Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 803548, 11 pages
http://dx.doi.org/10.1155/2013/803548
Research Article

Identification of a Surface Marine Vessel Using LS-SVM

1Department of Computer Science and Automatic Control, UNED, Madrid 28040, Spain
2Department of Computer Architecture and Automatic Control, Complutense University of Madrid (UCM), Madrid 28040, Spain

Received 25 January 2013; Accepted 15 March 2013

Academic Editor: Mamdouh M. El Kady

Copyright © 2013 David Moreno-Salinas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ljung, “Identification of Nonlinear Systems,” in Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision (ICARCV '06), December 2006. View at Scopus
  2. L. Ljung, System Identification: Theory for the User, Prentice-Hall, Upper Saddle River, NJ, USA, 1999.
  3. J. van Amerongen and A. J. U. T. Cate, “Model reference adaptive autopilots for ships,” Automatica, vol. 11, no. 5, pp. 441–449, 1975. View at Google Scholar · View at Scopus
  4. K. J. Åström and C. G. Källström, “Identification of ship steering dynamics,” Automatica, vol. 12, no. 1, pp. 9–22, 1976. View at Google Scholar · View at Scopus
  5. C. G. Källström and K. J. Åström, “Experiences of system identification applied to ship steering,” Automatica, vol. 17, no. 1, pp. 187–198, 1981. View at Google Scholar · View at Scopus
  6. M. A. Abkowitz, “Measurements of hydrodynamic characteristic from ship maneuvering trials by system identification,” Transactions of the Society of Naval Architects and Marine Engineers, vol. 88, pp. 283–318, 1980. View at Google Scholar · View at Scopus
  7. T. I. Fossen, S. I. Sagatun, and A. J. Sørensen, “Identification of dynamically positioned ships,” Modeling, Identification and Control, vol. 17, no. 2, pp. 153–165, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. T. Perez, A. J. Sørensen, and M. Blanke, “Marine vessel models in changing operational conditions—a tutorial,” in Proceedings of the 14th IFAC Symposium on System Identification, Newcastle, Australia, 2006.
  9. M. Caccia, G. Bruzzone, and R. Bono, “A practical approach to modeling and identification of small autonomous surface craft,” IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 133–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. I. Fossen, Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim, Norway, 2002.
  11. J. M. De La Cruz, J. Aranda, and J. M. Giron, “Automatica Marina: una revision desde el punto de vista de control,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 9, pp. 205–218, 2012. View at Google Scholar
  12. K. Nomoto, T. Taguchi, K. Honda, and S. Hirano, “On the steering qualities of ships,” Tech. Rep. 4, International Shipbuilding Progress, 1957. View at Google Scholar
  13. K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Haddara and Y. Wang, “Parametric identification of manoeuvring models for ships,” International Shipbuilding Progress, vol. 46, no. 445, pp. 5–27, 1999. View at Google Scholar · View at Scopus
  15. M. R. Haddara and J. Xu, “On the identification of ship coupled heave-pitch motions using neural networks,” Ocean Engineering, vol. 26, no. 5, pp. 381–400, 1999. View at Google Scholar · View at Scopus
  16. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. View at Google Scholar · View at Scopus
  17. A. B. Mahfouz, “Identification of the nonlinear ship rolling motion equation using the measured response at sea,” Ocean Engineering, vol. 31, no. 17-18, pp. 2139–2156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Vapnik and Z. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Doklady Akademii Nauk USS, vol. 4, no. 181, 1968. View at Google Scholar
  19. M. A. Aĭzerman, È. M. Braverman, and L. I. Rozonoèr, “A probabilistic problem on automata learning by pattern recognition and the method of potential functions,” Automation and Remote Control, vol. 25, pp. 821–837, 1964. View at Google Scholar · View at MathSciNet
  20. B. Scholkopf and A. J. Smola, Learning With Kernels, MIT Press, Cambridge, Mass, USA, 2002.
  21. V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998. View at MathSciNet
  22. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  23. P. M. L. Drezet and R. F. Harrison, “Support vector machines for system identification,” in Proceedings of the 1998 International Conference on Control, pp. 688–692, September 1998. View at Scopus
  24. S. Adachi and T. Ogawa, “A new system identification method based on support vector machines,” in Proceedings of the IFAC Workshop Adaptation and Learning in Control and Signal Processing, Cernobbio-Como, Italy, 2001.
  25. G. T. Jemwa and C. Aldrich, “Non-linear system identification of an autocatalytic reactor using least squares support vector machines,” The Journal of The South African Institute of Mining and Metallurgy, vol. 103, no. 2, pp. 119–125, 2003. View at Google Scholar · View at Scopus
  26. W. Zhong, D. Pi, and Y. Sun, “SVM based non parametric model identification and dynamic model control,” in Proceedings of the 1rst International Conference on Natural Computation (ICNC '05), vol. 3610 of Lecture Notes in Computer Science, pp. 706–709, 2005. View at Google Scholar
  27. V. Verdult, J. A. K. Suykens, J. Boets, I. Goethals, and B. de Moor, “Least squares support vector machines for kernel CCA in non-linear state-space identification,” in Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS '04), Leuven, Belgium, July 2004.
  28. W. Zhong, H. Ge, and F. Qian, “Model identification and control for nonlinear discrete-time systems with time delay: a support vector machine approach,” in Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering (ISKE '07), Chengdu, China, October 2007.
  29. S. Tötterman and H. T. Toivonen, “Support vector method for identification of Wiener models,” Journal of Process Control, vol. 19, no. 7, pp. 1174–1181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. K. Suykens, T. van Geste, J. de Brabanter, B. de Moor, and J. Vandewalle, Least Squares Support Vector Machines, World Scientific, Singapore, 2002.
  31. X. D. Wang and M. Y. Ye, “Nonlinear dynamic system identification using least squares support vector machine regression,” in Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, pp. 941–945, Shanghai, China, August 2004. View at Scopus
  32. I. Goethals, K. Pelckmans, J. A. K. Suykens, and B. De Moor, “Identification of MIMO Hammerstein models using least squares support vector machines,” Automatica, vol. 41, no. 7, pp. 1263–1272, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. Z. Yu and Y. Cai, “Least squares wavelet support vector machines for nonlinear system identification,” in Advances in Neural Networks (ISNN '05), vol. 3497 of Lecture Notes in Computer Science, pp. 436–441, 2005. View at Google Scholar · View at Zentralblatt MATH
  34. L. Wang, H. Lai, and T. Zhang, “An improved algorithm on least squares support vector machines,” Information Technology Journal, vol. 7, no. 2, pp. 370–373, 2008. View at Google Scholar · View at Scopus
  35. W. L. Luo and Z. J. Zou, “Parametric identification of ship maneuvering models by using support vector machines,” Journal of Ship Research, vol. 53, no. 1, pp. 19–30, 2009. View at Google Scholar · View at Scopus
  36. X. G. Zhang and Z. J. Zou, “Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression,” Journal of Hydrodynamics, vol. 23, no. 3, pp. 353–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Mercer, “Functions of positive and negative type and their connection with the theory of integral equations,” Philosophical Transactions of the Royal Society A, vol. 209, pp. 415–446, 1909. View at Google Scholar
  38. M. A. Abkowitz, “Lectures on ship hydrodynamics steering and manoeuvrability,” Tech. Rep. Hy-5, Hydro and Aerodynamics Laboratory, Lyngby, Denmark, 1964. View at Google Scholar
  39. K. S. M. Davidson and L. I. Schiff, “Turning and course keeping qualities,” Transactions of SNAME, vol. 54, pp. 189–190, 1946. View at Google Scholar
  40. Matlab Help Files, 2012, Cambridge Mass, USA, http://www.mathworks.com/help/ident/.