Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 428681, 12 pages
http://dx.doi.org/10.1155/2013/428681
Research Article

Optimized Weighted Essentially Nonoscillatory Third-Order Schemes for Hyperbolic Conservation Laws

1Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
2Department of Applied Mathematical Sciences, University of Technology, Mauritius, La Tour Koenig, Pointe-aux-Sables, Mauritius

Received 12 April 2013; Revised 25 June 2013; Accepted 25 June 2013

Academic Editor: Mohamed Fathy El-Amin

Copyright © 2013 A. R. Appadu and A. A. I. Peer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Randall, “An introduction to atmospheric modeling,” Tech. Rep., 2007. View at Google Scholar
  2. L. L. Takacs, “A two-step scheme for the advection equation with minimized dissipation and dispersion errors,” Monthly Weather Review, vol. 113, no. 6, pp. 1050–1065, 1985. View at Google Scholar · View at Scopus
  3. H. Trac and U.-L. Pen, “A primer on eulerian computational fluid dynamics for astrophysics,” Publications of the Astronomical Society of the Pacific, vol. 115, no. 805, pp. 303–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Liska and B. Wendroff, “Composite schemes for conservation laws,” SIAM Journal on Numerical Analysis, vol. 35, no. 6, pp. 2250–2271, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. Z. Jiang, “On dispersion-controlled principles for non-oscillatory shock-capturing schemes,” Acta Mechanica Sinica, vol. 20, no. 1, pp. 1–15, 2004. View at Google Scholar · View at MathSciNet
  6. S. Okamoto, K. Hara, A. Takei, and F. Masuda, “A study on numerical methods for air quality simulation,” Tokyo University of Information Sciences, vol. 5, no. 1, pp. 65–72, 2001. View at Google Scholar
  7. C. K. Forester, “Higher order monotonic convective difference schemes,” Journal of Computational Physics, vol. 23, no. 1, pp. 1–22, 1977. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. J. P. Boris and D. L. Book, “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works,” Journal of Computational Physics, vol. 11, no. 1, pp. 38–69, 1973. View at Google Scholar · View at Scopus
  9. B. van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme,” Journal of Computational Physics, vol. 14, no. 4, pp. 361–370, 1974. View at Google Scholar · View at Scopus
  10. P. Colella and E. Puckett, “Modern methods for fluid flow,” Tech. Rep., 1994. View at Google Scholar
  11. X.-D. Liu, S. Osher, and T. Chan, “Weighted essentially non-oscillatory schemes,” Journal of Computational Physics, vol. 115, no. 1, pp. 200–212, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. J. E. Fromm, “A method for reducing dispersion in convective difference schemes,” Journal of Computational Physics, vol. 3, no. 2, pp. 176–189, 1968. View at Google Scholar · View at Scopus
  13. A. Kasahara and W. M. Washington, “Thermal and dynamical effects of orography on the general circulation of the atmosphere,” in Proceedings of the WMO/IUGG Symbosium on Numerical Weather Prediction, pp. 47–56, Tokyo, Japan, November-December 1968.
  14. A. F. Shchepetkin and J. C. Mcwilliams, “Quasi-monotone advection schemes based on explicit locally adaptive dissipation,” Monthly Weather Review, vol. 126, no. 6, pp. 1541–1580, 1998. View at Google Scholar · View at Scopus
  15. A. R. Appadu and M. Z. Dauhoo, “The concept of minimized integrated exponential error for low dispersion and low dissipation schemes,” International Journal for Numerical Methods in Fluids, vol. 65, no. 5, pp. 578–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Appadu, “Some applications of the concept of minimized integrated exponential error for low dispersion and low dissipation,” International Journal for Numerical Methods in Fluids, vol. 68, no. 2, pp. 244–268, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  17. A. R. Appadu, “Investigating the shock-capturing properties of some composite numerical schemes for the 1-D linear advection equation,” International Journal of Computer Applications in Technology, vol. 43, no. 2, pp. 79–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. U. M. Ascher and R. I. McLachlan, “Multisymplectic box schemes and the Korteweg-de Vries equation,” Applied Numerical Mathematics, vol. 48, no. 3-4, pp. 255–269, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. A. A. I. Peer, M. Z. Dauhoo, A. Gopaul, and M. Bhuruth, “A weighted ENO-flux limiter scheme for hyperbolic conservation laws,” International Journal of Computer Mathematics, vol. 87, no. 15, pp. 3467–3488, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet