Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 538261, 7 pages
http://dx.doi.org/10.1155/2013/538261
Research Article

Some Similarity Measures for Triangular Fuzzy Number and Their Applications in Multiple Criteria Group Decision-Making

1School of Business, Central South University, Changsha, Hunan 410083, China
2School of Business, Shandong University of Technology, Zibo, Shandong 255049, China
3School of Science, Shandong University of Technology, Zibo, Shandong 255049, China

Received 19 September 2012; Accepted 11 March 2013

Academic Editor: Saeid Abbasbandy

Copyright © 2013 Liyuan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965. View at Google Scholar · View at MathSciNet
  2. H. W. Liu, “New similarity measures between intuitionistic fuzzy sets and between elements,” Mathematical and Computer Modelling, vol. 42, no. 1-2, pp. 61–70, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  3. Z. S. Xu, “Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making,” Fuzzy Optimization and Decision Making, vol. 6, no. 2, pp. 109–121, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  4. P. D. Liu and T. J. Wang, “Method for multiple attribute decision making with triangular fuzzy number and partial attribute weight information,” Journal of Information and Computational Science, vol. 4, no. 3, pp. 1017–1022, 2007. View at Google Scholar · View at Scopus
  5. D. F. Li, “A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems,” Computers and Mathematics with Applications, vol. 60, no. 6, pp. 1557–1570, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  6. S. F. Zhang, S. Y. Liu, and R. H. Zhai, “An extended GRA method for MCDM with interval-valued triangular fuzzy assessments and unknown weights,” Computers & Industrial Engineering, vol. 81, pp. 1336–1341, 2011. View at Google Scholar
  7. Z. Y. Xu, S. C. Shang, W. B. Qian, and W. H. Shu, “A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers,” Expert Systems with Applications, vol. 37, no. 3, pp. 1920–1927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Abbasbandy and T. Hajjari, “A new approach for ranking of trapezoidal fuzzy numbers,” Computers and Mathematics with Applications, vol. 57, no. 3, pp. 413–419, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  9. J. Ye, “Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems,” Expert Systems with Applications, vol. 38, no. 9, pp. 11730–11734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. D. Liu, “A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers,” Expert Systems with Applications, vol. 38, no. 1, pp. 1053–1060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. W. Cao and J. Wu, “The extended COWG operators and their application to multiple attributive group decision making problems with interval numbers,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2075–2086, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  12. Z. L. Yue, “An extended TOPSIS for determining weights of decision makers with interval numbers,” Knowledge-Based Systems, vol. 24, no. 1, pp. 146–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. Wang and T. M. S. Elhag, “Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment,” Expert Systems with Applications, vol. 31, no. 2, pp. 309–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. R. Jahanshahloo, F. H. Lotfi, and M. Izadikhah, “An algorithmic method to extend TOPSIS for decision-making problems with interval data,” Applied Mathematics and Computation, vol. 175, no. 2, pp. 1375–1384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. C. Tang and C. T. Chang, “Multicriteria decision-making based on goal programming and fuzzy analytic hierarchy process: an application to capital budgeting problem,” Knowledge-Based Systems, vol. 26, pp. 288–293, 2012. View at Google Scholar
  16. G. W. Wei and Y. Wei, “Model of grey relational analysis for interval multiple attribute decision making with preference information on alternatives,” Chinese Journal of Management Science, vol. 16, pp. 158–162, 2008. View at Google Scholar
  17. W. L. Liu and P. D. Liu, “Hybrid multiple attribute decision making method based on relative approach degree of grey relation projection,” African Journal of Business Management, vol. 4, no. 17, pp. 3716–3724, 2010. View at Google Scholar · View at Scopus
  18. E. Szmidt and J. Kacprzyk, “A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making,” Modeling Decisions for Artificial Intelligence, vol. 3558, pp. 272–282, 2005. View at Google Scholar · View at Scopus
  19. Z. Liang and P. Shi, “Similarity measures on intuitionistic fuzzy sets,” Pattern Recognation Letters, vol. 24, pp. 2678–2693, 2003. View at Google Scholar
  20. W. L. Hung and M. S. Yang, “Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance,” Pattern Recognition Letters, vol. 25, no. 14, pp. 1603–1611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ye, “Cosine similarity measures for intuitionistic fuzzy sets and their applications,” Mathematical and Computer Modelling, vol. 53, no. 1-2, pp. 91–97, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  22. G. T. Fu, “A fuzzy optimization method for multicriteria decision making: an application to reservoir flood control operation,” Expert Systems with Applications, vol. 34, no. 1, pp. 145–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. W. Wei, “FIOWHM operator and its application to multiple attribute group decision making,” Expert Systems with Applications, vol. 38, no. 4, pp. 2984–2989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. G. W. Wei, X. F. Zhao, R. Lin, and H. J. Wang, “Generalized triangular fuzzy correlated averaging operator and their application to multiple attribute decision making,” Applied Mathematical Modelling, vol. 36, no. 7, pp. 2975–2982, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  25. P. J. M. van Laarhoven and W. Pedrycz, “A fuzzy extension of Saaty's priority theory,” Fuzzy Sets and Systems, vol. 11, no. 3, pp. 229–241, 1983. View at Publisher · View at Google Scholar · View at MathSciNet
  26. J. Ye, “Using an improved measure function of vague sets for multicriteria fuzzy decision-making,” Expert Systems with Applications, vol. 37, no. 6, pp. 4706–4709, 2010. View at Publisher · View at Google Scholar · View at Scopus