Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 157043, 8 pages
http://dx.doi.org/10.1155/2013/157043
Research Article

Positive Solutions for Discrete Boundary Value Problems to One-Dimensional -Laplacian with Delay

Faculty of Science, Jiangsu University, Zhenjiang 212013, China

Received 23 April 2013; Accepted 20 June 2013

Academic Editor: Junjie Wei

Copyright © 2013 Linjun Wang and Xumei Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Q. Jiang, J. F. Chu, D. O'Regan, and R. P. Agarwal, “Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian,” Mathematical Inequalities & Applications, vol. 7, no. 4, pp. 523–534, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  2. W.-T. Li and H.-F. Huo, “Positive periodic solutions of delay difference equations and applications in population dynamics,” Journal of Computational and Applied Mathematics, vol. 176, no. 2, pp. 357–369, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  3. Y. J. Liu, “A study on periodic solutions of higher order nonlinear functional difference equations with p-Laplacian,” Journal of Difference Equations and Applications, vol. 13, no. 12, pp. 1105–1114, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  4. H. Y. Feng, W. G. Ge, and M. Jiang, “Multiple positive solutions for m-point boundary-value problems with a one-dimensional p-Laplacian,” Nonlinear Analysis. Theory, Methods & Applications, vol. 68, no. 8, pp. 2269–2279, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  5. C.-G. Kim, “Existence of positive solutions for singular boundary value problems involving the one-dimensional p-Laplacian,” Nonlinear Analysis. Theory, Methods & Applications, vol. 70, no. 12, pp. 4259–4267, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  6. R. Glowinski and J. Rappaz, “Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology,” Mathematical Modelling and Numerical Analysis, vol. 37, no. 1, pp. 175–186, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  7. C. H. Jin, J. X. Yin, and Z. J. Wang, “Positive radial solutions of p-Laplacian equation with sign changing nonlinear sources,” Mathematical Methods in the Applied Sciences, vol. 30, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  8. D. Y. Bai and Y. T. Xu, “Existence of positive solutions for boundary-value problems of second-order delay differential equations,” Applied Mathematics Letters, vol. 18, no. 6, pp. 621–630, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  9. C. H. Jin and J. X. Yin, “Positive solutions for the boundary value problems of one-dimensional p-Laplacian with delay,” Journal of Mathematical Analysis and Applications, vol. 330, no. 2, pp. 1238–1248, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  10. L. Wei and J. Zhu, “The existence and blow-up rate of large solutions of one-dimensional p-Laplacian equations,” Nonlinear Analysis. Real World Applications, vol. 13, no. 2, pp. 665–676, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  11. Z. L. Yang and D. O'Regan, “Positive solutions of a focal problem for one-dimensional p-Laplacian equations,” Mathematical and Computer Modelling, vol. 55, no. 7-8, pp. 1942–1950, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  12. Z. M. He, “On the existence of positive solutions of p-Laplacian difference equations,” Journal of Computational and Applied Mathematics, vol. 161, no. 1, pp. 193–201, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  13. R. I. Avery and J. Henderson, “Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian,” Journal of Mathematical Analysis and Applications, vol. 277, no. 2, pp. 395–404, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  14. D.-B. Wang and W. Guan, “Three positive solutions of boundary value problems for p-Laplacian difference equations,” Computers & Mathematics with Applications, vol. 55, no. 9, pp. 1943–1949, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. P. Candito and N. Giovannelli, “Multiple solutions for a discrete boundary value problem involving the p-Laplacian,” Computers & Mathematics with Applications, vol. 56, no. 4, pp. 959–964, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  16. A. Iannizzotto and S. A. Tersian, “Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory,” Journal of Mathematical Analysis and Applications, vol. 403, no. 1, pp. 173–182, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  17. Y. J. Liu and X. Y. Liu, “The existence of periodic solutions of higher order nonlinear periodic difference equations,” Mathematical Methods in the Applied Sciences, vol. 36, pp. 1459–1470, 2013. View at Publisher · View at Google Scholar
  18. H. H. Liang and P. X. Weng, “Existence and multiple solutions for a second-order difference boundary value problem via critical point theory,” Journal of Mathematical Analysis and Applications, vol. 326, no. 1, pp. 511–520, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  19. D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5, Academic Press, Boston, Mass, USA, 1988. View at MathSciNet