œ•๐›ผ๐‘ฅ for ๐›ผโˆˆโ„•3 with |๐›ผ|โ‰ค๐‘  to (2.5), to obtain๐œ•๐‘ก๐œ•๐›ผ๐‘ฅ๐ฏ+3๎“๐‘—=1๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ1๐ฏ=๐œ†๐’ฆ๐œ†๐œ•๐›ผ๐‘ฅ๐ฏ+๐œ•๐›ผ๐‘ฅโ„’(๐ฏ)+๐œ•๐›ผ๐‘ฅ๐’ฎ(๐ฏ)+๐œ†๐œ•๐›ผ๐‘ฅโ„›(๐ฏ)+ฮฃ๐œ†๐›ผ,(2.9) where ฮฃ๐œ†๐›ผ=3๎“๐‘—=1๎‚ƒ๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ๐ฏโˆ’๐œ•๐›ผ๐‘ฅ๎‚€๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐ฏ๎‚๎‚„.(2.10)

Along the proof, we shall denote by ๐ถ a number independent of ๐œ†, which actually may change from line to line, and by ๐ถ(โ‹…) a nondecreasing function. Moreover (โ‹…,โ‹…) and โ€–โ‹…โ€– stand for the usual ๐ฟ2 scalar product and norm, โ€–โ‹…โ€–๐‘  is the usual ๐ป๐‘  Sobolev norm, and โ€–โ‹…โ€–๐‘ ,โˆž is the usual ๐‘Š๐‘ ,โˆž norm.

Now, we proceed to perform the energy estimates for (2.9) in a classical way by taking the scalar product of system (2.9) with ๐’œ๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ. Then, we have ๐‘‘๐ธ๐‘‘๐‘ก๐œ†๐›ผ,๐‘ ๎ƒฉ๐’œ(๐‘ก)=โˆ’๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,3๎“๐‘—=1๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ๐ฏ๎ƒช+1๐œ†๎€ท๐’œ๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐’ฆ๐œ†๐œ•๐›ผ๐‘ฅ๐ฏ๎€ธ+๎€ท๐’œ๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐œ•๐›ผ๐‘ฅ๎€ธ+๎€ท๐’œโ„’(๐ฏ)๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐œ•๐›ผ๐‘ฅ๎€ธ๎€ท๐’œ๐’ฎ(๐ฎ)+๐œ†๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐œ•๐›ผ๐‘ฅ๎€ธ+๎€ท๐’œโ„›(๐ฎ)๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,ฮฃ๐œ†๐›ผ๎€ธ=6๎“๐‘–=1โ„๐‘–.(2.11)

Let us start the estimate of each term in the above equation. For โ„1, since ๐’œ๐œ†0 is symmetric and div๐ฎ๐ผ=0, by Cauchy-Schwartzโ€™s inequality and Sobolevโ€™s lemma, we have that โ„1=12๎€ทdiv๐ฎ๐’œ๐œ†0๐œ•๐›ผ๐‘ฅ๐ฏ,๐œ•๐›ผ๐‘ฅ๐ฏ๎€ธโ‰คโ€–div๐ฎโ€–0,โˆž๐ธ๐œ†๐‘ ๎€ท๐ธ(๐‘ก)โ‰ค๐ถ๐œ†๐‘ ๎€ธ(๐‘ก)3/2.(2.12) Next, since ๐’œ๐œ†0๐’ฆ๐œ† is skew-symmetric, we have that โ„2=0.(2.13) For โ„3, by a direct calculation, one gets โ„3๎€ท๐œ•=โˆ’๐›ผ๐‘ฅ๐œ,๐œ•๐›ผ๐‘ฅ๎€ธโˆ’1(๐‘‘๐œ)๐œ†๎€ท๐‘›,๐œ•๐›ผ๐‘ฅ๎€ธโ‰คโ€–โ€–๐œ•(๐‘‘๐‘›)๐›ผ๐‘ฅ๐œโ€–โ€–โ€–โ€–๐œ•๐›ผ๐‘ฅโ€–โ€–+1(๐‘‘๐œ)๐œ†โ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘›โ€–โ€–2โ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘‘โ€–โ€–๎€ท๐ธโ‰ค๐ถ๐œ†๐‘ ๎€ธ(๐‘ก)3/2.(2.14) Here, we have used the basic Moser-type calculus inequalities [18].

To give the estimate of the term โ„4, we split it in two terms. Specifically, we can deduce that โ„4๎€ท๐œ•=โˆ’๐›ผ๐‘ฅ๐‘‘,๐œ•๐›ผ๐‘ฅ๎€ทโˆ‡๎€ท๐ฎ+2๐ฎ๐ผ๎€ธ+๎€ท๐œ•โˆถโˆ‡๐ฎ๎€ธ๎€ธ๐›ผ๐‘ฅ๐œ,๐œ•๐›ผ๐‘ฅ๎€ท๎€ท๐œโ‹…โˆ‡๐ฎ+๐ฎ๐ผ๎€ธ๎€ท+curlโˆ‡๐ฎ๐ผ๎€ธ๎€ท(โ‹…๐ฎโˆ’curl๐ฎโ‹…โˆ‡)๐ฎ๐ผ๎€ธ๎€ธ๎€ธโ‰คโ€–๐‘‘โ€–๐‘ โ€–โ€–โˆ‡๎€ท๐ฎ+2๐ฎ๐ผ๎€ธโ€–โ€–โˆถโˆ‡๐ฎ๐‘ +โ€–๐œโ€–๐‘ ๎€ทโ€–โ€–๎€ท๐œโ‹…โˆ‡๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–๐‘ +โ€–โ€–๎€ทcurlโˆ‡๐ฎ๐ผ๎€ธโ€–โ€–โ‹…๐ฎ๐‘ +โ€–โ€–๎€ทcurl(๐ฎโ‹…โˆ‡)๐ฎ๐ผ๎€ธโ€–โ€–๐‘ ๎€ธ๎‚€๐ธโ‰ค๐ถ๐œ†๐‘ +๎€ท๐ธ๐œ†๐‘ ๎€ธ3/2๎‚.(2.15) Here, we have used the curl-div decomposition inequality โ€–โˆ‡๐ฎโ€–๐‘ ๎€ทโ‰ค๐ถโ€–๐‘‘โ€–๐‘ +โ€–๐œโ€–๐‘ ๎€ธ.(2.16)

For โ„5, we have that โ„5โ‰คโ€–๐‘›โ€–๐‘ โ€–โ€–๐œ•๐‘กฮ”๐œ™๐ผ๎€ท+divฮ”๐œ™๐ผ๎€ท๐ฎ+๐ฎ๐ผโ€–โ€–๎€ธ๎€ธ๐‘ โ‰ค๐ถโ€–๐‘›โ€–๐‘ ๎€ท1+โ€–๐‘‘โ€–๐‘ +โ€–๐œโ€–๐‘ ๎€ธโ‰ค๐ถ๐œ†+๐ธ๐œ†๐‘ .(2.17)

To estimate the last term, that is, โ„5, by using basic Moser-type calculus inequalities and Sobolevโ€™s lemma, we have โ„6=๎ƒฉ๐œ•๐›ผ๐‘ฅ๐‘‘,3๎“๐‘—=1๎‚ƒ๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ๐‘‘โˆ’๐œ•๐›ผ๐‘ฅ๎‚€๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐‘‘๎ƒช+๎ƒฉ๐œ•๎‚๎‚„๐›ผ๐‘ฅ๐œ,3๎“๐‘—=1๎‚ƒ๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ๐œโˆ’๐œ•๐›ผ๐‘ฅ๎‚€๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ๎ƒช+1๎‚๎‚„๐œ†๎ƒฉ๐œ•๐›ผ๐‘ฅ๐‘›,3๎“๐‘—=1๎‚ƒ๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐œ•๐›ผ๐‘ฅ๐‘›โˆ’๐œ•๐›ผ๐‘ฅ๎‚€๎€ท๐ฎ+๐ฎ๐ผ๎€ธ๐‘—๐œ•๐‘ฅ๐‘—๐‘›๎ƒช๎‚๎‚„โ‰ค๐ถโ€–๐‘‘โ€–๐‘ ๎‚€โ€–โ€–โˆ‡๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘‘โ€–โ€–+โ€–โˆ‡๐‘‘โ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–๎‚+๐ถโ€–๐œโ€–๐‘ ๎‚€โ€–โ€–โˆ‡๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๐œโ€–โ€–+โ€–โˆ‡๐œโ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–๎‚+๐ถ๐œ†โ€–๐‘›โ€–๐‘ ๎‚€โ€–โ€–โˆ‡๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๐‘›โ€–โ€–+โ€–โˆ‡๐‘›โ€–0,โˆžโ€–โ€–๐œ•๐›ผ๐‘ฅ๎€ท๐ฎ+๐ฎ๐ผ๎€ธโ€–โ€–๎‚๎‚€โ‰ค๐ถโ€–๐‘‘โ€–2๐‘ +โ€–๐œโ€–2๐‘ +1๐œ†โ€–๐‘›โ€–2๐‘ ๎‚๎€ทโ€–๐‘‘โ€–๐‘ +โ€–๐œโ€–๐‘ ๎€ธ๎‚€๐ธ+1โ‰ค๐ถ๐œ†๐‘ +๎€ท๐ธ๐œ†๐‘ ๎€ธ3/2๎‚.(2.18)

Now, we collect all the previous estimates (2.12)โ€“(2.18) and we sum over ๐›ผ to find ๐‘‘๐ธ๐‘‘๐‘ก๐œ†๐‘ โ‰ค๐ถ๐œ†+๐ถ๐ธ๐œ†๐‘ +๎€ท๐ธ๐œ†๐‘ ๎€ธ2.(2.19) By using (2.8), we get with ๐‘€๐œ†โ‰ช1 that ๐‘‘๐ธ๐‘‘๐‘ก๐œ†๐‘ โ‰ค๐ถ๐œ†+๐ถ๐ธ๐œ†๐‘ ๎€บ,โˆ€๐‘กโˆˆ0,๐‘‡๐œ†๎€ป.(2.20) Hence, by the Gronwall inequality, we get that ๐ธ๐œ†๐‘ ๎€ท๐‘€(๐‘ก)โ‰ค๐‘ ๎€ธ๐‘’(๐œ†)+๐ถ๐‘ก๐œ†๐ถ๐‘ก๎€บ,โˆ€๐‘กโˆˆ0,๐‘‡๐œ†๎€ป.(2.21)

Consequently, if we choose ๐‘€๐œ†=(๐‘€๐‘ (๐œ†)+๐ถ๐‘ก๐œ†)1/2, we see that we cannot reach equality in (2.8) for ๐‘‡๐œ†<๐‘‡. This proves that ๐‘‡๐œ†>๐‘‡ and that (2.21) is valid on [0,๐‘‡].

Acknowledgment

The authors acknowledge partial support from the Research Initiation Project for High-Level Talents (no. 40118) of North China University of Water Resources and Electric Power.