Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 128368, 11 pages
http://dx.doi.org/10.1155/2013/128368
Research Article

Practical Aspects of Broken Rotor Bars Detection in PWM Voltage-Source-Inverter-Fed Squirrel-Cage Induction Motors

Hong-yu Zhu,1,2,3,4 Jing-tao Hu,1,2,3 Lei Gao,1,2,3 and Hao Huang1,3

1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Key laboratory of Industrial Information Technology, Chinese Academy of Sciences, Shenyang 110016, China
4School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114044, China

Received 5 June 2013; Revised 18 September 2013; Accepted 23 October 2013

Academic Editor: Xianxia Zhang

Copyright © 2013 Hong-yu Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. H. Benbouzid and G. B. Kliman, “What stator current processing-based technique to use for induction motor rotor faults diagnosis?” IEEE Transactions on Energy Conversion, vol. 18, no. 2, pp. 238–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Cusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. G. Espinosa, “Fault detection in induction machines using power spectral density in wavelet decomposition,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 633–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. M. Wolbank, P. Nussbaumer, H. Chen, and P. E. Macheiner, “Monitoring of rotor-bar defects in inverter-fed induction machines at zero load and speed,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1468–1478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bellini, F. Filippetti, C. Tassoni, and G. A. Capolino, “Advances in diagnostic techniques for induction machines,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4109–4126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. H. Bonnett and C. Yung, “Increased efficiency versus increased reliability,” IEEE Industry Applications Magazine, vol. 14, no. 1, pp. 29–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Cusido, L. Romeral, J. A. Ortega, A. Garcia, and J. R. Riba, “Wavelet and PDD as fault detection techniques,” Electric Power Systems Research, vol. 80, no. 8, pp. 915–924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Culbert and W. Rhodes, “Using current signature analysis technology to reliably detect cage winding defects in squirrel cage induction motors,” in Proceedings of the 52nd Annual Petroleum and Chemical Industry Conference, pp. 95–101, September 2005. View at Scopus
  8. J. H. Jung, J. J. Lee, and B. H. Kwon, “Online diagnosis of induction motors using MCSA,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1842–1852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. Kia, H. Henao, and G. A. Capolino, “A high-resolution frequency estimation method for three-phase induction machine fault detection,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2305–2314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Matic, F. Kulić, M. Pineda-Sánchez, and I. Kamenko, “Support vector machine classifier for diagnosis in electrical machines: application to broken bar,” Expert Systems with Applications, vol. 39, no. 10, pp. 8681–8689, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. H. Benbouzid, “A review of induction motors signature analysis as a medium for faults detection,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 984–993, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Cabanas, F. Pedrayes, M. G. Melero et al., “Unambiguous detection of broken bars in asynchronous motors by means of a flux measurement-based procedure,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 891–899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Gupta, A. K. Wadhwani, and S. R. Kapoor, “Early estimation of faults in induction motors using symbolic dynamic-based analysis of stator current samples,” IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 102–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. T. Thomson and M. Fenger, “Case histories of current signature analysis to detect faults in induction motor drives,” in Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC '03), 2003.
  15. S. Choi, B. Akin, M. M. Rahimian, and H. A. Toliyat, “Implementation of a fault-diagnosis algorithm for induction machines based on advanced digital-signal-processing techniques,” IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 937–948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Akin, S. B. Ozturk, H. A. Toliyat, and M. Rayner, “DSP-based sensorless electric motor fault diagnosis tools for electric and hybrid electric vehicle powertrain applications,” IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2150–2159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bellini, “Closed-loop control impact on the diagnosis of induction motors faults,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1318–1329, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. A. Cruz and A. J. M. Cardoso, “Diagnosis of rotor faults in closed-loop induction motor drives,” in Proceedings of the IEEE 41st IAS Annual Meeting on Industry Applications, pp. 2346–2353, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. K. Lee and M. Ehsani, “A simplified functional simulation model for three-phase voltage-source inverter using switching function concept,” IEEE Transactions on Industrial Electronics, vol. 48, no. 2, pp. 309–321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. G. W. Chang and S. K. Chen, “An analytical approach for characterizing harmonic and interharmonic currents generated by VSI-fed adjustable speed drives,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2585–2593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Nandi, H. A. Toliyat, and X. D. Li, “Condition monitoring and fault diagnosis of electrical motors—a review,” IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Eltabach and A. Charara, “Comparative investigation of electric signal analyses methods for mechanical fault detection in induction motors,” Electric Power Components and Systems, vol. 35, no. 10, pp. 1161–1180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Eltabach, J. Antoni, and M. Najjar, “Quantitative analysis of noninvasive diagnostic procedures for induction motor drives,” Mechanical Systems and Signal Processing, vol. 21, no. 7, pp. 2838–2856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Yazidi, H. Henao, G. A. Capolino, M. Artioli, and F. Filippetti, “Improvement of frequency resolution for three-phase induction machine fault diagnosis,” in Proceedings of the IEEE 40th IAS Annual Meeting on Industry Applications, vol. 1, pp. 20–25, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. I. P. Georgakopoulos, E. D. Mitronikas, and A. N. Safacas, “Detection of induction motor faults in inverter drives using inverter input current analysis,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4365–4373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, Tsinghua University Press, Beijing, China, 2nd edition, 2005.
  27. J. Faiz and B. M. Ebrahimi, “A new pattern for detecting broken rotor bars in induction motors during start-up,” IEEE Transactions on Magnetics, vol. 44, no. 12, pp. 4673–4683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Ayhan, M. Y. Chow, and M. H. Song, “Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1298–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus